

(3s.) **v. 33** 1 (2015): 147–156. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i1.22743

Some remarks on statistical summability of order $\tilde{\alpha}$ defined by generalized De la Vallée-Poussin Mean

Meenakshi, Vijay Kumar and M. S. Saroa

ABSTRACT: In this article we define (λ, μ) -statistical summability and (V, λ, μ) summability of order $\tilde{\alpha}$ for double sequences and obtain some relations between these summability methods. We demonstrate examples which shows our method of summability is more general for double sequences.

Key Words: Statistical Convergence, λ -statistical convergence, Double sequences.

Contents

1 Introduction

2 Main Results

1. Introduction

Fast [6] introduced the notion of statistical convergence as a generalized summability method in order to assign limits to those sequences which are not convergent in usual sense. He used the concept of natural density of subsets of \mathbb{N} , the set of positive integers. The natural density of a set $K \subset \mathbb{N}$, is denoted by $\delta(K)$ and is defined by

$$\delta(K) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_{K}(k)$$

provided the limit exists, where χ_K denotes the characteristic function of K. As the sum on the right side of the above expression denotes the cardinality of the set $\{k \leq n : k \in K\}$ so Fast [6] defined statistical convergence as follows.

Definition 1.1. [6] A sequence $x = (x_k)$ of numbers is said to be statistically convergent to a number L provided that, for every $\epsilon > 0$,

$$\delta\left(\{k \le n : |x_k - L| > \epsilon\}\right) = 0.$$

In this case, we write $S - \lim_{k \to \infty} x_k = L$.

Let S(x) denotes the set of all statistically convergent sequences.

Although, statistical convergence was introduced in the mid of last century but a rapid development on statistical convergence starts with the papers of Šalát [20],

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

147

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 40C05, 46A45

Fridy [7] and Connor [5]. For more details and related concepts, we refer to [12], [19], [21,22,23,24] and [28].

In [13], Mursaleen presented an interesting extention of statistical convergence namely λ -statistical convergence and show how it is related with (V, λ) -summability.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$. The generalized de la Vallée-Poussin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_k)$ of numbers is said to be (V, λ) -summable to a number L (see [11]) if $t_n(x) \to L$ as $n \to \infty$.

Definition 1.2. [13] A sequence $x = (x_k)$ of numbers is said to be λ -statistically convergent to a number L provided that for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \left| \{ n - \lambda_n + 1 \le k \le n : |x_k - L| \ge \epsilon \} \right| = 0.$$

In this case, the number L is called λ -statistical limit of the sequence $x = (x_k)$ and we write $S_{\lambda} - \lim_{k \to \infty} x_k = L$. We denote the set of all λ -statistically convergent sequences by $S_{\lambda}(x)$.

Further, an interesting generalization of statistical convergence was introduced by Çolak [2] under the name of "statistical convergence of order α " for some $\alpha \in$ (0,1]. This new idea was further investigated by Çolak and Bektaş in [4] via (V, λ) -summability and obtained some interesting results. Before we go further we quote the following definition.

Definition 1.3. [3] Let $\lambda = (\lambda_n)$ be a sequence of real numbers as defined above and $0 < \alpha \leq 1$ be given. The sequence $x = (x_k)$ is said to be λ -statistically convergent of order α if there is a number L such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : |x_k - L| \ge \epsilon \}| = 0.$$

In this case, we write $S^{\alpha}_{\lambda} - \lim_{k \to \infty} x_k = L$. The set of all λ -statistically convergent sequences of order α is denoted by $S^{\alpha}_{\lambda}(x)$.

We next give some ideas and developments on double sequences which have been frequently appeared in literature.

A double sequence $x = (x_{ij})$ of real numbers is said to be convergent in Priengsheim's sense or P-convergent (See [18]) if for every $\epsilon > 0$ there exists $n \in \mathbb{N}$ such that $|x_{ij} - L| < \epsilon$ whenever $i, j \ge n$. The number L is called Priengsheim limit of $x = (x_{ij})$ and we write $P - \lim x = L$. Double sequences were initially discussed by Bromwich [1] and Hardy [8]. Later, many authors including Móricz [16], Patterson [17], Tripathy and Sarma [25,26,27], Kumar [9] and Kumar and Mursaleen [10] etc. have shown their interest to study double sequences and related convergence problems. Mursaleen and Edely [15] and Mursaleen *et al.* [14] respectively extended Definition 1.1 and Definition 1.2 on double sequences and obtained some analogous results. However, Çolak and Altin [4] introduced statistical convergence of order $\tilde{\alpha}$ for these kind of sequences.

Definition 1.4. [15] A double sequence $x = (x_{ij})$ of real numbers is said to be statistically convergent to L if for every $\epsilon > 0$

$$P - \lim_{n,m \to \infty} \frac{1}{nm} |\{(i,j) \in \mathbb{N} \times \mathbb{N}, i \le n, j \le m : |x_{ij} - L| \ge \epsilon\}| = 0.$$

In this case, we write $S_2 - \lim_{i,j\to\infty} x_{ij} = L$ and $S_2(x)$ denotes the set of all statistically convergent double sequences.

Let $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$ be two non-decreasing sequences of positive real numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$ and $\mu_{m+1} \leq \mu_m + 1, \mu_1 = 1$. The generalized de la Vallée-Poussin mean of $x = (x_{ij})$ is defined by

$$t_{mn}(x) = \frac{1}{\lambda_n \mu_m} \sum_{(i,j) \in I_n \times I_m} x_{ij}$$

where $I_n = [n - \lambda_n + 1, n]$ and $I_m = [m - \mu_m + 1, m]$. Moreover, a double sequence $x = (x_{ij})$ is said to be (V, λ, μ) -summable to a number L provided that $t_{mn}(x) \to L$ as $m, n \to \infty$.

Definition 1.5. [14] A double sequence $x = (x_{ij})$ of numbers is said to be (λ, μ) -statistically convergent to a number L provided for every $\epsilon > 0$,

$$P - \lim_{n,m\to\infty} \frac{1}{\lambda_n \mu_m} \left| \{ (i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon \} \right| = 0.$$

In this case, the number L is called (λ, μ) -statistical limit of the sequence $x = (x_{ij})$ and we write $S_{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = L$.

Let, $S_{(\lambda,\mu)}(x)$ denotes the set of all (λ,μ) -statistically convergent double sequences of numbers.

In this article, we aim to define (λ, μ) -statistical convergence and (V, λ, μ) summability of order $\tilde{\alpha}$ and obtain some relevant connections. Throughout we take $a, b, c, d \in (0, 1]$ as otherwise indicated. We will write $\tilde{\alpha}$ as an alternative of (a, b)and $\tilde{\beta}$ as an alternative of (c, d). Also we define: $\tilde{\alpha} \leq \tilde{\beta} \iff a \leq c$ and $b \leq d$; $\tilde{\alpha} \prec \tilde{\beta} \iff a < c$ and b < d; $\tilde{\alpha} \cong \tilde{\beta} \iff a = c$ and b = d; $\tilde{\alpha} \in (0, 1] \iff a, b \in (0, 1]; \tilde{\beta} \in (0, 1] \iff c, d \in (0, 1]; \tilde{\alpha} \cong 1$ in case $a = b = 1; \tilde{\beta} \cong 1$ in case c = d = 1 and $\tilde{\alpha} \succ 1$ in case a > 1, b > 1.

2. Main Results

In this section, we present our main results. We begin with the following definition:

Definition 2.1. Let $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$ be two non-decreasing sequences of positive real numbers tending to ∞ with

 $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1; \ \mu_{m+1} \leq \mu_m + 1, \mu_1 = 1$ and $\tilde{\alpha} \in (0, 1]$ be given.

A double sequence $x = (x_{ij})$ of numbers is said to be (λ, μ) -statistically convergent of order $\tilde{\alpha}$ if there exists a number L such that for every $\epsilon > 0$

$$\lim_{n,m\to\infty} \frac{1}{\lambda_n^a \mu_m^b} \left| \{ (i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon \} \right| = 0,$$

where $\lambda^a = (\lambda_n^a) = (\lambda_1^a, \lambda_2^a, \lambda_3^a, \cdots); \ \mu^b = (\mu_m^b) = (\mu_1^b, \mu_2^b, \mu_3^b, \cdots) \ and \ \lambda_n^a \mu_m^b$ denotes the usual multiplication of the corresponding entries of the sequences λ^a and μ^b . In this case, the number L is called (λ, μ) -statistical limit of the sequence $x = (x_{ij})$ of order $\tilde{\alpha}$ and we write $S_{(\lambda,\mu)}^{\tilde{\alpha}} - \lim_{i,j} x_{ij} = L$.

Let $S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$ denotes the set of all (λ,μ) -statistically convergent double sequences of order $\tilde{\alpha}$.

For $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.1 coincides with (λ, μ) -statistical convergence of double sequences of [14]. For the choice $\lambda = (n)$ and $\mu = (m)$, Definition 2.1 coincides with statistical convergence of double sequences of order $\tilde{\alpha}$ of [3]. Moreover, if we take $\lambda = (n)$; $\mu = (m)$ and $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.1 coincides with statistical convergence of double sequences of [15].

Theorem 2.2. For $\tilde{\alpha} \in (0,1]$, if $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{i,j} x_{ij} = x_0$, then x_0 is unique.

Proof: Easy, so omitted.

We next provide an example to show that the Definition 2.1 is well defined for $\tilde{\alpha} \in (0, 1]$ but not for $\tilde{\alpha} \succ 1$ in general.

Example 2.3. Let $x = (x_{ij})$ be defined as follows:

$$x_{ij} = \begin{cases} 1 & if \ i+j \ even\\ 0 & if \ i+j \ odd \end{cases}$$

Then for $\tilde{\alpha} \succ 1$,

$$\lim_{n,m\to\infty} \frac{1}{\lambda_n^a \mu_m^b} |\{(i,j) \in I_n \times I_m : |x_{ij} - 1| \ge \epsilon\}| \le \lim_{n,m\to\infty} \frac{[\lambda_n \mu_m] + 1}{2\lambda_n^a \mu_m^b} = 0$$

and

$$\lim_{n,m\to\infty} \frac{1}{\lambda_n^a \mu_m^b} |\{(i,j) \in I_n \times I_m : |x_{ij} - 0| \ge \epsilon\}| \le \lim_{n,m\to\infty} \frac{[\lambda_n \mu_m] + 1}{2\lambda_n^a \mu_m^b} = 0.$$

This shows that $S_{(\lambda,\mu)}^{\tilde{\alpha}} - \lim_{i,j} x_{ij} = 0$ and $S_{(\lambda,\mu)}^{\tilde{\alpha}} - \lim_{i,j} x_{ij} = 1$ which leads to a contradiction to Theorem 2.2.

We state the following result without proof.

Theorem 2.4. Let $x = (x_{ij})$ and $y = (y_{ij})$ be two double sequences of complex numbers and $\tilde{\alpha} \in (0, 1]$.

(i) If $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{i \to \infty} x_{ij} = L$ and $c \in \mathbb{C}$, then $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{(\lambda,\mu)} (cx_{ij}) = cL$. (ii) If $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{i \to \infty} x_{ij} = L$ and $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{i \to \infty} y_{ij} = M$, then $S^{\tilde{\alpha}}_{(\lambda,\mu)} - \lim_{(\lambda,\mu)} (x_{ij} + y_{ij}) = L + M$.

Definition 2.5. Let $\tilde{\alpha}$ be any real number such that $\tilde{\alpha} \in (0, 1]$ and p be a positive real number. A double sequence $x = (x_{ij})$ is said to be strongly (V, λ, μ) - summable of order $\tilde{\alpha}$ to a number L provided that

$$\lim_{n,m\to\infty}\frac{1}{\lambda_n^a\mu_m^b}\sum_{(i,j)\in I_n\times I_m}|x_{ij}-L|^p=0,$$

where $I_n = [n - \lambda_n + 1, n]$ and $I_m = [m - \mu_m + 1, m]$. In this case, the number L is called strong (V, λ, μ) -statistical limit of the sequence $x = (x_{ij})$ of order $\tilde{\alpha}$.

Let $[w_p^2]_{\tilde{\alpha}}(x)$ denote the set of all strongly (V, λ, μ) -summable double sequences of order $\tilde{\alpha}$.

For $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.5 coincides with strong (V, λ, μ) -summability of double sequences of [14]. For $\lambda = (n)$ and $\mu = (m)$, Definition 2.5 coincides with strong *p*-Cesàro summability of double sequences of order $\tilde{\alpha}$ of [3]. However, if we take $\lambda = (n)$; $\mu = (m)$ and $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.5 coincides with strong *p*-Cesàro summability of double sequences of [15].

Theorem 2.6. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ such that $\tilde{\alpha} \preceq \tilde{\beta}$. Then $S^{\tilde{\alpha}}_{(\lambda,\mu)}(x) \subseteq S^{\beta}_{(\lambda,\mu)}(x)$ and the inclusion is strict for some $\tilde{\alpha}$ and $\tilde{\beta}$ such that $\tilde{\alpha} \prec \tilde{\beta}$.

Proof: Let $x = (x_{ij}) \in S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$. Since, $\tilde{\alpha} \preceq \tilde{\beta}$ so $a \leq c$ and $b \leq d$; which for any $\epsilon > 0$ gives the inequality

$$\frac{1}{\lambda_n^c \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon\}| \le \frac{1}{\lambda_n^a \mu_m^b} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon\}|;$$

and therefore the result follows immediately from the fact that $x = (x_{ij}) \in S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$. For rest part of the Theorem we consider the following example. Define $x = (x_{ij})$ by

$$x_{ij} = \begin{cases} ij, & \text{if } n - [\sqrt{\lambda_n}] + 1 \le i \le n \quad \text{and} \quad m - [\sqrt{\mu_m}] + 1 \le j \le m] \\ 0, & \text{otherwise} \end{cases}; \text{then}$$

$$\frac{1}{\lambda_n^c \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - 0| \ge \epsilon\}|$$

=
$$\frac{1}{\lambda_n^c \mu_m^d} \left|\{(i,j) \in I_n \times I_m : \frac{n - [\sqrt{\lambda_n}] + 1 \le i \le n}{m - [\sqrt{\mu_m}] + 1 \le j \le m}\right\}| \le \frac{[\sqrt{\lambda_n} \sqrt{\mu_m}]}{\lambda_n^c \mu_m^d}$$

It follows, for $\tilde{\beta} \in (\frac{1}{2}, 1]$ (*i.e.* for $\frac{1}{2} < c \leq 1$ and $\frac{1}{2} < d \leq 1$), we have

$$\lim_{n,m\to\infty} \frac{1}{\lambda_n^c \mu_m^d} |\{(i,j)\in I_n \times I_m : |x_{ij}-0| \ge \epsilon\}| \le \lim_{n,m\to\infty} \frac{[\sqrt{\lambda_n}\sqrt{\mu_m}]}{\lambda_n^c \mu_m^d} = 0.$$

This shows that $x = (x_{ij}) \in S^{\tilde{\beta}}_{(\lambda,\mu)}(x)$, but one can easily verify that $x \notin S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$ for $\tilde{\alpha} \in (0, \frac{1}{2}]$ (*i.e.* for $0 < a \leq \frac{1}{2}$ and $0 < b \leq \frac{1}{2}$).

Corollary 2.7. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$, (i) If $\tilde{\beta} \cong 1$, then $S^{\tilde{\alpha}}_{(\lambda,\mu)}(x) \subseteq S^{1}_{(\lambda,\mu)} = S_{(\lambda,\mu)}$ and the inclusion is strict. (*ii*) $S^{\tilde{\alpha}}_{(\lambda,\mu)}(x) = S^{\tilde{\beta}}_{(\lambda,\mu)}(x) \iff \tilde{\alpha} \cong \tilde{\beta}.$ (*iii*) $S^{\tilde{\alpha}}_{(\lambda,\mu)}(x) = S_{(\lambda,\mu)}(x) \iff \tilde{\alpha} \cong 1.$

Theorem 2.8. Let $\lambda = (\lambda_n), \ \mu = (\mu_m)$ be two sequences as defined above and $\tilde{\alpha} \in (0,1], then$

(i) $S_{(\lambda \mu)}^{\tilde{\alpha}}(x) \subseteq S_2(x)$ for all λ, μ and $\tilde{\alpha} \in (0, 1]$.

(ii) $S_2(x) \subseteq S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$, if and only if, $\liminf_{n\to\infty} \frac{\lambda^a_n}{n} > 0$ and $\liminf_{m\to\infty} \frac{\mu^b_m}{m} > 0$ 0.

Proof: (i) By the nature of the sequences (λ_n) , (μ_m) and from the expression $\frac{\lambda_n \mu_m}{nm} \leq 1$, the result follows.

(ii) Let, $\liminf_{n\to\infty} \frac{\lambda_n^a}{n} > 0$; $\liminf_{m\to\infty} \frac{\mu_m^b}{m} > 0$ and $x = (x_{ij}) \in S_2(x)$. For given $\epsilon > 0$, we have.

 $\{(i,j), i \le n \text{ and } j \le m : |x_{ij} - L| \ge \epsilon\} \supset \{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon\},\$

it follows that,

$$\frac{1}{nm} \left| \{(i,j), i \le n \text{ and } j \le m : |x_{ij} - L| \ge \epsilon \} \right| \ge \frac{1}{nm} \left| \{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon \} \right|$$
$$= \left(\frac{\lambda_n^a}{n}\right) \left(\frac{\mu_m^b}{m}\right) \frac{1}{\lambda_n^a \mu_m^b} \left| \{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon \} \right|.$$

Taking limit as $n, m \to \infty$ we have, $S_2(x) \subseteq S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$.

Conversely, suppose that either $\liminf_{n\to\infty} \frac{\lambda_n^a}{n}$ or $\liminf_{m\to\infty} \frac{\mu_m^b}{m}$ or both are zero. Then we can choose two subsequences (n_p) and (m_q) such that $\frac{\lambda_{n_p}^a}{n_p} < \frac{1}{p}$ and $\frac{\mu_{m_q}^b}{m_q} < \frac{1}{q}$. Define double sequence $x = (x_{ij})$ as follows:

$$x_{ij} = \begin{cases} 1 & \text{if } i \in I_{n_p} \text{ and } j \in I_{m_q} \\ 0 & \text{otherwise,} \end{cases} \quad (p,q=1,2,3,\ldots)$$

Then clearly $x \in S_2(x)$, but $x \notin S_{(\lambda,\mu)}(x)$. From Corollary 2.7, since $S_{(\lambda,\mu)}^{\tilde{\alpha}}(x) \subseteq$ $S_{(\lambda,\mu)}(x)$, we have $x \notin S_{(\lambda,\mu)}^{\tilde{\alpha}}(x)$. Hence, $\liminf_{n \to \infty} \frac{\lambda_n^{\tilde{\alpha}}}{n} > 0$ and $\liminf_{m \to \infty} \frac{\mu_m^{\tilde{b}}}{m} > 0$

Theorem 2.9. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ such that $\tilde{\alpha} \preceq \tilde{\beta}$ and p be a positive real number. Then $[w_p^2]_{\tilde{\alpha}}(x) \subseteq [w_p^2]_{\tilde{\beta}}(x)$ and the inclusion is strict for some $\tilde{\alpha}$ and $\tilde{\beta}$ such that $\tilde{\alpha} \prec \tilde{\beta}$.

Proof: Let $x = (x_{ij}) \in [w_p^2]_{\tilde{\alpha}}(x)$, then for $\tilde{\alpha} \in (0, 1]$ and a positive real number p

$$\lim_{n,m\to\infty}\frac{1}{\lambda_n^a\mu_m^b}\sum_{(i,j)\in I_n\times I_m}|x_{ij}-L|^p=0.$$

Also for given $\tilde{\alpha}$ and $\tilde{\beta}$ such that $\tilde{\alpha} \preceq \tilde{\beta}$, one can write

$$\lim_{n,m\to\infty}\frac{1}{\lambda_n^c\mu_m^d}\sum_{(i,j)\in I_n\times I_m}|x_{ij}-L|^p\leq\lim_{n,m\to\infty}\frac{1}{\lambda_n^a\mu_m^b}\sum_{(i,j)\in I_n\times I_m}|x_{ij}-L|^p=0$$

which implies $x = (x_{ij}) \in [w_p^2]_{\tilde{\beta}}(x)$. Hence, $[w_p^2]_{\tilde{\alpha}}(x) \subseteq [w_p^2]_{\tilde{\beta}}(x)$. The following example will show that the inclusion is strict. Define the sequence $x = (x_{ij})$ by

$$x_{ij} = \begin{cases} 1, & \text{if } n - \sqrt{\lambda_n} + 1 \le i \le n \quad \text{and} \quad m - \sqrt{\mu_m} + 1 \le j \le m \\ 0, & \text{otherwise} \end{cases}$$

Then for $\tilde{\beta} \in (\frac{1}{2}, 1]$ (that is for $\frac{1}{2} < c \le 1$ and $\frac{1}{2} < d \le 1$),

$$\frac{1}{\lambda_n^c \mu_m^d} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - 0|^p \le \frac{\sqrt{\lambda_n} \sqrt{\mu_m}}{\lambda_n^c \mu_m^d} = \frac{1}{\lambda_n^{c-\frac{1}{2}} \mu_m^{d-\frac{1}{2}}}.$$

Since $\frac{1}{\lambda_n^{c-\frac{1}{2}}\mu_m^{d-\frac{1}{2}}} \to 0$ as $n, m \to \infty$, therefore $x = (x_{ij}) \in [w_p^2]_{\tilde{\beta}}(x)$, but for $\tilde{\alpha} \in (0, \frac{1}{2}]$ (that is for $0 < a \le \frac{1}{2}$ and $0 < b \le \frac{1}{2}$)

$$\frac{(\sqrt{\lambda_n}-1)(\sqrt{\mu_m}-1)}{\lambda_n^a \mu_m^b} \le \frac{1}{\lambda_n^a \mu_m^b} \sum_{(i,j)\in I_n \times I_m} |x_{ij}-0|^p$$

and $\frac{(\sqrt{\lambda_n}-1)(\sqrt{\mu_m}-1)}{\lambda_n^a \mu_m^b} \to \infty$ as $n, m \to \infty$, which implies $x = (x_{ij}) \notin [w_p^2]_{\tilde{\alpha}}(x)$. Hence the inclusion is strict.

Corollary 2.10. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ such that $\tilde{\alpha} \leq \tilde{\beta}$ and p be a positive real number. Then (i) $[w_p^2]_{\tilde{\alpha}}(x) = [w_p^2]_{\tilde{\beta}}(x) \Leftrightarrow \tilde{\alpha} \cong \tilde{\beta}.$

 $\begin{aligned} &(i) \; [w_p^2]_{\tilde{\alpha}}(x) = [w_p^2]_{\tilde{\beta}}(x) \Leftrightarrow \tilde{\alpha} \cong \tilde{\beta}. \\ &(ii) \; [w_p^2]_{\tilde{\alpha}}(x) \subseteq w_p^2 \; for \; each \; \tilde{\alpha} \in (0,1] \; and \; 0$

Theorem 2.11. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ such that $\tilde{\alpha} \leq \tilde{\beta}$ and p be a positive real number. If a sequence $x = (x_{ij})$ is strongly (V, λ, μ) -summable to L of order $\tilde{\alpha}$, then it is (λ, μ) -statistically convergent to L of order $\tilde{\beta}$, i.e., $[w_p^2]_{\tilde{\alpha}}(x) \subset S^{\tilde{\beta}}_{(\lambda,\mu)}(x)$. **Proof:** For any sequence $x = (x_{ij})$ and $\epsilon > 0$

$$\sum_{\substack{(i,j)\in I_n\times I_m \\ |x_{ij}-L|\geq \epsilon}} |x_{ij}-L|^p = \sum_{\substack{(i,j)\in I_n\times I_m \\ |x_{ij}-L|\geq \epsilon}} |x_{ij}-L|^p + \sum_{\substack{(i,j)\in I_n\times I_m \\ |x_{ij}-L|<\epsilon}} |x_{ij}-L|^p$$

$$\geq \sum_{\substack{(i,j)\in I_n\times I_m |x_{ij}-L|\geq \epsilon}} |x_{ij}-L|^p \geq |\{(i,j)\in I_n\times I_m : |x_{ij}-L|\geq \epsilon\}|.\epsilon^p,$$

which implies

$$\frac{1}{\lambda_n^a \mu_m^b} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p \ge \frac{1}{\lambda_n^a \mu_m^b} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon\}|.\epsilon^p$$
$$\ge \frac{1}{\lambda_n^c \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \ge \epsilon\}|.\epsilon^p.$$

It follows that if $x = (x_{ij})$ is strong (V, λ, μ) -summable to L of order $\tilde{\alpha}$, then it is (λ, μ) -statistically convergent to L of order $\tilde{\beta}$.

For particular choice of $\tilde{\alpha} \cong \tilde{\beta}$ in above Theorem we have the following result.

Corollary 2.12. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ such that $\tilde{\alpha} \preceq \tilde{\beta}$, (i) If $\tilde{\alpha} \cong \tilde{\beta}$ then $[w_p^2]_{\tilde{\alpha}}(x) \subset S^{\tilde{\alpha}}_{(\lambda,\mu)}(x)$. (ii) For $\tilde{\beta} \cong 1$, $[w_p^2]_{\tilde{\alpha}}(x) \subset S_{(\lambda,\mu)}(x)$.

Acknowledgments

With deep humility and respect, great sense of gratitude is expressed to the referees of the paper for their valuable suggestions.

References

- T.J.I'A. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan, New York, NY, USA, 1965.
- R. Çolak, Statistical convergence of order alpha, Modern Methods in Analysis and Its Applications, New Delhi, India, Anamaya Pub, (2010), 121-129.
- R. Çolak, Ç. A. Bektaş, λ-statistical convergence of order alpha, Acta Mathematica Scientia, 31 B(3) (2011), 953-959.
- R. Çolak, Y. Altin, Statistical Convergence of Double Sequences of Order α, J. of Func. Spaces and Appl., vol. 2013, doi:10.1155/2013/682823.
- 5. J.S. Connor, The statistical and strong *p*-Cesàro convergence of sequences, *Analysis*, 8 (1988), 47-63.
- 6. H. Fast, Sur la Convergence Statistique, Colloquium Mathematicum, 2 (1951), 241-244.
- 7. J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- 8. G.H. Hardy, On the convergence of certain multiple series, *Proc. Camb. Phil. Soc.*, 19 (1917), 86-95.
- 9. V. Kumar, On I and $I^{\ast}\mbox{-convergence}$ of double sequences, Math. Commun., 12 (2007), 171-181.

- 10. V. Kumar and M. Mursaleen, On (λ, μ) -statistical convergence of double sequences on intuitionistic fuzzy normed spaces, *Filomat*, 25(2) (2011), 109-120.
- L. Leindler, Über die de la Vallée-Pousinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16 (1965), 375-387.
- I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., 104 (1) (1988), 141-145.
- 13. M. Mursaleen, $\lambda-\text{statistical convergence},$ Math. Slovaca, 50 (2000), 111-115.
- M. Mursaleen, C. Çakan, S. A. Mohiuddine, E. Savaş, Generalised statistical convergence and statistical core of double sequences, Acta Math. Sinica Eng. Series, 26 (11) (2010), 2131-2144.
- M. Mursaleen, Osama H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
- 16. F. Móricz, Statistical convergence of multiple sequences, Arch. Math., 81 (2003), 82-89.
- R.F. Patterson, E. Savaş, On double sequences of continuous functions having continuous P-limits, Publ. Math. Debrecen, 5239 (2012), 1-16.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321
- D. Rath and B.C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., 27 (2) (1996), 197-206.
- T. Ŝalát: On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (2) (1980), 139-150.
- B. C. Tripathy, Matrix transformations between some classes of sequences, J. Math. Anal. Appl., 206 (2) (1997), 448-450.
- B.C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian Journal of Pure and Applied Mathematics, 35 (5) (2004), 655-663.
- B.C. Tripathy and A. Baruah, M.Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, *Iranian Journal of Science and Technology, Transacations A : Science*, 36 (2) (2012), 147-155.
- B.C. Tripathy and P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, *Anal. Theory Appl.*, 27 (1) (2011), 21-27.
- B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca, 59 (6) (2009), 767-776.
- B. C. Tripathy, B. Sarma, Some double sequence spaces of fuzzy numbers defined by Orlicz functions, Acta Math. Sci. Ser. B Engl. Ed., 31 (1) (2011), 134-140.
- B.C. Tripathy and B. Sarma, On I-convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal, 52 (2) (2012), 189-200.
- B.C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, *Tamkang Jour. Math.*, 37 (2) (2006), 155-162.

MEENAKSHI, VIJAY KUMAR AND M. S. SAROA

Meenakshi Department of Mathematics, Maharishi Markandeshwar University, Mullana Ambala, Haryana, India. E-mail address: chawlameenakshi7@gmail.com

and

Vijay Kumar Department of Mathematics, Haryana College of Technology and Management, Kaithal, Haryana, India. E-mail address: vjy_kaushik@yahoo.com

and

M. S. Saroa Department of Mathematics, Maharishi Markandeshwar University, Mullana Ambala, Haryana, India. E-mail address: mssaroa@yahoo.com