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Neumann problem in divergence form modeled on the p(x)-Laplace

equation

Abdelrachid El Amrouss, Fouzia Moradi and Anass Ourraoui

abstract: We consider a Neumann problem in divergence form with variable
growth, modeled on the p(x)-Laplace equation. We establish the existence of solu-
tions under appropriate hypotheses.
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1. Introduction

In recent decades, the study of differential equations and variational problems
involving variable exponent conditions has been an interesting topic. The interest
in studying such problems was stimulated by their applications in elastic mechan-
ics, fluid dynamics and the mathematical models of stationary thermo-rheological
viscous flows of non- Newtonian fluids. For more information on modeling physical
phenomena by equations involving p(x)growth condition we refer to [1,10]. This
paper was motivated by [4,8,11].

The aim of this paper is to discuss the existence of solutions of the following
problem which involves a general elliptic operator in divergence form

(P)

{

−div((a(x,∇u))+ | u |p(x)−2 u = f(x, u) in Ω,
∂u
∂ν

= 0 on ∂Ω,

where Ω is a bounded open domain in R
N with smooth boundary ∂Ω, ν is the

outward normal vector on ∂Ω, 1 < p− = inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) = p+,

N ≥ 2, p ∈ C(Ω), a : Ω × R
N → R

N is a potential with the assumption as
below

(A1) A : Ω × R
N → R is a continuous function with a continuous derivative

with respect to second variable ξ where a = DA = A′,

(A2) A(x, 0) = 0, ∀x ∈ Ω,
(A3) a(x, ξ) ≤ C1[1+ | ξ |p(x)−1], C1 > 0,
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(A4) A is p(x)-uniformly convex: there exists a constant k > 0 such that

A(x,
ξ + η

2
) ≤

1

2
A(x, ξ) +

1

2
A(x, η)− k | ξ − η |p(x), ∀x ∈ Ω, ξ, η ∈ R

N ,

(A5) A satisfies elliptic condition, i.e. there exists C2 > 0 such that

A(x, ξ) ≥ C2 | ξ |p(x), ∀x ∈ Ω, ξ ∈ R
N ,

(A6) A is p(x)-subhomogeneous: for all x ∈ Ω, ξ, η ∈ R
N ,

0 ≤ a(x, ξ)ξ ≤ p(x)A(x, ξ),

and
f : Ω×R → R is a carathéodory function with F (x, t) =

∫ t

0 f(x, s)ds such that

(F1) lim
|s|→0

f(x, s)

| s |p(x)−1
= 0,

(F2) lim
|s|→+∞

f(x, s)

| s |p(x)−1
= 0,

(F3) there exists u∗ > 0 such that F (x, u∗) > 0 for a.e x ∈ Ω,
(F4) there exists λ > 0 such that f(x, t) ≥ λ | t |q(x), q ∈ C+(Ω) with

q+ = sup
Ω

q(x) < p− and C+(Ω) = {h ∈ C(Ω) : h(x) > 1}.

Theorem 1.1. Let A : Ω × R
N → R

N is a potential verifies (A1) − (A6) and
under the assumptions (F1)− (F3), then the problem (P) has at least two nontrivial
solutions.

Theorem 1.2. Assume that the potential a(x, .), f are odd with respect to the
second argument:

f(x,−s) = −f(x, s) and a(x,−s) = −a(x, s),

and the conditions of Theorem 1.1 with (F4) are satisfied. Then the problem (P)
has infinitely many solutions.

The model case leading to problem (P) is the Neumann problem for the p(x)-
Laplacian operator

{

−∆p(x)u+ | u |p(x)−2 u = f(x, u) in Ω,
∂u
∂ν

= 0 on ∂Ω,

where a(x, s) = s. The operator ∆p(x)u = div(| ∇u |p(x)−2 u) is called p(x)-
Laplacian, which becomes p-Laplacian when p(x) = p (a constant). These related
problems has been investigated by many authors (cf. [2,3,5,9]).

This paper is organized as three sections. In section 2, we introduce some basic
properties of the variable exponent Lebesgue-Sobolev spaces. In section 3, we give
the existence of two nontrivial weak solutions for problem (P) and infinitely of
solutions under additional conditions.
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Definition 1.3. A weak solution of (P) is a function u ∈ W 1,p(x)(Ω) if

∫

Ω

a(x,∇u).∇vdx +

∫

Ω

| u |p(x)−2 uvdx−

∫

Ω

f(x, u)vdx = 0,

∀v ∈ W 1,p(x)(Ω).

2. Preliminaries

We introduce the setting of our problem with some auxiliary results. For conve-
nience, we only recall some basic facts which will be used later. Define the variable
exponent Lebesgue space

Lp(x)(Ω) = {u : Ω → R measurable :

∫

Ω

| u |p(x) dx < ∞},

then Lp(x)(Ω) endowed with the norm

| u |p(x)= inf{λ > 0 :

∫

Ω

|
u

λ
|p(x) dx ≤ 1}

becomes a Banach space separable and reflexive.
Let X = W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω)} equipped with the norm

‖ u ‖= inf{λ > 0 :

∫

Ω

(|
∇u

λ
|p(x) + |

u

λ
|p(x))dx ≤ 1},

is a separable reflexive Banach space.

Proposition 2.1. [7] Set, ρ(u) =
∫

Ω | u |p(x) dx.

If u ∈ W 1,p(x)(Ω) we have

(1) ‖ u ‖≥ 1 ⇒ ‖ u ‖
p−

≤ ρ(u) ≤ ‖ u ‖
p+

,

(2) ‖ u ‖≤ 1 ⇒ ‖ u ‖
p+

≤ ρ(u) ≤ ‖ u ‖
p−

.

Proposition 2.2. [7] For any u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω), we have

|

∫

Ω

uv dx |≤ 2 | u |p(x)| v |p′(x),

with
1

p(x)
+

1

p′(x)
= 1.

Proposition 2.3. [7] If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the
embedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous, where

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.
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The energy functional φ : W 1,p(x)(Ω) → R is given by

φ(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
| u |p(x) dx−

∫

Ω

F (x, u)dx

is well defined and of class C1. Here, the derivative is

φ′(u).v =

∫

Ω

a(x,∇u).∇vdx+

∫

Ω

| u |p(x)−2 uvdx−

∫

Ω

f(x, u)vdx

for all v ∈ X. Therefore, the critical points of φ are weak solutions of (P).

Definition 2.4. An operator a : X → X∗ verifies the (S+) condition if for any
sequence (xn)n∈N such that xn ⇀ x weakly and lim sup

n→+∞
〈a(xn), xn−x〉 ≤ 0, we have

un → u strongly.

3. Proof of the main results

To prove Theorem 1.1 we will use the minimization and a Mountain Pass type
argument to find nonzero critical point of φ. So we need the following lemma.

Lemma 3.1. φ is sequentially weakly lower semi continuous.

Proof:

Using (F1) and (F2), we can see that | f(x, s) |≤ C5(1+ | s |p(x)−1), ∀s ∈ R

with C5 > 0. By the compact embedding W 1,p(x)(Ω) →֒ Lp(x)(Ω), we deduce that
u →

∫

Ω F (x, u)dx is sequentially lower semi continuous. Besides,

u →

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
| u |p(x) dx

is convex uniformly, which assures that it is sequentially lower semi continuous. ✷

Proof: [Proof of Theorem 1.1:]

We start to check that φ is coercive and satisfies the (P.S) condition. From
(F2) for ε > 0 small enough, there exists δ > 0 such that

| f(x, s) |≤ ε | s |p(x)−1, ∀|s| ≥ δ,

and thus we get

| F (x, t) |≤
ε

p(x)
| t |p(x) +max

|s|≤δ
| f(x, s) | | t | , ∀t ∈ R,

for a.e x ∈ Ω. Consequently, for ‖ u ‖> 1 we obtain



Existence of solutions 113

φ(u) ≥

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
| u |p(x) dx− ε

∫

Ω

1

p(x)
| u |p(x) dx

−max
|t|≤δ

| f(x, t) | | u | dx

≥ C2

∫

Ω

| ∇u |p(x) dx+ (1− ε)

∫

Ω

1

p(x)
| u |p(x) dx

−max
|t|≤δ

| f(x, t) | | u | dx

≥ min{C2,
1− ε

p+
} ‖ u ‖p

−

−max
|t|≤δ

| f(x, t) |

∫

Ω

| u | dx

≥ min{C2,
1− ε

p+
} ‖ u ‖p

−

−C′ | meas(Ω) |p′(x) max
|t|≤δ

| f(x, t) |‖ u ‖,

where C′ is a positive constant and ε → 0.

Therefore, φ is coercive and has a global minimizer u1 which is nontrivial be-
cause

φ(u1) ≤ φ(u∗) < 0.

In the sequel, we claim that φ satisfies the Palais Smale condition. In fact,

let (un)n ⊂ X be a Palais Smale sequence, that is

φ′(un) → 0 in X∗, φ(un) → l ∈ R.

First we show that (un)n is bounded. One has, from (A4)

φ(un) =

∫

Ω

A(x,∇un)dx+

∫

Ω

1

p(x)
| un |p(x) dx−

∫

Ω

F (x, un)dx

≥ C2

∫

Ω

| ∇un |p(x) dx+

∫

Ω

1

p(x)
| u |p(x) dx−

∫

Ω

F (x, un)dx.

On the other hand, from (A5), we get

〈φ′(un), un〉 =

∫

Ω

a(x,∇un).∇undx+

∫

Ω

| un |p(x) dx −

∫

Ω

f(x, un)undx

≤

∫

Ω

p(x)A(x,∇un)dx+

∫

Ω

| un |p(x) dx−

∫

Ω

f(x, un)undx.

Thus,



114 Abdelrachid El Amrouss, Fouzia Moradi and Anass Ourraoui

φ(un)−
1

2p+
〈φ′(un), un〉 ≥

∫

Ω

(1−
1

p+
p(x))A(x,∇un)dx

+

∫

Ω

(
1

p(x)
−

1

2p+
) | un |p(x) dx

−

∫

Ω

F (x, un)dx+

∫

Ω

1

2p+
f(x, un)undx

≥
C2

2

∫

Ω

| ∇un |p(x) dx+
1

2p+

∫

Ω

| un |p(x) dx

+

∫

Ω

[
1

2p+
f(x, un)un − F (x, un)]dx.

According to (F1) and (F2), for ε > 0 there exist δ > 0 and η > 0 such that

| f(x, t) |≤ ε | t |p(x)−1

for all | t |≤ δ and for all | t |≥ η. Hence, one has

| F (x, t) |≤
ε

p(x)
| t |p(x) +C

for all | t |≤ δ and for all | t |≥ η with C is a constant.
Furthermore,

| f(x, t)t |≤ ε | t |p(x), ∀ | t |≤ δ and ∀ | t |≥ η.

It yields,

φ(un)−
1

2p+
〈φ′(un), un〉 ≥

1

2
min{C2,

1

p+
}

∫

Ω

(| ∇un |p(x) + | un |p(x))dx

−ε(
1

2p+
+

1

p−
)

∫

Ω

| un |p(x) dx+ c1

≥ [
1

2
min{C2,

1

p+
} − ε(

1

2p+
+

1

p−
)]

∫

Ω

(| ∇un |p(x)

+ | un |p(x))dx + c1,

with c1 > 0. For ε > 0 small enough with M = 1
2 min{C2,

1
p+ }−ε( 1

2p+ + 1
p−

> 0,
then we get

∫

Ω

(| ∇un |p(x) + | un |p(x))dx ≤
1

M
φ(un)−

1

2p+
〈φ′(un), un〉 − c1.

Since φ(un) is bounded and 〈φ′(un), un〉 → 0. Then (un)n is bounded in X, passing
to a subsequence, so un ⇀ u in X and un → u in Lp(x)(Ω). Now, we are ready to
prove that un → u in X.
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We have

〈φ′(un), un − u〉 =

∫

Ω

a(x,∇un)(un − u)dx+

∫

Ω

| un |p(x)−2 un(un − u)dx

−

∫

Ω

f(x, un)(un − u)dx,

accordingly,

|

∫

Ω

a(x,∇un)(un − u)dx | = | 〈φ′(un), un − u〉 −

∫

Ω

| un |p(x)−2 un(un − u)dx

+

∫

Ω

f(x, un)(un − u)dx

≤ | 〈φ′(un), un − u〉 | + | un |p(x)−1| un − u | dx

+

∫

Ω

| f(x, un) || un − u | dx

≤ ‖ φ′(un) ‖X∗‖ un − u ‖

+c2 || un |p(x)−1|p′(x)| un − u |p(x)

+

∫

Ω

| f(x, un) | | un − u | dx.

By (F1) and (F2), there exists C > 0 such that

| f(x, s) |≤ C(1+ | s |p(x)−1), ∀s ∈ R.

Which yields

∫

Ω

| f(x, un)(un − u) | dx ≤ C

∫

Ω

| un − u | dx+ C

∫

Ω

| un |p(x)−1| un − u | dx

≤ C′ | un − u |p(x)

+C | | un |p(x)−1 |p′(x)| un − u |p(x) .

Since ‖ φ′(un) ‖X∗→ 0 and | un − u |p(x)→ 0 we get

lim sup
n→∞

∫

Ω

a(x,∇un).(un − u)dx ≤ 0.

From proposition 2.1 in [4] we know that a(x, ξ) is of S+ type, it follows that un → u

in X. Next, we verify the geometric condition of Mountain Pass Theorem. Indeed,
by (F2), there exists δ > 0 such that | F (x, s) |≤ ε

p(x) | s |p(x), for all | s |< δ.

Using (F3), there exists K(δ) > 0 such that

| F (x, s) |≤ K(δ) | s |p(x)≤ K(δ) | s |q(x),
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for every | s |> δ with p+ < q− and q(x) < p∗(x). Thereby, for ‖ u ‖= r small
enough,(till ‖ u ‖≤ min{1, ‖ u1 ‖})

φ(u) ≥

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
| u |p(x) dx−

∫

[|u|≤δ]

ε

p(x)
| u |p(x) dx

−K(δ)

∫

|u|>δ

| u |q(x) dx

≥ min{C2,
1

p+
} ‖ u ‖p

+

−
ε

p−
‖ u ‖p

−

−K(δ) ‖ u ‖q
−

= h(r).

Since q− > p+ ≥ p−, there exists r > 0 small enough and a > 0 such that
h(r) ≥ a > 0. Besides, φ(0) = 0. Then, by the Mountain Pass Lemma, there exists
u2 ∈ X such that φ′(u2) = 0. ✷

Proof: [Proof of Theorem 1.2:]
The functional φ is even. Since φ is coercive then φ satisfies condition (P.S)c

for any c 6= 0. Obviously, φ(0) = 0 and inf
u∈X

φ > −∞.

By the Ljusternik-Schnirelman theorem (see [12]), to prove Theorem 1.2, it
is sufficient to prove that for every positive integer n, there exists a symmetric
closed set An ⊂ X such that γ(An) ≥ n and supu∈An

φ(un) < 0, where γ is the
Krasnoselskii genus.

Now let any n be given, since it is known that C∞
0 (Ω) is an infinite-dimensional

subspace of X, so we can take an n-dimensional subspace Yn ⊂ C∞
0 ⊂ X. By the

proof of Theorem 4.3 in [6] we have

γ(An) = n and sup
u∈An

φ(u) < 0,

where An = kSn−1, k > 0 and Sn−1 = {u ∈ Yn | ‖ u ‖= 1}. Hence there is a
sequence of solutions {±uk : k = 1, 2, } of (P) such that φ(±uk) < 0. ✷
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