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Asymptotic modeling of thin plastic oscillating layer

A. Aitmoussa and M. Verid Abdelkader

abstract: In this paper we study the asymptotic behavior of solutions to a elas-
ticity problem, of a containing structure a plastic thin oscillating layer of thickness
and rigidity depending of small parameters ε. We use the epi-convergence method
to find the limit problems with interface conditions.

Key Words: Limit behavior, plasticity problem, thin layer, epi-convergence
method.
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1. Introduction

The inclusion of a very thin layer of very rigid material into a given elastic
body has been widely considered, and in the classic literature. For more details,
we can refer to [6], [7], [10] and [11]. In general, the computation of solution using
numerical methods is very difficult. In one hand, this is because the thickness of
the adhesive requires a fine mesh, which in turn implies an increase of the degrees of
flexible than the adherents, and this produces numerical instabilities in the stiffness
matrix. To overcame this difficulties, thanks to Goland and Reissner [12] find a
limit problem in which the adhesive is treated on this theoretical approach, see for
example A. Ait Moussa and J. Messaho [1], Acerbi, Buttazzo and Perceivable [2],
Licht and Michail [4] and A. Ait Moussa and L. Zlaïji [8].

In this present work, we consider a structure containing a plastic thin oscillating
layer of thickness, rigidity, and periodicity parameter depending on ε, where ε is
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a parameter intended to tend towards 0. In a such structure, we have treated the
scalar case for a thermal conductivity problem in [3]. The aim of this work is to
study the limit behavior of an elasticity problem with a convex energy functional
posed in a such structure.

This paper is organized in the following way. In section 2, we express the
problem to study, and we give some notation and we define functional spaces for
this study in the section 3. In the section 4, we study the problem (4.1). The
section 5 is reserved to the determination of the limits problems and our main
result.

2. Statement of the problem

We consider a structure, occupying a bonded domain Ω in R
3 with Lipschitzian

boundary ∂Ω. It is constituted of two elastic bodies joined together by a rigid thin
layer with oscillating boundary, the latter obeys to nonlinear elastic law of power
type. More precisely, the stress field is related to the displacement’s field by

σε =
1

ε
|e(uε)|−1 e(uε), ε > 0.

The structure occupies the regular domain Ω = Bε ∪ Ωε, where Bε is given by
Bε = {x = (x′, x3) / |x3| <

εϕε

2 }, and Ωε = Ω \Bε represent the regions occupied
by the thin plate and the two elastic bodies, see Figure 1, ε being a positive
parameter intended to approach 0, and Σ = {x = (x′, x3) / |x3| = 0}. The structure
is subjected to a density of forces of volume f : Ω → R

3, and it is fixed on the
boundary ∂Ω. Equations which relate the stress field σε, σε : Ω → R

9
S , and the

field of displacement uε, uε : Ω → R
3 are







































div(σε) + f = 0 in Ω

σε
ij = aijkhekh(u

ε) in Ωε

σε = 1
ε
|e(uε)|

−1
e(uε) in Bε

uε = 0 on ∂Ω

(Pǫ)

where aijkh are the elasticity coefficients, and R
9
S the vector space of the square

symmetrical matrices of order three, eij(u) are the components of the linearized

tensor of deformation e(u). ϕε is a bounded real function and ]0, ε[
2
-periodic. In

the sequel, we assume that the elasticity coefficients aijkh satisfy to the following
hypotheses :

aijkh ∈ L∞(Ω) (2.1)

aijkh = ajikh = akhij (2.2)

aijkhτ ijτkh ≥ Cτ ijτ ij , ∀τ ∈ R
9
S (2.3)



Asymptotic modeling of thin plastic oscillating layer 97

Figure 1: Domain

3. Notations and Functions Setting

3.1. Notations

We begin by introducing some notation which is used throughout the paper x =
(x′, x3), where x′ = (x1, x2), τ ⊗ ζ = (τ iζi)1≤i,j≤3 and

τ ⊗s ζ =
τ ⊗ ζ + ζ ⊗ τ

2
, ∀τ , ζ ∈ R

3; e∗(.) = (∇′ +∇
′t)(.); or ∇′ = (

∂

∂x1
,

∂

∂x2
).

We set Y =]0, 1[×]0, 1[, ϕ : R
2 → [a1, a2], such that a2 ≥ a1 > 0, and ϕ is

Y -periodic, ϕε(x
′) = ϕ(x

′

ε
), and

m(ϕ) =
1

∫

Y
dx′

∫

Y

ϕ(x′)dx′.

In the following C will denote any constant with respect to ε and [v] is the jump
of displacement field v through Σ.

3.2. Functions

First, we introduce the following space :

V ε = {u ∈ L1(Ω)/e(u) ∈ L2(Ωε,R
9
s), u ∈ LD0(Bε,R

3
s),

[u]
ε
= 0 in Σ±

ε , and u = 0 on ∂Ω }
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where [u]
ε

is the jump of u on Σ±
ε defined by

[u]
ε
= ±u|

Ω
±
ε

∓ u|
B

±
ε

,

and

LD0(Ω) = {u ∈ L1(Ω,R3)/e(u) ∈ L1(Ω,R9
s), and u = 0 on ∂Ω}

we easily show that V ε is a Banach space with respect to the norm

u → ‖e(u)‖L2(Ωε,R9
s)
+ ‖e(u)‖L1(Bε,R9

s)
.

Our goal in this work is to study the problem (Pε), and its limit behavior when ε
tends to zero.

4. Study of Problem

The problem Pε is equivalent of the minimization problem

infv∈V ε{
1

2

∫

Ωε

aijhkeij(v)ehk(v)dx +
1

ε

∫

Bε

|e(v)| −

∫

Ω

fvdx} (4.1)

To study problem Pε, we will study the minimization problem (4.1). The existence
and uniqueness of solutions to (4.1) is given in the following proposition.

Proposition 4.1. Under the hypotheses (2.1), (2.2), (2.3) and for f ∈ L∞, problem
(4.1) admits an unique solution.

Proof: From (2.1) and (2.3), we show easily that the energy functional in (4.1) is
weakly lower semicontinuous, strictly convex and coercive over V ε, Since V ε is not
reflexive, so we may not apply directly result given in Dacorogna [13], but we can
follow our proof by using the compact imbedding of Sobolev for the LD0(Ω) space
in the reflexivity space Lq(Ω), or q ∈]1, 3

2 ] for more information see Temam ( [5]
p.117).
On the other hand, let un be a minimizing sequence for (4.1), to simplify the writing
let

F ε(v) =
1

2

∫

Ωε

aijhkeij(v)ehk(v)dx +
1

ε

∫

Bε

|e(v)| −

∫

Ω

fvdx

so, we have F ε(un) → infv∈V ε F (v). Using the coercivity of F ε, we may then
deduce that there exists a constant C > 0, independent of n, such that

‖un‖V ε ≤ C,

then un bounded in Lq, therefore a subsequence of un, still denoted by un, there
exists u0 ∈ V ε such that un ⇀ u0 in V ε. The weak lower semi-continuity and the
strict convexity of F ε imply then the result. ✷
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Lemma 4.2. Assuming that for any sequence (uε)ε ⊂ V ε, there exists a constant
C > 0 such that F ε(uε) ≤ C, under (2.1), (2.3) and for f ∈ L∞(Ω,R3), (uε)ε>0

satisfies
‖e(uε)‖2L2(Ωε,R9

s)
≤ C (4.2)

1

ε

∫

Bε

|e(uε)| ≤ C. (4.3)

moreover uε is bounded in W 1,1
0 (Ω,R3).

Proof: Since F ε(uε) ≤ C, we have

1

2

∫

Ωε

aijhkeij(u
ε)ehk(u

ε)dx+
1

ε

∫

Bε

|e(uε)| −

∫

Ω

fuεdx ≤ C

according to (2.3), we have

‖e(uε)‖2
L2(Ωε,R9s)

+
1

ε

∫

Bε

|e(uε)| ≤ C + C

∫

Ω

fuεdx. (4.4)

Then, taking advantage of the fact that uε vanishes on ∂Ω :
∫

Ω

fuεdx =

∫

Ωε

fuεdx+

∫

Bε

fuεdx.

Where
∫

Ωε

fuεdx =

∫

Ω

χΩε
fuεdx ≤ C‖e(uε)‖L2

(Ωε,R9s)
(4.5)

otherwise since LD0 →֒ Lq(Ω,R3) for all q ∈ [1, 32 ], in particular for q0 = 3
2 , we

denote by q′0 the conjugate of q0, by Hölder inequality, we obtain
∫

Bε

fuε ≤ ‖f‖
L

q′
0(Bε,R3)

‖uε‖Lq0(Bε,R3)

since uε = 0 on ∂Bε, one has, according to Pioncaré’s type inequality see [5],

‖f‖
L

q′
0(Bε,R3)

‖uε‖Lq0(Bε,R3) ≤ C(εϕε)
1
q′0

∫

Ω

|e(uε)|

≤ C(εϕε)
1
q′0 (

∫

Ωε

|e(uε)|+

∫

Bε

|e(uε)|) (4.6)

such as ϕε is Y -periodic and for a small enough ε, than we have :

ϕε <
1

ε(1 + C)
q′0
, let cε =

C

ε(1 + C)
.

According to (4.4), and using (4.5), (4.6), then we obtain

‖e(uε)‖2L2(Ωε,R9
s)
+

1

ε

∫

Bε

|e(uε)| ≤ C + C‖e(uε)‖L2(Ωε,R9
s)
+ cε

∫

Bε

|e(uε)|
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Using Young inequality,

≤ C +
1

2
‖e(uε)‖2L2(Ωε,R9

s)
+ cε

∫

Bε

|e(uε)|

so that

‖e(uε)‖2L2(Ωε,R9
s)
+ (

1

ε
− cε)

∫

Bε

|e(uε)| ≤ C

we obtain :

‖e(uε)‖2L2(Ωε,R9
s)
+

1

ε
(1−

C

1 + C
)

∫

Bε

|e(uε)| ≤ C.

Therefore, we will have (4.2) and (4.3). According to (4.2), (4.3) and for a small
enough ε the sequence uε is bounded in LD0(Ω). ✷

We give some lemmas that will be used in the sequel.

Lemma 4.3. Let g ∈ C∞(Σ,R9) and u ∈ D(Σ,R3), so we have

∫

Σ

τe(u) = −

∫

Σ

divT (τ )u

with divT (τ ) = div( τ+τT

2 ).

Lemma 4.4. Let u be a regular function defined in a neighborhood of Σ, then

δj(

∫ εϕε

0

u) = εu(x′, εϕε)δjϕε +

∫ εϕε

0

δju.

This lemme is a consequence of ( [2] Proposition 2).

To apply the epi-convergence method, we need to characterize the topological
spaces containing any cluster point of the solution of the problem (4.1) with respect
to the used topology, therefore the weak topology to use is insured by the Lemma
4.2. So the topological spaces characterization is given in the following proposition.

Let us

wε =
1

2εϕε

∫ εϕε

−εϕε

uε

Proposition 4.5. The solution uε of the problem (4.1) possess a cluster point u∗

in LD0(Ω), with respect to the weak topology and u∗
|Σ

is a weak cluster point of wε

in LD0(Σ,R
3).

Proof: According to a (4.2), (4.3) and for a small ε, the solution uε is bounded in
LD0(Ω), then It’s relatively compact in L1(Ω), this is consequence of ( [5], Theorem
1.4 p.117), and e(uε) so for a subsequences of uε, still denoted by uε, there exists
there exists u∗ ∈ L1(Ω), such that

uε → u∗ in L1(Ω),
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we have
uε ⇀ u∗ in LD0(Ω)

other hand
∫

Σ

|wε − uε
|Σ
|dx′ ≤

∫

Σ

1

2εϕε

∫ εϕε

−εϕε

|uε(x) − uε(x′, 0)|dx3dx
′

≤
C

ε

∫

Σ

∫ εϕε

−εϕε

|

∫ x3

0

∂uε

∂x3
(x′, t)dt|dx3dx

′

≤
C

ε

∫

Σ

(εϕε)
2
∫ εϕε

−εϕε

|
∂uε

∂x3
(x′, x3)|dx3dx

′

≤ Cε

∫

Bε

∇uεdx ≤ Cε

∫

Ω

e(uε)dx

Thanks to Lemma 4.2 and the Young’s inequality, so we have

∫

Σ

|wε − uε
|Σ
| ≤ Cε(

∫

Ωε

e(uε) +

∫

Bε

e(uε))

≤ Cε(C + C).

Then

lim
ε→0

∫

Σ

|wε − uε
|Σ
| = 0

since uε
|Σ

⇀ u∗
|Σ

in LD0(Σ), so wε ⇀ u∗
|Σ

in LD0(Σ). ✷

Remark 4.6. The Proposition 4.5 remains true for any weak cluster point u of a
sequence uε in LD0(Ω,R

3) satisfies (4.2) and (4.3).

To study the limit behavior of the solution of the problem (4.1), we will use the
epi-convergence method, (see Annex, definition ).

5. Limit Behavior

In this section, we are interested to the asymptotic behavior of the solution of
the problem (4.1) when ε close to zero. In the sequel, we consider the following
functionals

Fε(v) =

{

1
2

∫

Ωε
aijhkeij(v)ehk(v)dx + 1

ε

∫

Bε
|e(v)| if v ∈ V ε

+∞ if v 6∈ V ε
(5.1)

G(v) = −

∫

Ω

fvdx, ∀v ∈ V ε

We design by τ f the weak topology on the space. In the sequel, we shall character-
ize, the epi-limit of the energy functional given by (5.1) in the following theorem
:
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Theorem 5.1. Under (2.1), (2.2), (2.3) and for f ∈ L∞(Ω,R3), there exists a
functional F : W 1,1(Ω) → R ∪ {+∞} such that

τf − lim
ε

F ε = F in W 1,1
0 (Ω)

where F is given by

F (u) =

{

1
2

∫

Ω
aijhkeij(u)ehk(u)dx +m(ϕ)

∫

Σ
|e∗(u|Σ)| if u ∈ W 1,1

0 (Ω)

+∞ if u 6∈ W 1,1
0 (Ω)

.

Proof: • − (a) We are now in position to determine the upper epi-limit.
Let u ∈ LD0(Ω), as C∞(Ω) is dense in LD0(Ω) see ( [5], p.116), so there exists a
sequence (un) in C∞(Ω) such that (un) ⇀ u weakly in LD0(Ω).
Let us consider the sequence

uε,n = θε(x)u
n
|Σ

+ (1− θε(x))u
n

where θ is a regular function satisfies :

θ(x) = 1 if |x| ≤ 1, θ(x) = 0 if |x| ≥ 2 and |θ′(x)| ≤ 2, ∀x ∈ R

we set
θε(x) = θ(

x

εϕε

)

we have

F ε(uε,n) =
1

2

∫

Ωε

aijhkeij(u
ε,n)ehk(u

ε,n)dx+
1

ε

∫

Bε

|e(uε,n)|

which implies that

F ε(uε,n) =
1

2

∫

|x3|>2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx

+
1

2

∫

εϕε<|x3|<2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx

+
1

ε

∫

Bε

|e(uε,n)|

=

∫

|x3|>2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx

+
1

2

∫

εϕε<|x3|<2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx

+
1

ε

∫

Σ

εϕε|e
∗(uε,n

|Σ
)|.
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As ϕε is bounded, therefore

lim
ε→0

{
1

2

∫

εϕε<|x3|<2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx } = 0.

Otherwise, ϕε → m(ϕ) in L1(Ω) see Annex, so by passing to the upper limit, we
obtain :

lim sup
ε→0

F ε(uε,n) = lim sup
ε→0

{
1

2

∫

|x3|>2εϕε

aijhkeij(u
ε,n)ehk(u

ε,n)dx+

∫

Σ

ϕε|e
∗(uε,n

|Σ
)| }

=
1

2

∫

Ω

aijhkeij(u
n)ehk(u

n)dx+m(ϕ)

∫

Σ

|e∗(un
|Σ
)|.

Since un → u in C∞(Ω), there fore according to the classic result diagonalization’s
Lemma see [9], there exists a real function n(ε) : R+ → N increasing to +∞, such
that uε,n(ε) ⇀ u in C∞(Ω) when ε → 0.
Consequently, we have

lim sup
ε→0

F ε(uε,n(ε)) ≤ lim sup
n→0

lim sup
ε→0

F ε(uε,n)

≤
1

2

∫

Ω

aijhkeij(u)ehk(u)dx+m(ϕ)

∫

Σ

|e∗(u|Σ)|

• − (b) We are now in position to determine the lower epi-limit.
Let as (uε)ε ⊂ V ε such as uε ⇀ u in LD0(Ω), If lim infε→0 F

ε(uε) = +∞ there is
nothing to prove, because

1

2

∫

Ω

aijhkeij(u)ehk(u)dx+m(ϕ)

∫

Σ

|e∗(u|Σ)| ≤ +∞.

Otherwise, we suppose lim infε→0 F
ε(uε) < +∞, there exists a subsequence of

F ε(uε), still denoted by F ε(uε) and a constant C > 0, such that
F ε(uε) ≤ C, which implies that

‖e(uε)‖2L2(Ωε,R9
s)

≤ C

1

ε

∫

Bε

|e(uε)| ≤ C.

Then χΩε
e(uε) is bounded in L2(Ω), so for a subsequence of χΩε

e(uε), still
denoted by χΩε

e(uε) we then show easily, like in the proof of the above proposition,
that

χΩε
e(uε) ⇀ e(u) in L2(Ω)

From the subdifferentiability’s inequality of u → 1
2

∫

Ωε
aijhkeij(u)ehk(u)dx and

passing to the lower limit, we obtain

lim inf
ε→0

1

2

∫

Ωε

aijhkeij(u
ε)ehk(u

ε)dx ≥
1

2

∫

Ω

aijhkeij(u)ehk(u)dx. (5.2)
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Let us set, for η < ε
2

Bη = {x ∈ Ω : |x3| < η}.

According to the diagonalization’s Lemma ( [9], Lemma 1.15 p.32), there exists a
function η(ε) : R+ → R

+ decreasing to 0 when ε → 0 such that

lim inf
ε→0

∫

Bη(ε)

|e(uε)| ≥ lim inf
η→0

lim inf
ε→0

∫

Bη

|e(uε)| (5.3)

since
∫

Bη

|e(uε)| ≥

∫

Bη

φ(e(uε)− e(u)) +

∫

Bη

φ(e(u)) ∀φ ∈ C∞
0 (Bη,R

9
s)

it follow that

lim inf
ε→0

∫

Bη

|e(uε)| ≥

∫

Bη

φ(e(u)) ∀φ ∈ C∞
0 (Bη,R

9
s)

therefore,

lim inf
ε→0

∫

Bη

|e(uε)| ≥

∫

Bη

e(u).

According to a Lemma 4.4, and let wε be the sequence define before the Proposition
4.5, we have

lim inf
ε→0

∫

Bη

|e(uε)| ≥

∫

Σ

e∗(wε)−

∫

Bη

εϕεδϕε ⊗s U
ε (5.4)

where
Uε = [uε(x′, εϕε) + uε(x′,−εϕε)]

according to the Lemma 4.3, let g ∈ D(Σ,R9) we have
∫

Σ

ge∗(wε) = −

∫

Σ

divT g(
1

εϕε

∫ εϕε

εϕε

uε)

thanks to a Proposition 4.5 and ϕε → m(ϕ) in L1(Σ)(see Lemma 7.1 Annex), so
passing to limit, we obtain

∫

Σ

ge∗(wε) = −m(ϕ)

∫

Σ

divT gu|Σ = m(ϕ)

∫

Σ

ge∗(u|Σ) ∀g ∈ D(Σ,R9). (5.5)

By passing to the limit (η → 0) in (5.4) we have

lim inf
η→0

lim inf
ε→0

∫

Bη

|e(uε)| ≥ m(ϕ)

∫

Σ

e∗(u|Σ).

From the definition of Bη with (5.3), we deduce that

lim inf
ε→0

∫

Bε

|e(uε)| ≥ m(ϕ)

∫

Σ

e∗(u|Σ) (5.6)
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after (5.2) and (5.6),

lim inf
ε→0

F ε(uε) ≥
1

2

∫

Ω

aijhkeij(u)ehk(u)dx+m(ϕ)

∫

Σ

e∗(u|Σ)

As, for u ∈ LD0(Ω) and uε ∈ V ε, such that uε ⇀ u in LD0(Ω), Assume that

lim inf
ε→0

F ε(uε) < +∞.

So there exists a constant C > 0 and a subsequence of F ε(uε), still de noted by
F ε(uε), such that

F ε(uε) < C.

So uε verifies the following evaluation (4.2) and (4.3), as uε ⇀ u in LD0(Ω) thanks
to the Remark 4.1 we have u ∈ H

1
0(Ω), what contradicts the fact that u ∈ LD0(Ω)\

H
1
0, consequently we have

lim inf
ε→0

F ε(uε) = +∞.

Hence the proof of the Theorem 5.1 is complete. ✷

In the sequel, we determine the limit problem linked to (4.1), when ε approaches
to zero. Thanks to the epi-convergence results, see Annex Theorem 7.3, Proposition
7.2 and the Theorem 5.1, according to the τ f -continuity of the functional G in

W 1,1
0 (Ω), we have F ε +G τf -epiconverges to F +G in LD0(Ω)

Proposition 5.2. For any f ∈ L1(Ω,R3), there exists u∗ ∈ LD0(Ω,R
3) satisfies

uε ⇀ u∗ in LD0(Ω,R
3),

F (u∗) +G(u∗) = inf
u∈LD0(Ω)

{F (u) +G(u)}.

Proof: Thanks to Lemma 4.2, the family (uε)ε is bounded in L1(Ω), therefore it
passes a τ f -cluster point u∗ in L1(Ω). And thanks to a classical epi-convergence
method, Theorem 7.3, it follows that u∗ is a solution of the problem : Find

inf
u∈LD0(Ω)

{F (u) +G(u)} (5.7)

Since F = +∞ on LD0(Ω) \H
1
0(Ω), so (5.6) became

inf
u∈H

1
0(Ω)

{F (u) +G(u)}.

According to the uniqueness of solutions of problem (5.6), so uε admits an unique
τ f -cluster point u∗, and therefore uε ⇀ u∗ in LD0(Ω) ✷



106 A. Aitmoussa and M. Verid Abdelkader

6. Conclusion

Using the epi-convergence method, we showed that the question of finding the
limit problem, composed of a classical linear elasticity problem posed over Σ, con-
tains an interface condition which depends on the displacement field jump. We
found the same result of A. Ait Moussa and J. Messaho, with p=1 in [1].

7. Annex

Definition 7.1. ( [9] Definition 1.9). Let (X, τ ) be a metric space, (F ε)ε and F
be functionals defined on X and with value in R ∪ {+∞}. F ε epi-converges to F
in (X, τ ), noted τ − lime F

ε = F , if the following assertions are satisfied :
• ∀x in X, there exists x0

ε, x
0
ε →τ x, such that lim supε→0 F

ε(x0
ε) ≤ F (x).

• ∀x, xε with xε →
τ x, lim infε→0 F

ε(x0
ε) ≥ F (x).

We have the following stability result for epi-convergence.

Proposition 7.2. ( [9] p.40)
Suppose that F ε epi-converge to F , in (X, τ ) and that G : X → R ∪ {+∞}, is
τ -continuous. Then (F ε +G) epi-converges to F +G in (X, τ ).

This epi-convergence is a special case of the Γ-convergence introduced by De
Giorgi (1979), for more detail [9]. It is well suited to the asymptotic analysis of
sequences of minimization problems since one has the following fundamental result.

Theorem 7.3. ( [9] p.27)
Suppose that :
(1) F ε admits a minimizer on X.
(2) The sequence uε is τ-relatively compact.
(3) The sequence F ε epi-converges to F in this topology τ .
Then every cluster point u of the sequence uε minimizes F on X and

lim
ε′→0

F ε′ = F (u),

where (uε′)ε′ denotes any subsequence of (uε)ε which converges to u.

Lemma 7.4. Let ϕ ∈ L∞(Σ), a Y -periodic, Y =]0, 1[×]0, 1[. Let

ϕε(x) = ϕ(
x

ε
), for a small enough ε > 0.

So that

ϕε → m(ϕ) in Ls(Σ) for 1 ≤ s ≤ ∞, ϕε ⇀
∗ m(ϕ) in L∞(Σ).

Proof: Since ϕε is a εY -periodic, so one has

ϕε ⇀ m(ϕ) in Ls(Σ) for 1 ≤ s ≤ ∞, ϕε ⇀
∗ m(ϕ) in L∞(Σ).
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Since ϕ is bounded in Σ, so for evry s ≥ 1, there existes a constant C > 0, such
that

∫

Σ

|ϕε −m(ϕ)|
s
≤ C

∫

Σ

|ϕε −m(ϕ)|

≤ C[

∫

ϕ≥m(ϕ)

(ϕε −m(ϕ))−

∫

ϕ≤m(ϕ)

(m(ϕ)− ϕε)]. (7.1)

Passing to the limit in (7.1), one has ϕε → m(ϕ) in Ls(Σ) for 1 ≤ s ≤ ∞.
✷
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