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1. Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified forms
of continuity, separation axioms etc. by utilizing generalized open sets.In 1996,
Andrijevic [1] introduced a new class of generalized open sets called b-open sets
into the field of topology. Andrijevic studied several fundamental and interesting
properties of b-open sets. Quite recently, Park has introduced [5] b-closed spaces in
topological space. In this paper, to give some characterizations of b-closed spaces.
Compactness and properties closely related to compactness play an important role
in the applications of General Topology to Real Analysis and Functional Analysis.
In the framework of topological spaces several modified forms of compact spaces
have been introduced and studied: nearly compact spaces, mildly compact spaces
etc. In this paper, we give some new characterizations of b-compact sets and b-
closed sets by means of nets and filterbases.

2. Preliminaries

Throughout this paper, spaces always means topological spaces on which no
separation axioms are assumed unless otherwise mentioned and f : (X, τ) → (Y, σ)
(or simply f : X → Y ) denotes a function f of a space (X, τ) into a space (Y, σ).
Let A be a subset of a space X . The closure and the interior of A are denoted
by Cl(A) and Int(A), respectively. A subset A of X is said to be b-open [1] A
⊂ Int(Cl(A)) ∪ Cl(Int(A)). The complement of b-open is called b-closed [1]. The
union of all b-open sets contained in A ⊂ X is called the b-interior of A, and is
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denoted by b Int(A). The intersection of all b-closed sets containing A is called the
b-closure [1] of A and is denoted by bCl(A). The b-θ-closure [5] of A, denoted by
bClθ(A), is defined to be the set of all x ∈ X such that A ∩ bCl(U) 6= ∅ for every
b-open set U containing x. A subset A is called b-θ-closed [5] if and only if A =
bClθ(A). The complement of b-θ-closed set is called b-θ-open. A subset S of a
topological space (X, τ ) is said to be b-regular [5] if it is b-open and b-closed. The
family of all b-regular (resp. b-open, b-closed) sets of (X, τ ) is denoted by BR(X)
(resp. BO(X), BC(X)). The family of all b-regular (resp. b-open, b-closed) sets
of (X, τ) containing a point x ∈ X is denoted by BR(X, x) (resp. BO(X, x),
BC(X, x)).

3. b-compact spaces

Definition 3.1. Let (X, τ ) be a topological space. A class {Gi} of b-open subsets
of X is said to be b-open cover of X if each point in X belongs to at least one Gi

that is ∪
i
Gi = X.

Definition 3.2. A subset K of a nonempty set X is said to be b-compact relative
to (X, τ) [4] if every cover of K by sets of BO(X) has a finite subcover. We say
that (X, τ) is b-compact if X is b-compact.

We will give several characterizations of the b-compact spaces. The first char-
acterization makes use of the finite intersection condition.

Theorem 3.3. The following statements are equivalent for any topological space
(X, τ ):

(i) X is b-compact.

(ii) Given any family F of b-open sets, if no finite subfamily of F covers X, then
F does not cover X.

(iii) Given any family F of b-closed sets, if F satisfies the finite intersection con-
dition, then ∩{A : A ∈ F} 6= ∅.

(iv) Given any family F of subsets of X, if F satisfies the finite intersection con-
dition, then ∩{bCl(A) : A ∈ F} 6= ∅.

Proof: (i) ⇔ (ii) and (ii) ⇔ (iii) are obvious. (iii) ⇒ (iv): If F ⊂ P (X) satisfies
the finite intersection condition, then ∩{bCl(A) : A ∈ F} is a family of b-closed
sets, which obviously satisfies the finite intersection condition. (iv) ⇒ (iii) Follows
from the fact that A = bCl(A) for every b-closed set A. ✷

Definition 3.4. A point x ∈ X is said to be b-cluster point of a net {xα}α∈∆ if
{xα}α∈∆ is frequently in every b-open set containing x. We denote by b-cp{xα}α∈∆

the set of all b-cluster points of a net {xα}α∈∆.

Theorem 3.5. The set of all b-cluster points of an arbitrary net in X is b-closed.
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Proof: Let {xα}α∈∆ be a net in X . Set A = b− cp{xα}α∈∆. Let x ∈ X\A. Then
there exists a b-open set Ux containing x and αx ∈ ∆ such that Xβ /∈ Ux whenever
β ∈ ∆, β ≥ αx. It turns out that Ux ⊂ X\A, hence x ∈ b Int(X\A) = X\bCl(A).
This shows that bCl(A) ⊂ A; hence A is b-closed. ✷

Theorem 3.6. A topological space X is b-compact if and only if each net {xα}α∈∆

in X, has at least one b-cluster point.

Proof: Let X be a b-compact space. Assume that there exist some net {xα}α∈∆

in X such that b-cp{xα}α∈∆ is empty. Then for every x ∈ X , there exist U(x) ∈
BO(X, x) and α(x) ∈ ∆, such that xβ /∈ U(x) whenever β ≥ α(x), β ∈ ∆. Then
the family {U(x) : x ∈ X} is a cover of X by b-open sets and has a finite subcover,
say, {Uk : k = 1, 2, ...n} where Uk = U(xk) for k = 1,2,....n, {xk : k = 1, 2, ...n}.
Let us take α ∈ ∆ such that α ≥ α(xk) for all k ∈ {1, 2, ....n}. For every β ∈ ∆
such that β ≥ α we have, xβ /∈ Uk, k = 1, 2,....n, hence xβ /∈ X , which is a
contradiction. Conversely, if X is not b-compact, there exists {Ui : i ∈ I} a cover
of X by b-open sets, which has no finite subcover. Let P (I) be the family of all
finite subsets of I. Clearly, (P (I),⊆) is a directed set. For each J ∈ I. we may
choose xj ∈ X\ ∪ {Ui : i ∈ J}. Let us consider the net {xj}j∈P (I). By hypothesis,
the set b-cp{xj}j∈P (I) is nonempty. Let x ∈ b-cp{xj}j∈P (I) and let i0 ∈ I such
that x ∈ Ui0. By the definition of b-cluster point, for each J ∈ P (I) there exist
J∗ ∈ P (I) such that J ⊂ J∗ and x∗

j ∈ Ui0. For J = {i0}, there exists J∗ ∈ P (I)
such that i0 ∈ J∗ and x∗

j ∈ Ui0. But x∗
j ∈ X\ ∪ {Ui : i ∈ J∗} ⊂ X\Ui0. The

contradiction we obtained shows that X is b-compact. ✷

In the following, we will give a characterization of b-compact spaces by means
of filterbases.
Let us recall that a nonempty family F of subsets of X is said to be a filterbase on
X if ∅ /∈ F and each intersection of two members of F contains a third member of
F. Notice that each chain in the family of all filterbase on X (ordered by inclusion)
has an upper bound, for example, the union of all members of the chain. Then, by
Zorn’s Lemma, the family of all filterbases on X has at least one maximal element.
Similarly, the family of all filterbases on X containing a given filterbase F has at
least one maximal element.

Definition 3.7. A filterbase F on a topological space X is said to be:

(i) b-converge to a point x ∈ X if for each b-open set U containing x, there exists
B ∈ F such that B ⊂ U .

(ii) b-accumulate at x ∈ X if U ∩B 6= ∅ for every b-open set U containing x and
every B ∈ F.

Remark 3.8. A filterbase F b-accumulate at x if and only if x ∈ ∩{bCl(B) : B ∈
F}. Clearly, if a filterbase F b-converges to x ∈ X, then F b-accumulates at x.

Lemma 3.9. If a maximal filterbase F b-accumulate at x ∈ X, then F b-converges
to x.
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Proof: Let F be a maximal filterbase which b-accumulate at x ∈ X . If F does not
b-converges to x, then there exists a b-open set U0 containing x such that U0∩B 6= ∅
and (X\U0) ∩ B 6= ∅ for every B ∈ F. Then F ∪ {U0 ∩ B : B ∈ F} is a filterbase
which strictly contains F, which is a contradiction. ✷

Theorem 3.10. For a topological space X, the following statements are equivalent:

(i) X is b-compact;

(ii) Every maximal filterbase b-converges to some point of X;

(iii) Every filterbase b-accumulates at some point of X.

Proof: (i) ⇒ (ii): Let F0 be a maximal filterbase on X . Suppose that F0 does
not b-converge to any point of X . Then, by Lemma 3.9, F0 does not b-accumulate
at any point of X . For each x ∈ X , there exists a b-open set Ux containing x
and Bx ∈ F0 such that Ux ∩ Bx = ∅. The family {Ux : x ∈ X} is a cover of X
by b-open sets. By (i), there exists a finite subset {x1, x2, ....xn} of X such that
X = ∪{Uxk

: k = 1, 2, ...n}. Since F0 is a filterbase, there exists B0 ∈ F0 such that
B0 ⊂ ∩{Bxk

: k = 1, 2, ...n} = X\ ∪ {Uxk
: k = 1, 2, ...n}, hence B0 = ∅. This is

a contradiction. (ii) ⇒ (iii): Let F be a filterbase on X . There exists a maximal
filterbase F0 such that F ⊂ F0. By (ii), F0 b-converges to some point x0 ∈ X .
Let B ∈ F. For every U ∈ BO(X, x0), there exists BU ∈ F0 such that BU ⊂ U ,
hence U ∩ B 6= ∅, since it contains the member BU ∩ B of F0. This shows that F

b-accumulates at x0. (iii) ⇒ (i): Let {Vi : i ∈ I} = ∅ be any family of b-closed
sets such that ∩{Vi : i ∈ I} = ∅. We shall prove that there exists a finite subset
I0 of I such that ∩{Vi : i ∈ I}. By Theorem 3.3, this implies (i). Let P (I) be the
family of finite subsets of I. Assume that ∩{Vi : i ∈ J} = ∅ for every J ∈ P (I)
—-(⋆). Then the family F = {∩{Vi : i ∈ J} : J ∈ P (I)} is a filterbase on X . By
(iii), F b-accumulates to some point x0 ∈ X . Since {X\Vi : i ∈ I} is a cover of X ,
there exists i0 ∈ I such that x0 ∈ X\Vi0. Then X\Vi0 is a b-open set containing
x0, Vi0 ∈ F and (X\Vi0) ∩ Vi0 = ∅. This is a contradiction with the fact that F

b-accumulates at x0 shows that (⋆) is false. ✷

Definition 3.11. A point x in a topological space X is said to be a b-complete
accumulation point of a subset A of X if n(S ∩A) = n(S) for each A ∈ BO(X, x),
where n(S) denotes the cardinality of S.

Example 3.12. Let X = {a, b, c} and τ = {∅, {a}, X}. Then the point b is a
b-complete accumulation point of a subset {a, b} but a is not a b-complete accumu-
lation point of it.

Definition 3.13. In a topological space (X, τ ), a point x is said to be a b-adherent
point of a filterbase F on X if it lies in the b-closure of all sets of F.

Example 3.14. Let X = {a, b, c}, τ = {∅, {a}, X} and F = {{a}, {a, b}, {a, c}, X}.
Clearly, the point a is a b-adherent point of F.
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Theorem 3.15. A topological space (X, τ) is b-compact if and only if each infinite
subset of X has a b-complete accumulation point.

Proof: Let the topological space (X, τ ) be b-compact and A an infinite subset of
X . Let K be the set of all points x in X which are not b-complete accumulation
points of S. Now it is obvious that for each point x in K, we are able to find
U(x) ∈ BO(X, x) such that n(A ∩ U(x)) 6= n(S). If K is the whole space X , then
F = {U(x)x ∈ X} is a b-cover of X . By hypothesis, X is b-compact. So, there
exists a finite subcover G = {U(xi) : i = 1, 2, ...n}, such that A ⊂ ∪{U(xi) ∩ A :
i = 1, 2, ...n}. Then n(S) = max{n(U(xi) ∩ A) : i = 1, 2, ...n} which does not
agree with what we assumed. This implies that A has a b-complete accumulation
point. Now assume that X is not b-compact and that every infinite subset A of X
has a b-complete accumulation point in X . It follows that there exists a b-cover S
with no finite subcover. Set α = min{n(Ψ): Ψ ⊂ S, where Ψ is a b-cover of X}
. Fix Ψ = S for which n(Ψ) = α and ∪{U : U ∈ Ψ} = X . Then, by hypothesis
α ≥ n(N), where N denotes the set of all natural numbers. By well-ordering of
Ψ by some minimal well-ordering "∼", suppose that U is any member of Ψ. By
minimal well-ordering "∼" we have n({V : V ∈ Ψ, V ∼ U}) < n({V : V ∈ Ψ}).
Since Ψ cannot have any subcover with cardinality less than α, then for each
U ∈ Ψ we have X 6= ∪{V ;V ∈ Ψ, V ∼ U}). For each U ∈ Ψ, choose a point
x(U) ∈ X\ ∪ {V ∪ {x(V )};V ∈ Ψ, V ∼ U}). We are always able to do this if not
one can choose a cover of smaller cardinality from Ψ. If H = {x(U) : U ∈ Ψ}, then
to finish the proof we will show that H has no b-complete accumulation point in
X . Suppose z ∈ X . Since Ψ is a b-cover of X , z is a point of some set, say W in
Ψ. By the fact that U ∼ W , we have x(U) ∈ W . It follows that T = {U : U ∈ Ψ
and x(U) ∈ W} ⊂ {V ;V ∈ Ψ, V ∼ W}. But n(T ) < α. Therefore, n(H ∩W ) < α.
But n(H) = α ≥ n(N). Since for two distinct points U and W in Ψ, we have
x(U) 6= x(W ). This means that H has no b-complete accumulation point in X ,
which contradicts our assumption. Therefore X is b-compact. ✷

Theorem 3.16. For a topological space (X, τ), the following statements are equiv-
alent:

(i) X is b-compact;

(ii) Every net in X with a well-ordered directed set as its domain b-accumulates
to some point of X.

Proof: (i) ⇒ (ii): Suppose that X is b-compact and A = {xα : α ∈ ∆} a net with
a well-ordered directed set ∆ as domain. Assume that A has no b-adherent point
in X . Then for each x ∈ X , there exists V (x) ∈ BO(X, x) and an α(x) ∈ ∆ such
that V (x) ∩ {xα : α ≥ α(x)} = ∅. This implies that {xα : α ≥ α(x)} is a subset
of X\V (x). Then the collection F = {V (x) : x ∈ X} is a b-cover of X . Since X is

b-compact, F has a finite subfamily {Vxi : i = 1, 2, ...n} such that X =
n
∪
i=1

{V (xi) :

i = 1, 2, ...n}. Suppose that the corresponding elements of ∆ are {α(xi)}, where
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i = 1, 2, ...n. Since ∆ is well-ordered and {α(xi) : i = 1, 2, ...n} is finite, the largest
element of {α(xi)} exists. Suppose it is {α(xi)}. Then for β ≥ {α(xi)}, we have

{xδ : δ ≥ β} ⊂
n
∩
i=1

{X\V (xi)} = X\
n
∪
i=1

V (xi) = ∅, which is impossible. This shows

that A has atleast one b-adherent point in X . (ii) ⇒ (i): Now it is enough to prove
that each infinite subset has a b-complete accumulation point by utilizing Theorem
3.15. Suppose that S is an infinite subset of X . According to Zorn’s Lemma, the
infinite set S can be well-ordered. This means that we can assume S to be a net
with a domain which is a well-ordered index set. It follows that S has a b-adherent
point z. Therefore, z is a b-complete accumulation point of S. This shows that X
is b-compact. ✷

Theorem 3.17. A topological space X is b-compact if and only if each family of
b-closed subsets of X with the finite intersection property has a nonempty intersec-
tion.

Proof: Straightforward. ✷

Theorem 3.18. A topological space X is b-compact if and only if each filterbase
in X has at least one b-adherent point.

Proof: Suppose that X is b-compact and F = {Fα : α ∈ ∆} a filterbase in
it. Since all finite intersections of Fα’s are nonempty, it follows that all finite
intersection of bCl(Fα)’s are also nonempty. Now it follows from Theorem 3.16
that ∩

α∈∆
bCl(Fα) 6= ∅. This implies that F has at least one b-adherent point. Now

suppose F is a family of b-closed sets. Let each finite intersection be nonempty.
The sets Fα with their finite intersection establish a filterbase F. Therefore, F

b-accumulates to some point z ∈ X . It follows that z ∈ ∩
α∈∆

Fα. Now we have by

Theorem 3.16 X is b-compact. ✷

Theorem 3.19. A topological space X is b-compact if and only if each filterbase
on X with at least one b-adherent point is b-convergent.

Proof: Suppose that X is b-compact, x ∈ X and F is a filterbase on X . The
b-adherence of F is a subset of {x}. Then the b-adherence of F is equal to {x} by
Theorem 3.16. Assume that there exists V ∈ BO(X, x) such that for all F ∈ F,
F ∩ (X\V ) 6= ∅. Then Ψ = {F\V : F ∈ F} is a filterbase on X . It follows that the
b-adherence of Ψ is nonempty. However, ∩

F∈F

bCl(F\V ) = ( ∩
F∈F

bCl(F ))∩(X\V ) =

{x} ∩ (X\V ) = ∅, a contradiction. Hence for each V ∈ BO(X, x), there exists an
F ∈ F with F ⊂ V . This shows that F b-converges to x. To prove the converse,
it suffices to show that each filterbase in X has at least one b-accumulation point.
Assume that F is a filterbase on X with no b-adherent point. By hypothesis, F
b-converges to some point z ∈ X . Suppose Fα is an arbitrary element of F. Then
for each V ∈ BO(X, x), there exists Fβ ∈ F such that Fβ ⊂ V . Since F is a
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filterbase, there exists a γ such that Fγ ⊂ Fα ∩ Fβ ⊂ Fα ∩ V , where Fα 6= ∅. This
means that Fα ∩ V 6= ∅ for every V ∈ BO(X, x) and corresponding for each α, z
is a point of bCl(Fα). It follows that z ∈ ∩

α
bCl(Fα). Therefore, z is a b-adherent

point of F, a contradiction. This shows that X is b-compact. ✷

Definition 3.20. A subset K of a topological space X is said to be b-closed [5]
relative to X if for any cover {Ui : i ∈ I} of K by b-open sets, there exists a finite
subset I0 of I such that K ⊂ ∪{bCl(Ui) : i ∈ I0}.
We say that X is b-closed if X is b-closed relative to X. Obviously every set which
is b-compact relative to X is also b-closed relative to X.

Definition 3.21. Let X be a topological space. A point x ∈ X is said to be b-θ-
cluster point of a net {xα}α∈∆ if {xα}α∈∆ is frequently in the b-closure of every
b-open set containing x.

Example 3.22. Let (ℜ, τu) be the usual topological space. Then the net (Sn)n∈N =
(n+ (−1)nn)n∈N in ℜ has 0 as a b-θ-cluster point.

Theorem 3.23. A topological space X is b-compact if and only if each net {xα}α∈∆

in X, has at least one b-cluster point.

Proof: Similar to the proof of Theorem 3.6 ✷

Definition 3.24. A filterbase F on a topological space X is said to:

(i) b-θ-converge to a point x ∈ X if for each b-open set U containing x, there
exists B ∈ F such that B ⊂ bCl(U).

(ii) b-θ-accumulate at x ∈ X if bCl(U)∩B 6= ∅ for each b-open set U containing
x and every B ∈ F.

Remark 3.25. A filterbase F is b-θ-convergent to a point x ∈ X if and only if F
contains the collection {bCl(U) : U ∈ BO(X, x)}.

Theorem 3.26. For a topological space X, the following statements are equivalent:

(i) X is b-closed;

(ii) Every maximal filterbase b-θ-converges to some point of X;

(iii) Every filterbase b-θ-accumulates to some point of X;

(iv) For every family {Vi : i ∈ I} of b-closed sets that ∩{Vi : i ∈ I} = ∅, there
exists a finite subset I0 of I such that ∩{b Int(Vi) : i ∈ I0} = ∅.

Proof: (i) ⇒ (ii): Let F be a maximal filterbase on X . Suppose that F does not
b-θ-converge to any point of X . Then by Theorem 3.23 F does not b-θ-accumulates
at any point of X . For each x ∈ X , there exist a b-open set Ux containing x and
Bx ∈ F such that bCl(Ux) ∩Bx = ∅. The family {Ux : x ∈ X} is a cover of X by
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b-open sets. By (i), there exists a finite subset {x1, x2, ....xn} of X such that X =
∪{bCl(Uxk) : k = 1, 2, ...n}. Since F is a filterbase, there exists F ∈ F such that
F0 ⊂ ∩{Bxk : k = 1, 2, ...n}. It follows that F0 ⊂ ∩{X\bCl(Uxk

: k = 1, 2, ...n}
= X\ ∪ {bCl(U)xk : k = 1, 2, ...n} = ∅, hence F = ∅ . This is a contradiction
with the definition of filterbase. (ii) ⇒ (iii): Let F0 be a filterbase on X . There
exists a maximal filterbase F such that F0 ⊂ F. By (ii), F b-θ-converges to some
point x0 ∈ X . Let F ∈ F0. For every U ∈ BO(X, x0), there exists BU ∈ F such
that BU ⊂ bCl(U), hence bCl(U) ∩ B ⊃ BU ∩ B is nonempty, since it contains
a member of F. This shows that F0 b-θ-accumulates at x0. (iii) ⇒ (iv): Let
{Vi : i ∈ I} be any family of b-closed set such that ∩{Vi : i ∈ I} = ∅. Let P (I) be
the family of all finite subsets of I. Assume that ∩{b Int(Vi) : i ∈ J} = ∅ for every
J ∈ P (I) — (**). Then, the family F = {∩{b Int(Vi) : i ∈ I} : J ∈ I} is a filterbase
on X . By (iii), F b-accumulates at some point x ∈ X . Since {X\Vi : i ∈ I}
is a cover of X , there exists i0 ∈ I such that x ∈ X\Vi0 . Then X\Vi0 is a
b-open set containing x, b Int(Vi0 ) ∈ F and bCl(X\Vi0) ∩ b Int(Vi0 ) = ∅. This
contradicts the fact that that F b-accumulates at x. It follows that (**) is false.
(iv) ⇒ (i): Let {Ui : i ∈ I} be a cover of X by b-open sets. Denote Vi = X\Ui.
Then {Vi : i ∈ I} is a family of b-closed sets such that ∩{Vi : i ∈ I} = ∅.
There exists a finite subset I0 of I such that ∩{b Int(Vi) : i ∈ I} = ∅. Then
X = X\ ∩ {b Int(Vi) : i ∈ I0} = ∪{X\b Int(Vi) : i ∈ I0} = ∪{bCl(Ui) : i ∈ I0}. ✷

Theorem 3.27. A topological space X is b-closed if and only if each net {xα}α∈∆

in X has at least one b-θ-cluster point.

Proof: Similar to the proof of Theorem 3.6. ✷

Definition 3.28. If F is a filterbase on a topological space X, then the section of
F, denoted by secF, is given by secF = {A ⊂ X : A ∩G 6= ∅, for all G ∈ F}.

Theorem 3.29. If a filterbase F on a topological space X, b-θ-adheres to some
point x ∈ X, then F is b-θ-convergent to x.

Proof: Let a filterbase F on X , b-θ-adhere at x ∈ X . Then for each U ∈ BO(X, x)
and each G ∈ F, bCl(U) ∩G 6= ∅ so that bCl(U) ∈ secF, for each U ∈ BO(X, x),
and hence X\bCl(U) /∈ F. Then bCl(U) ∈ F (as F is a filterbase and X ∈ F), for
each U ∈ BO(X, x). Hence F must b-θconverge to x. ✷

The following example shows that the converse of the Theorem 3.29 is not true
in general.

Example 3.30. Let X = {a, b, c}, τ = {∅, {a}, {b, c}, X} and F = P (X)\{∅}.
Then F is b-θ-convergent to a but not b-θ-adheres to a.

Remark 3.31. Let X be a topological space. Then for any x ∈ X, we adopt the
following notions:

(i) F(bθ, x) = {A ⊂ X : x ∈ bClθ(A)}.
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(ii) secF(bθ, x) = {A ⊂ X : A ∩G 6= ∅, forallG ∈ F(bθ, x)}

In the next two theorems, we characterize the b-θ-adherence and b-θ-convergence
of filterbase in terms of the above notions.

Theorem 3.32. The filterbase F on a topological space X, b-θ-adheres to a point
x ∈ X if and only if F ⊂ F(bθ, x).

Proof: A filterbase F on a topological space X b-θ-converges at x ∈ X . ⇒ bCl(U)∩
G 6= ∅ for all U ∈ BO(X, x) and all G ∈ F.
⇒ x ∈ bClθ for all G ∈ F.
⇒ G ∈ F(bθ, x) for all G ∈ F.
⇒ F ⊂ F(bθ, x).
Conversely, let F ⊂ F(bθ, x). Then for all G ∈ F, x ∈ bClθ, so that for all
U ∈ BO(X) and for all G ∈ F, bCl(U) ∩ G 6= ∅. Hence, F b-θ-adheres to a point
x. ✷

Theorem 3.33. A filterbase F on a topological space X is b-θ-convergent to a
point x of X if and only if secF(bθ, x) ⊂ F.

Proof: Let F be a filterbase on X , b-θ-converging to x ∈ X . Then for each
U ∈ BO(X) there exist G ∈ F such that G ⊂ bCl(U); hence bCl(U) ∈ F for each
U ∈ BO(X) (⋆). Now B ∈ secF(bθ, x) ⇒ X\B /∈ secF(bθ, x) ⇒ x /∈ bClθ(X\B) ⇒
there exists U ∈ BO(X) such that bCl(U)∩(X\B) = ∅ ⇒ bCl(U) ⊂ B, where U ∈
BO(X) ⇒ B ∈ F (by (⋆)). Conversely, let if possible, F not belong to b-θ-converge
to x. Then for some U ∈ BO(X), bCl(U) /∈ F and hence bCl(U) /∈ secF(bθ, x).
Thus for some A ∈ F(bθ, x), A∩bCl(U) = ∅ (⋆⋆). But A ∈ F(bθ, x) ⇒ x ∈ bClθ(A)
⇒ bCl(U) ∩ A 6= ∅, contradiction (⋆⋆). ✷

We shall now derive some new characterizations of b-closedness in terms of
filterbase and the associated concepts.

Theorem 3.34. A subset A of a topological space X is b-closed relative to X if
and only if every filterbase F on X with A ∈ F, b-θ-converges to a point in A.

Proof: Let A be b-closed relative to X and F a filterbase on X satisfying A ∈ F

such that F does not b-θ-converge to any a ∈ A. Then to each a ∈ A, there
corresponds some Uα ∈ BO(X, a) such that bCl(Uα) /∈ F. Now {Ua : a ∈ A} is

a cover of A by b-open sets of X . Then A ⊂
n
∪
i=1

bCl(Uai) = U (say) for some

positive integer n. Since F is a filterbase, U ∈ F and hence A ∈ F, which is a
contradiction. Conversely, let A be not b-closed relative to X . Then for some cover
U = {Uα : α ∈ Λ} of A by b-open sets of X , F = {A\Uα∈Λ0

: Λ0 ⊂ Λ} is a filterbase
on X . Then the family F can be extended to an ultra-filter F∗ on X . Then F∗

is a filterbase on X with A ∈ F∗ (as each F of F is a subset of A). Now for each
x ∈ A, there exist β ∈ Λ such that x ∈ Uβ, as U is a cover of A. Then for any
G ∈ F∗, G∩ (A\bCl(Uβ) 6= ∅, so that G " bCl(Uβ) for all G ∈ G. Hence F∗ cannot
b-θ-converge to any point of A. This contradiction proves the desired result. ✷
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Theorem 3.35. Let X be any topological space such that every filterbase F on X,

with the property that
n
∩
i=1

bClθ(Gi) 6= ∅ for every finite subfamily {G1, G2, ....Gn}

of F b-θ-adheres in X, then X is a b-closed space.

Proof: Let U be any ultrafilter on X . Then U is a filterbase on X and also for

each finite subcollection {U1, U2, ....Un} of U,
n
∩
i=1

bClθ(Ui) ⊃
n
∩
i=1

Ui 6= ∅ so that U

is a filterbase on X with the given condition. Hence by hypothesis, U b-θ-adheres.
Consequently, the space X is b-closed. ✷

Definition 3.36. A filterbase F on a topological space X is said to be b-θ-conjoint

if for every finite subfamily A1, A2, ...., An of F b Int(
n
∩
i=1

bClθ(Ai) 6= ∅.

Theorem 3.37. In a b-closed topological space X, every b-θ-conjoint filterbase
b-θ-adheres in X.

Proof: Consider any b-θ-conjoint filterbase F on a b -closed space X . We first note
from Theorem 3.33 that for A ⊂ X , bClθ(A) is b-closed. Thus {bClθ(A) : A ∈ F}

is a collection of b-closed sets in X such that b Int(
n
∩
i=1

bClθ(Ai)) 6= ∅ for any finite

subcollection A1, A2....An of F. Thus by Theorem 3.34,
n
∩
i=1

{bClθ(A) : A ∈ F} 6= ∅,

that is, there exists x ∈ X such that x ∈ bClθ(A) for all A ∈ F. Hence F ⊂ F(bθ, x)
so that by Theorem 3.32, F b-θ-adheres at x ∈ X . ✷

The following example shows that the converse of the Theorem 3.37 is not true
in general.

Example 3.38. Let X = {a, b, c}, τ = {∅, {a, b}, X} and F = {c}, {a, c}, {b, c}, X}.
Clearly, F is b-θ-adheres at c but not b-θ-conjoint.

Theorem 3.39. Every filterbase F on a topological space X with the property that
{bClθ(G) : G ∈ F0} 6= ∅ for every finite subset F0 of F, b-θ-adheres in X if and
only if for every family F of subsets of X for which the family {bClθ(F ) : F ∈ F}
has the finite intersection property, we have ∩{bClθ(F ) : F ∈ F} 6= ∅.

Proof: Let every filterbase on a topological space X satisfying the given condition,
b-θ-adheres in X , and suppose that F is a family of subsets of X such that the
family F∗ = {bClθ(F ) : F ∈ F} has the finite intersection property. Let U be the
collection of all those families of subsets of X for which F∗ = {bClθ(G) : G ∈ F}
has the finite intersection property and F ⊂ G. Then F ∈ U and U is a partially
ordered set under inclusion in which every chain clearly has an upper bound. By
Zorn’s lemma, F is then contained in a maximal family U∗ ∈ U. It is easy to verify
that U∗ is a filterbase with the stipulated property. Hence ∩{bClθ(F ) : F ∈ F} ⊃
∩{bClθ(U) : U ∈ U 6= ∅. Conversely, if F is a filterbase on X with the given
property, then for every finite subfamily F0 of F, ∩{bClθ(F ) : F ∈ F0} 6= ∅. So, by
hypothesis, ∩{bClθ(F ) : F ∈ F} 6= ∅. Hence F b-θ-adheres in X . ✷
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Theorem 3.40. [5] For a topological space X, the following statements are equiv-
alent:

(i) X is b-regular;

(ii) For each and each open set U of X containing x, there exists a b-open set V
such that.

Theorem 3.41. Let X be a b-regular space. Then a subset K of X is b-compact
if and only if K is b-closed relative to X.

Proof: Let {Ui : i ∈ I} be a cover of K by b-open sets. For each x ∈ K there exists
i(x) ∈ I such that x ∈ Ui(x) and by the assumption that X is b-regular, there exists,
according to Theorem 3.40, a b-open set Vx such that x ∈ Vx ⊂ bCl(Vx) ⊂ Ui(x).
The family {Vx : x ∈ X} is a cover of K by b-open sets. Since K is b-closed relative
to X , there exists a finite subset {x1, x2, ....xn} of K such that K ⊂ ∪{bCl(Vxk) :
k = 1, 2, ...n}. Which shows that K is b-compact relative to X . The necessity is
obvious. ✷
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