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On sufficient conditions of meromorphic starlike functions
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abstract: In this paper, we investigate interesting properties and sufficient con-
ditions for meromorphic starlike functions in the punctured unit disc.
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1. Introduction

Let M denote the class of functions f (z) of the form

f(z) =
1

z
+

∞
∑

k=0

ak zk, (1.1)

which are analytic in the punctured open unit disc E∗ = {z : z ∈ C and 0 < |z| < 1}
= E\{0}.

If f(z) is given by (1.1) and g(z) is given by

g(z) =
1

z
+

∞
∑

k=0

bkz
k , (1.2)

we define the Hadamard product (or convolution) of f(z) and g(z) by

(f ⋆ g) (z) =
1

z
+

∞
∑

k=0

akbkz
k = (g ⋆ f) (z) (z ∈ E) . (1.3)

A function f ∈ M is said to be meromorphic starlike of order α (0 ≤ α < 1) if

Re

(

zf ′(z)

f(z)

)

> −α (z ∈ E∗) .

We denote by MS(α), the class of all such functions. A function f ∈ M is said to
be meromorphic convex of order α (0 ≤ α < 1) if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> −α (z ∈ E∗) .
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We denote by MC(α), the class of all such functions.
In recent years, several families of integral operators and differential operators

were introduced using Hadamard product ( or convolution). For example, we choose
to mention the Rushcheweyh derivative [12], the Carlson-Shaffer operator [1], the
Dzoik-Srivastava operator [4], the Noor integral operator [11] also see, [3,6,7,10].
Motivated by the work of N. E. Cho and K. I. Noor [2,9], we introduce a family of
integral operators defined on the space of meromorphic functions in the class M,see
[13]. By using these integral operators, we derive some interesting properties of
meromorphic starlike functions classes introduced here.

For a complex parameters α1, ...αq and β1, ...βs (βj ∈ C\Z−
0 = {0,−1,−2, ...};

j = 1, ...s), we now define the function φ(α1, ...αq;β1, ...βs; z) by

φ(α1, ...αq;β1, ...βs; z) =
1

z
+

∞
∑

k=0

(α1)k+1...(αq)k+1

(β1)k+1...(βs)k+1 (k + 1)!
zk,

(q ≤ s+ 1; s ∈ N0 = N ∪ {0}; N = {1, 2, ...}; z ∈ E),

where (v)k is the Pochhammer symbol(or shifted factorial) defined in (terms of the
Gamma function) by

(v)k =
Γ(v + k)

Γ(v)
=

{

1 if k = 0 and v ∈ C\{0}
v(v + 1)...(v + k − 1) if k ∈ N and v ∈ C.

Now we introduce the following operator

Ipµ(α1, ...αq, β1, ...βs) : M −→ M

as follows:

Let Fµ,p(z) = 1
z
+

∞
∑

k=0

(

k+µ+1
µ

)p

zk, p ∈ N0, µ 6= 0 and let F−1
µ,p(z) be defined

such that
Fµ,p(z) ∗ F

−1
µ,p(z) = φ(α1, ...αq;β1, ...βs; z).

Then
Ipµ(α1, ...αq, β1, ...βs)f(z) = F−1

µ,p(z) ∗ f(z). (1.4)

From (1.4) it can be easily seen

Ipµ(α1, ...αq, β1, ...βs)f(z)

=
1

z
+

∞
∑

k=0

(

µ

k + µ+ 1

)p
(α1)k+1...(αq)k+1

(β1)k+1...(βs)k+1 (k + 1)!
zk. (1.5)

For conveniences, we shall henceforth denote

Ipµ(α1, ...αq, β1, ...βs)f(z) = Ipµ(α1, β1)f(z). (1.6)

For the choices of the parameters p = 0, q = 2, s = 1, the operator Ipµ(α1, β1)f(z)
is reduced to an operator by N. E. Cho and K. I. Noor [2] and K. I. Noor [9] and
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when p = 0, q = 2, s = 1, α1 = λ, α2 = 1, β1 = (n+1), the operator Ipµ(α1, β1)f(z)
is reduced to an operator recently introduced by S. -M. Yuan et. al. in [14].

It can be easily verified from the above definition of the operator Ipµ(α1, β1)f(z)
that

z(Ip+1
µ (α1, β1)f(z))

′ = µIpµ(α1, β1)f(z)− (µ+ 1)Ip+1
µ (α1, β1)f(z), (1.7)

and

z(Ipµ(α1, β1)f(z))
′ = α1I

p
µ(α1 + 1, β1)f(z)− (α1 + 1)Ipµ(α1, β1)f(z). (1.8)

By using the operator Ipµ(α1, β1)f(z), we now studies some properties of meromor-
phic starlike functions. Also, see the interested work by R. M. El-Ashwa et. al
[5]

Definition 1.1. Let f ∈ M, 0 ≤ α < 1, z ∈ E∗. Then

f ∈ MSp
µ(α1, β1), if and only if Ipµ(α1, β1)f ∈ MS(α).

Also,

f ∈ MCp
µ(α1, β1), if and only if Ipµ(α1, β1)f ∈ MC(α), z ∈ E∗.

We note that for z ∈ E∗,

f ∈ MCp
µ(α1, β1) ⇔ −zf ′ ∈ MSp

µ(α1, β1).

Lemma 1.2. bf(Jack [8]).
Suppose w(z) be a nonconstant analytic functions in E with w(0) = 0. If |w(z)|

attains its maximum value at a point z0 ∈ E on the circle |z| = r < 1, then

z0w
′(z0) = ζw(z0), where ζ ≥ 1 is some real number.

2. Main Results

Theorem 2.1. If f ∈ M satisfies

∣

∣

∣

∣

Ipµ(α1, β1)f(z)

I
p+1
µ (α1, β1)f(z)

− 1

∣

∣

∣

∣

γ
∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z)

I
p
µ(α1, β1)f(z)

− 1

∣

∣

∣

∣

∣

β

< Ψ(p, µ, α1, β1, α, β, γ), z ∈ E∗,

(2.1)
for some real numbers α, β and γ such that 0 ≤ α < 1, β ≥ 0, γ ≥ 0, and β+γ > 0,

then

f ∈ MSp
µ(α1, β1, α) p ∈ N0,

where

Ψ(p, µ, α1, β1, α, β, γ) =







(1− α)
γ
(

1− α+ 1
2µ

)β

, 0 ≤ α < 1
2

(1− α)
β+γ

(1 + 1
µ
)β , 1

2 ≤ α < 1.

(2.2)

Proof:
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Case (i). Let 0 ≤ α < 1
2 and by setting

Ipµ(α1, β1)f(z)

I
p+1
µ (α1, β1)f(z)

=
1 + (1− 2α)w(z)

1− w(z)
, z ∈ E. (2.3)

Then w is analytic in E, w(0) = 0 and w(z) 6= 1 in E. A simple computation yields
that

z(Ipµ(α1, β1)f(z))
′

(Ipµ(α1, β1)f(z))
−
z(Ip+1

µ (α1, β1)f(z))
′

I
p+1
µ (α1, β1)f(z)

=
(1− 2α) zw′(z)

[1 + (1− 2α)w(z)]
+

zw′(z)

1− w(z)
. (2.4)

By making use of the identity (1.7), we deduce that

µ
(Ip−1

µ (α1, β1)f(z))

(Ipµ(α1, β1)f(z))
− µ

(Ipµ(α1, β1)f(z))

I
p+1
µ (α1, β1)f(z)

=

{

(1 − w(z) (1− 2α) zw′(z) + [1 + (1− 2α)w(z)] zw′(z)

[1 + (1− 2α)w(z)] (1− w(z))

}

,

(Ip−1
µ (α1, β1)f(z))

(Ipµ(α1, β1)f(z))
=

[1 + (1− 2α)w(z)]

1− w(z)

+
2 (1− α) zw′(z)

µ [1 + (1− 2α)w(z)] (1 − w(z))
(2.5)

(Ip−1
µ (α1, β1)f(z))

(Ipµ(α1, β1)f(z))
− 1 =

2 (1− α)w(z)

1− w(z)
+

2 (1− α) zw′(z)

µ [1 + (1− 2α)w(z)] (1− w(z))

and
(Ipµ(α1, β1)f(z))

I
p+1
µ (α1, β1)f(z)

− 1 =
2 (1− α)w(z)

1− w(z)
.

Thus, we have

∣

∣

∣

∣

Ipµ(α1, β1)f(z)

I
p+1
µ (α1, β1)f(z)

− 1

∣

∣

∣

∣

γ
∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z)

I
p
µ(α1, β1)f(z)

− 1

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

2 (1− α)w(z)

1− w(z)

∣

∣

∣

∣

γ ∣
∣

∣

∣

2 (1− α)w(z)

1− w(z)
+

2 (1− α) zw′(z)

µ [1 + (1− 2α)w(z)] (1− w(z))

∣

∣

∣

∣

β

=

∣

∣

∣

∣

2 (α− 1)w(z)

1− w(z)

∣

∣

∣

∣

β+γ ∣
∣

∣

∣

1 +
zw′(z)

µ [1 + (1− 2α)w(z)] (w(z))

∣

∣

∣

∣

β

.

Suppose that there exists a point z0 ∈ E such that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Then by using Lemma 1.2, we have w(z0) = eiθ, 0 < θ ≤ 2π and z0w
′(z0) = ζw(z0),
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ζ ≥ 1. Therefore

∣

∣

∣

∣

Ipµ(α1, β1)f(z0)

I
p+1
µ (α1, β1)f(z0)

− 1

∣

∣

∣

∣

γ
∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z0)

I
p
µ(α1, β1)f(z0)

− 1

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

2 (1− α)w(z0)

1− w(z0)

∣

∣

∣

∣

β+γ

∣

∣

∣

∣

1 +
ζw′(z0)

µ [1 + (1− 2α)w(z0)] (w(z0))

∣

∣

∣

∣

β

=
2β+γ (1− α)

β+γ

|1− eiθ|
β+γ

∣

∣

∣

∣

1 +
ζ

µ [[1 + (1− 2α) eiθ] eiθ]

∣

∣

∣

∣

β

≥ (1− α)
β+γ

(

1 +
ζ

[2µ (α− 1)]

)β

≥ (1− α)β+γ

(

1 +
1

[2µ (1− α)]

)β

= (1− α)
γ

(

1− α+
1

2µ

)β

,

which contradicts (2.1) for 0 ≤ α < 1
2 . Therefore, we must have |w(z)| < 1 for all

z ∈ E, and hence f ∈ MSp
µ(α1, β1, α) p ∈ N0.

Case (ii). When 1
2 < α < 1. Let w(z) be defined by

Ipµ(α1, β1)f(z)

I
p+1
µ (α1, β1)f(z)

=
α

α− (1− α)w(z)
, z ∈ E,

where w(z) 6= α
(1−α) in E. Then w(z) is analytic in E and w(0) = 0. Proceeding

likewise as in Case (i) and using identity (1.7), we obtain

z(Ipµ(α1, β1)f(z))
′

(Ipµ(α1, β1)f(z))
−

z(Ip+1
µ (α1, β1)f(z))

′

I
p+1
µ (α1, β1)f(z)

=
(1− α) zw′(z)

[α− (1− α)w(z)]
.

µ
(Ip−1

µ (α1, β1)f(z))

(Ipµ(α1, β1)f(z))
− µ

(Ipµ(α1, β1)f(z))

I
p+1
µ (α1, β1)f(z)

=
(1− α) zw′(z)

[α− (1− α)w(z)]
.

implies that

(Ip−1
µ (α1, β1)f(z))

(Ipµ(α1, β1)f(z))
=

(1− α)w(z)

α− (1− α)w(z)
+

(1− α) zw′(z)

µ [α− (1− α)w(z)]
.
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Then, we have

∣

∣

∣

∣

Ipµ(α1, β1)f(z0)

I
p+1
µ (α1, β1)f(z0)

− 1

∣

∣

∣

∣

γ
∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z0)

I
p
µ(α1, β1)f(z0)

− 1

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

(1− α)w(z)

α− (1− α)w(z)

∣

∣

∣

∣

γ ∣
∣

∣

∣

(1− α)w(z)

α− (1− α)w(z)
+

(1− α) zw′(z)

µ [α− (1− α)w(z)]

∣

∣

∣

∣

β

=

∣

∣

∣

∣

(1− α)w(z)

α− (1− α)w(z)

∣

∣

∣

∣

β+γ ∣
∣

∣

∣

1 +
zw′(z)

µw(z)

∣

∣

∣

∣

β

=

∣

∣

∣

∣

(1− α)w(z)

α− (1− α)w(z)

∣

∣

∣

∣

β+γ

|w(z)|
γ

∣

∣

∣

∣

w(z) +
zw′(z)

µ

∣

∣

∣

∣

β

.

Suppose that there exists a point z0 ∈ E such that max
|z|≤|z0|

w(z) = |w(z0)| = 1,

then by applying Lemma 1.2, we have w(z0) = eiθ and z0w
′(z0) = ζw(z0), ζ ≥ 1.

Therefore,

∣

∣

∣

∣

Ipµ(α1, β1)f(z0)

I
p+1
µ (α1, β1)f(z0)

− 1

∣

∣

∣

∣

γ
∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z0)

I
p
µ(α1, β1)f(z0)

− 1

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

(1− α)w(z0)

α− (1− α)w(z0)

∣

∣

∣

∣

β+γ

∣

∣

∣

∣

1 +
ζw(z0)

µw(z0)

∣

∣

∣

∣

β

=
(1− α)β+γ

|α− (1− α) eiθ|
β+γ

(

1 +
ζ

µ

)β

≥ (1− α)
β+γ

(1 +
1

µ
)β

which contradicts (2.1) for p
2 < α < p. Therefore, we must have |w(z)| < 1 for all

z ∈ E, and hence f ∈ MSp
µ(α1, β1, α) p ∈ N0. This completes the proof of our

Theorem. ✷

Corollary 2.2. Taking µ = 1 in Theorem 3.1, we have

∣

∣

∣

∣

∣

I
p
1 (α1, β1)f(z)

I
p+1
1 (α1, β1)f(z)

− 1

∣

∣

∣

∣

∣

γ ∣
∣

∣

∣

∣

I
p−1
1 (α1, β1)f(z)

I
p
1 (α1, β1)f(z)

− 1

∣

∣

∣

∣

∣

β

<

{

(1− α)
γ (

1− α+ 1
2

)β
, 0 ≤ α < 1

2

(1− α)
β+γ

(2)β, 1
2 ≤ α < 1.

for some real numbers α, β and γ such that 0 ≤ α < 1, β ≥ 0, γ ≥ 0, and β+γ > 0,

then

f ∈ MS
p
1 (α1, β1, α) p ∈ N0,
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Corollary 2.3. If we take β = 1, γ = 0 and f ∈ M satisfies

∣

∣

∣

∣

∣

Ip−1
µ (α1, β1)f(z)

I
p
µ(α1, β1)f(z)

− 1

∣

∣

∣

∣

∣

β

<

{
(

1− α+ 1
2µ

)

, 0 ≤ α < 1
2 ,

(1− α) (1 + 1
µ
), 1

2 ≤ α < 1
, z ∈ E, p ∈ N0

(2.7)
for some real numbers α such that 0 ≤ α < 1,

then

Re

(

Ipµ(α1, β1)f(z)

I
p+1
µ (α1, β1)f(z)

)

> α, z ∈ E∗
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