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abstract: This paper is dealing with the application of the notion of ωβ−open
sets in topological spaces to present and study a new class of functions called contra
ωβ−continuous functions. This notion is a weak form of contra-continuity. We also
discuss the relationships between this new class and other classes of functions and
some examples of applications are shown.
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1. Introduction

Recently authors [2], [1] introduced the concepts of ωβ−open sets and ωβ-
continuity in a topological space and investigated some of their properties. In
1996, Dontchev [7] introduced a new class of functions called contra-continuous
functions. He defined a function f : X → Y to be contra-continuous if the preim-
age of every open set of Y is closed in X . Two new weaker form of this class
of functions are introduced: contra ω−continuity is introduced by Al-Omari and
Noorani [4] and contra β−continuity is investigated by Caldas and Navalagi [6].
In this direction, we will introduce the concept of contra ωβ−continuous functions
which is weaker than contra-continuous, via the notion of ωβ−open sets. Some
characterizations and several basic properties of this class of functions are obtained.

Throughout the present paper, a space (X, τ ) mean a topological space on which
no separation axiom is assumed unless explicitly stated. Let A be a subset of a
space (X, τ ). The closure of A and interior of A in (X, τ) are denoted by Cl(A)
and Int(A), respectively. A subset A of a space (X, τ) is said to be β−open [11]
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if A ⊆ Cl(Int(Cl(A))). Recall that a subset A of a space (X, τ ) is said to be
ωβ−open [2] (resp. ω−open [5]) set if for every x ∈ A there exists a β−open (resp.
open) set U containing x such that U − A is countable. The complement of an
ωβ−open set is said to be ωβ−closed [2]. The intersection of all ωβ−closed sets
of X containing A is called the ωβ−closure of A and is denoted by ωβCl(A). The
union of all ωβ−open sets of X contained in A is called the ωβ−interior of A and
is denoted by ωβInt(A).

2. Contra ωβ−continuous functions

We introduce the definition of contra ωβ−continuous functions in topological
spaces and study some of their properties in this section.

Definition 2.1. A function f : (X, τ )→ (Y, σ) is said to be contra ωβ−continuous
if f−1(V ) is ωβ−closed in (X, τ) for each open set V of (Y, σ).

Observe that if X is a countable set, then every function f : (X, τ )→ (Y, σ) is
contra ωβ−continuous.
It is obvious that every contra-continuous function is contra ωβ−continuous. How-
ever the following example shows that the converse need not be true in general.

Example 2.2. Let X = R with the topology τ = τu and let Y = {1, 2} with the
topology σ = {φ, Y, {2}}. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{

1, x ∈ R−Q

2, x ∈ Q

Then f is contra ωβ−continuous but not contra-continuous.

Recall that the kernel of a set A [12], denoted ker(A), is the intersection of all
open supersets of A.

Lemma 2.3. [10] Let A and B be subsets of a topological space (X, τ ), then the
following properties hold:

(i) x ∈ Ker(A) if and only if A∩F 6= φ for any closed set F in (X, τ) containing
x.

(ii) A ⊆ Ker(A) and if A is open in (X, τ), then A = Ker(A).

(iii) If A ⊆ B, then Ker(A) ⊆ Ker(B).

Proposition 2.4. [2] Let (X, τ) be a topological space.

(i) The union of any family of ωβ−open sets is ωβ−open.

(ii) The intersection of an ωβ−open set and an ω−open set is ωβ−open.
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A subfamily mX of the power set P(X) of a non-empty set X is called a minimal
structure on X ( [14], [15]) if φ, X ∈ mX . Let (X, τ ) be a topological space, then
the set of all ωβ−open sets of X is a minimal structure on X . The notion of contra
m−continuous functions [13] is defined as follows: for each open set V of (Y, σ),
f−1(V ) is mX−closed in (X, τ ). By Definition 2.1 and Proposition 2.4 it follows
that contra ωβ−continuous functions are particular cases of contra m−continuous
functions. Hence, some results from this paper are particular cases of some results
from [13].

Theorem 2.5. For a function f : (X, τ)→ (Y, σ), the following are equivalent:

(i) f is contra ωβ−continuous.

(ii) f−1(F ) is ωβ−open in (X, τ ) for every closed subset F of (Y, σ).

(iii) For each x ∈ X and each closed set F in (Y, σ) containing f(x), there exists
an ωβ−open set U in (X, τ) containing x such that f(U) ⊆ F .

(iv) f(ωβCl(A)) ⊆ ker(f(A)) for every subset A of (X, τ ).

(v) ωβCl(f−1(B)) ⊆ f−1(ker(B)) for every subset B of (Y, σ).

Proof: The proof follows by Theorem 3.2 and Corollarly 3.2 of [13]. ✷

Recall that a function f : (X, τ )→ (Y, σ) is contra ω−continuous [4] if f−1(V )
is ω−closed in (X, τ ) for each open set V of (Y, σ). Since every ω−open set is
ωβ−open, then every contra ω−continuous function is contra ωβ−continuous, but
the converse is not true as the following example shows.

Example 2.6. Let X = R with the topology τ = τu and let Y = {1, 2} with the
topology σ = {φ, Y, {1}}. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{

1, x ∈ R−Q

2, x ∈ Q

Then f is contra ωβ−continuous but not contra ω−continuous.

A function f is called contra β−continuous [6] if f−1(V ) is β−closed in (X, τ)
for each open set V of (Y, σ). Since every β−open set is ωβ−open, then every
contra β−continuous function is contra ωβ−continuous but the converse is not
true as shown by the following example.

Example 2.7. Let X = {1, 2, 3} with the topologies τ = {φ,X, {2} , {3}, {2, 3}}
and σ = {φ,X, {1}, {2}, {1, 2}}. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{

3, x = 1

1, x = 2
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Then f is contra ωβ−continuous but not contra β−continuous.

Recall that a function f : (X, τ)→ (Y, σ) is called ωβ−continuous [1] if for ev-
ery x ∈ X and each open set V in (Y, σ) containing f(x) there exists an ωβ−open
set U containing x such that f(U) ⊆ V .

The following two examples show that the concept of ωβ−continuity and contra
ωβ−continuity are independent of each other.

Example 2.8. Let X = R with the topology τ = τ coc and let Y = {1, 2} with the
topology σ = {φ, Y, {1}}. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{

1, x ∈ R−Q

2, x ∈ Q

Then f is ωβ−continuous but not contra ωβ−continuous.

Example 2.9. Let X = R with the topology τ = τ coc and let Y = {1, 2} with the
topology σ = {φ, Y, {1}}. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{

2, x ∈ R−Q

1, x ∈ Q

Then f is contra ωβ−continuous but not ωβ−continuous.

Proposition 2.10. Let f : (X, τ ) → (Y, σ) be contra ωβ−continuous. If one of
the following conditions holds, then f is ωβ−continuous.

(i) (Y, σ) is regular.

(ii) ωβInt(f−1(Cl(V ))) ⊆ f−1(V ) for each open set V in (Y, σ).

Proof: (i) Let x ∈ X and V be an open set of (Y, σ) containing f(x). Since
(Y, σ) is regular, there exists an open set W in (Y, σ) containing f(x) such that
Cl(W ) ⊆ V . Since f is contra ωβ−continuous, so by Theorem 2.5, there exists an
ωβ−open set U in (X, τ ) containing x such that f(U) ⊆ Cl(W ); hence f(U) ⊆ V .
Therefore f is ωβ−continuous.
(ii) Let V be any open set of (Y, σ). Since f is contra ωβ−continuous and Cl(V ) is
closed, by Theorem 2.5 f−1(Cl(V )) is ωβ−open in (X, τ) and by (ii), f−1(Cl(V )) ⊆
ωβInt(f−1(Cl(V ))) ⊆ f−1(V ). So, we obtain f−1(V ) = ωβInt(f−1(Cl(V ))) and
consequently f−1(V ) is ωβ−open in (X, τ). So f is an ωβ−continuous function. ✷

Definition 2.11. A space (X, τ ) is called an ωβ−space (resp. locally ωβ− indis-
crete) if every ωβ−open set is open (resp. closed) in (X, τ ).

Proposition 2.12. Let f : (X, τ)→ (Y, σ) be a contra ωβ−continuous function.

(i) If (X, τ ) is an ωβ−space, then f is contra-continuous, contra ω− continuous
and contra ωβ−continuous.



Contra ωβ−continuity 13

(ii) If (X, τ) is locally ωβ−indiscrete, f is continuous.

(iii) If (X, τ ) is an ωβ−space and f is a closed surjection, then (Y, σ) is locally
indiscrete.

Proof: (i) and (ii) directly follows from the definitions.
(iii) Let V be open in (Y, σ). Since f is contra ωβ−continuous, f−1(V ) is ωβ−closed
in (X, τ ) and hence closed. Since f is closed and surjective, f(f−1(V )) = V is closed
in (Y, σ) and so (Y, σ) is locally indiscrete. ✷

Recall that a function f : (X, τ) → (Y, σ) is slightly ωβ−continuous [3] if
f−1(V ) is ωβ−open in (X, τ ) for each clopen sets V of (Y, σ). Every contra
ωβ−continuous is slightly ωβ−continuous but the converse is not true as we can
see in Example 2.8.

Proposition 2.13. Let (Y, σ) be locally indiscrete. A function f : (X, τ)→ (Y, σ)
is contra ωβ−continuous if and only if f is slightly ωβ−continuous.

Definition 2.14. A function f : (X, τ)→ (Y, σ) is said to be weakly ωβ− contin-
uous if for each x ∈ X and each open set V in (Y, σ) containing f(x) there exists
an ωβ−open set U in (X, τ ) containing x such that f(U) ⊆ Cl(V ).

Proposition 2.15. If a function f(X, τ)→ (Y, σ) is contra ωβ−continuous, then
f is weakly ωβ−continuous.

Proof: The proof follows by Theorem 4.1 of [13]. ✷

Definition 2.16. A filter base ∆ is said to ωβ−converge (resp. c−converge [9])
to a point x ∈ X if for any ωβ−open (resp. closed) set U in (X, τ) containing x,
there exists G ∈ ∆ such that G ⊆ U .

Theorem 2.17. Let a function f : (X, τ ) → (Y, σ) be contra ωβ−continuous.
Then for each point x ∈ X and each filter base ∆ in (X, τ ) ωβ−converging to x,
the filter base f(∆) is c−convergent to f(x).

Proof: Let x ∈ X and ∆ be any filter base in X ωβ−converging to x. Since
f is contra ωβ−continuous, then by Theorem 2.5 for any closed set V in (Y, σ)
containing f(x), there exists an ωβ−open set U in (X, τ ) containing x such that
f(U) ⊆ V . Since ∆ ωβ−converges to x, there exists G ∈ ∆ such that G ⊆ U . This
means that f(G) ⊆ V and therefore the filter base f(∆) is c−convergent to f(x).

✷

Recall that Aljarrah and Noorani [1] introduced the notion of the ωβ−frontier
of A, denoted by ωβFr(A), as ωβFr(A) = ωβCl(A) − ωβInt(A), equivalently
ωβFr(A) = ωβCl(A) ∩ ωβCl(X −A).

Theorem 2.18. The set of all points x ∈ X at which f : (X, τ ) → (Y, σ) is
not contra ωβ−continuous is identical with the union of all the ωβ−frontier of the
inverse images of closed sets of Y containing f(x).
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Proof: The proof follows by Theorem 6.6 of [13] ✷

Recall that for a function f : (X, τ )→ (Y, σ), the subset {(x, f(x)) : x ∈ X} ⊆
X × Y is called the graph of f and is denoted by G(f).

Proposition 2.19. Let f : (X, τ ) → (Y, σ) be a function and g : (X, τ ) → (X ×
Y, τ × σ) the graph function of f , defined by g(x) = (x, f(x)) for every x ∈ X. If
g is contra ωβ−continuous, then f is contra ωβ−continuous.

Proof: Let U be an open set in (Y, σ), then X×U is an open set in (X×Y, τ×σ).
Since g is contra ωβ−continuous, g−1(X × U) = f−1(U) is ωβ−closed in (X, τ).
This shows that f is contra ωβ−continuous. ✷

A subset A of a topological space (X, τ ) is said to be ωβ−dense in X if
ωβCl(A) = X .

Theorem 2.20. Let f : (X, τ )→ (Y, σ) be contra ωβ−continuous and g : (X, τ)→
(Y, σ) be contra ω−continuous. If (Y, σ) is Urysohn, then the following properties
hold:

(i) The set E = {x ∈ X : f(x) = g(x)} is ωβ−closed in (X, τ).

(ii) f = g on (X, τ) whenever f = g on an ωβ−dense set A ⊆ X.

Proof: (i) Let x ∈ X − E. Then f(x) 6= g(x). By assumption on the space
(Y, σ), there exist open sets V and W in (Y, σ) such that f(x) ∈ V , g(x) ∈ W and
Cl(V )∩Cl(W ) = φ. Since f is contra ωβ−continuous, f−1(Cl(V )) is an ωβ−open
set in (X, τ ) containing x. Since g is contra ω−continuous, g−1(Cl(W )) is an
ω−open set in (X, τ ) containing x. Let U = f−1(Cl(V )) and G = g−1(Cl(W )) and
set A = U ∩G. Then by Proposition 2.4, A is an ωβ−open set in (X, τ ) containing
x. Now, f(A)∩ g(A) = f(U ∩G)∩ g(U ∩G) ⊆ f(U)∩ g(G) ⊆ Cl(V )∩Cl(W ) = φ.
This implies that A∩E = φ, where A is ωβ−open in (X, τ). Hence x /∈ ωβCl(E).
So E is ωβC(X, τ).
(ii) Let E = {x ∈ X : f(x) = g(x)}. Since f is contra ωβ−continuous, g is contra
ω−continuous and (Y, σ) is Urysohn, by the previous part, E is ωβ−closed in (X, τ).
By assumption, we have f = g on A, where A is ωβ−dense in (X, τ ). Since A ⊆ E,
A is ωβ−dense and E ∈ ωβ−closed in (X, τ ), so X = ωβCl(A) ⊆ ωβCl(E) = E.
Hence f = g on (X, τ). ✷

Definition 2.21. The graph G(f) of a function f : (X, τ) → (Y, σ) is said to be
contra ωβ−closed if for each (x, y) ∈ (X × Y ) − G(f), there exist an ωβ−open
set U in (X, τ) containing x and a closed set V in (Y, σ) containing y such that
(U × V ) ∩G(f) = φ.

This definition is a particular case of Definition 5.1 of [13].

Lemma 2.22. The graph G(f) of a function f : (X, τ )→ (Y, σ) is contra ωβ−closed
if and only if for each (x, y) ∈ (X × Y ) − G(f), there exist an ωβ−open set U in
(X, τ ) containing x and a closed set V in (Y, σ) containing y such that f(U)∩V = φ.
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Proposition 2.23. If f : (X, τ) → (Y, σ) is contra ωβ−continuous and (Y, σ) is
Uryshon, then G(f) is contra ωβ−closed in (X × Y, τ × σ).

Proof: The proof follows by Theorem 5.1 of [13]. ✷

Lemma 2.24. [8] Let G(f) be the graph of a function f : X → Y , for any subset
A ⊆ X and B ⊆ Y , we have f(A) ∩B = φ if and only if (A×B) ∩G(f) = φ.

Theorem 2.25. Let f : (X, τ)→ (Y, σ) be ωβ−continuous. If one of the following
conditions holds, then G(f) is contra ωβ−closed in (X × Y, τ × σ).

(i) (Y, σ) is T1.

(ii) (Y, σ) is T2.

Proof: (i) The proof follows by Theorem 5.2 of [13].
(ii) It follows from (i). ✷

A space (X, τ ) is said to be ωβ − T1 if for each pair of distinct points x and
y of X , there exist ωβ−open sets U and V containing x and y, respectively, such
that y /∈ U and x /∈ V .

Theorem 2.26. Let f : (X, τ )→ (Y, σ) have a contra ωβ−closed graph. Then the
space (X, τ ) is ωβ − T1 if f is injective.

Proof: Let x and y be any two distinct points in (X, τ). Then, we have (x, f(y)) ∈
(X × Y ) − G(f). So, there exist an ωβ−open set U in (X, τ) containing x and a
closed set F in (Y, σ) containing f(y) such that f(U)∩F = φ, hence U∩f−1(F ) = φ.
Therefore, we have y /∈ U . This implies that (X, τ) is ωβ − T1. ✷

The composition of two contra ωβ−continuous functions need not be contra
ωβ−continuous.

Example 2.27. Let X = R with the topology τ = τ coc and let Y = {1, 2} with
the topologies σ = {φ, Y, {1}} and ρ = {φ, Y, {2}}. Let f : (X, τ ) → (Y, σ) be the
function defined by

f(x) =

{

2, x ∈ R−Q

1, x ∈ Q

and g : (Y, σ)→ (Y, ρ) be the identity function. Then f, g are contra ωβ− contin-
uous, but g ◦ f is not contra ωβ−continuous.

A function f : (X, τ) → (Y, σ) is said to be ωβ−irresolute [1] if the inverse
image of each ωβ−open set in (Y, σ) is ωβ−open in (X, τ).

Theorem 2.28. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, ρ) be functions, then
the following properties hold:
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(i) g ◦ f is ωβ−continuous, if f is contra ωβ− continuous and g is contra- con-
tinuous.

(ii) g ◦ f is contra ωβ−continuous, if f is contra ωβ−continuous and g is contin-
uous.

(iii) g ◦ f is contra ωβ− continuous, if f is ωβ−irresolute and g is contra ωβ−
continuous.

Recall that a function f : (X, τ) → (Y, σ) is said to be ωβ− open [1] if the
image of each ωβ−open set in (X, τ) is ωβ−open (Y, σ).

Theorem 2.29. Let f : (X, τ)→ (Y, σ) be a surjective ωβ−irresolute and ωβ−open
function and g : (Y, σ) → (Z, ρ) be any function. Then g ◦ f : (X, τ ) → (Z, ρ) is
contra ωβ−continuous if and only if g is contra ωβ−continuous.

Proof: Suppose g◦f : (X, τ )→ (Z, ρ) is contra ωβ−continuous. Let F be a closed
set in (Z, ρ). Then f−1(g−1(F )) = (g ◦ f)−1(F ) is ωβ−open in (X, τ ). Since f is
ωβ−open and surjective, g−1(F )) = f(f−1(g−1(F ))) is ωβ−open in (Y, σ) and we
obtain that g is contra ωβ−continuous.
For the converse, suppose g is contra ωβ−continuous. Let V be a closed set in
(Z, ρ). Then g−1(V ) is ωβ−open in (Y, σ). Since f is ωβ−irresolute, f−1(g−1(V )) =
(g ◦ f)−1(V ) is ωβ−open in (X, τ) and so g◦f is a contra ωβ−continuous function.

✷

Proposition 2.30. [2] Let (Y, τY ) be a subspace of (X, τ ), A ⊆ Y and Y be a
β−open set in (X, τ). Then A is ωβ−open in (X, τ ) if and only if A is ωβ−open
in (Y, τY ).

Theorem 2.31. Let X = A ∪ B be a topological space with a topology τ and
Y be a topological space with a topology σ. Let f : (A, τA) → (Y, σ) and g :
(B, τB) → (Y, σ) be contra ωβ−continuous functions such that f(x) = g(x) for
every x ∈ A∩B. Suppose A and B are β−open sets in (X, τ ). Then the composition
h : (X, τ )→ (Y, σ) is contra ωβ−continuous.

Proof: Let V be any closed set in (Y, σ). So h−1(V ) = f−1(V )∪g−1(V ). Since f, g
are contra ωβ−continuous, f−1(V ) is ωβ−open in (A, τA) and g−1(V ) is ωβ−open
in (B, τB). Since A and B are β−open in (X, τ ), by Proposition 2.30 f−1(V ) and
g−1(V ) are ωβ−open in (X, τ ). So h−1(V ) is ωβ−open in (X, τ ). ✷

Definition 2.32. A function f : (X, τ ) → (Y, σ) is said to be perfectly ωβ−
continuous if the inverse of every open set in (Y, σ) is ωβ−clopen in (X, τ).

Clearly, every perfectly ωβ−continuous function is both ωβ−continuous and
contra ωβ−continuous, but the converse need not be true as in Example 2.9 f is
contra ωβ−continuous but not perfectly ωβ−continuous and in Example 2.8 f is
ωβ−continuous but not perfectly ωβ−continuous. Although ωβ−continuity and
contra ωβ−continuity are independent notions, every ωβ−continuous and contra
ωβ−continuous function is perfectly ωβ−continuous.
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Theorem 2.33. For a function f : (X, τ) → (Y, σ), the following conditions are
equivalent:

(i) f is perfectly ωβ−continuous.

(ii) f is ωβ−continuous and contra ωβ−continuous.

For functions defined above, we obtain the following diagram

Contra-continuous → contra ω−continuous

↓↓

Contra β−continuous → contra ωβ−continuous ← perfect ωβ−continuous

↓ ↓

Weakly ωβ−continuous ← ωβ−continuous

↓

Slightly ωβ−continuous

3. Application

In this section, we will apply the concepts in order to prove the invariance of
certain properties of the domain and the range under the actions of the above
functions.
A space (X, τ ) is said to be ωβ−connected [1] provided that X is not the union of
two disjoint nonempty ωβ−open sets.

Proposition 3.1. Let f : (X, τ)→ (Y, σ) be surjective and contra ωβ−continuous.
If (X, τ ) is ωβ−connected, then (Y, σ) is connected and is not a discrete space.

Proof: The proof follows by Theorem 6.5 of [13]. ✷

Proposition 3.2. If every contra ωβ−continuous function from a space (X, τ)
into any T◦−space (Y, σ) is constant, then (X, τ ) is ωβ−connected

Proof: Suppose that (X, τ ) is not ωβ−connected and every contra ωβ−continuous
function from (X, τ ) into any T◦−space (Y, σ) is constant. Since (X, τ) is not
ωβ−connected, there exists a proper nonempty ωβ−clopen subset A of (X, τ). Let
Y = {a, b} and σ = {φ, Y, {a}, {b}} be a topology for Y . Let f : (X, τ ) → (Y, σ)
be a function such that f(A) = {a} and f(X − A) = {b}. Then f is not constant
and contra ωβ−continuous such that (Y, σ) is T◦. This is a contradiction. Hence
(X, τ ) must be ωβ−connected. ✷

A space (X, τ) is called hyperconnected [18] if the closure of every open set is
the entire set X . It is well known that every hyperconnected space is connected
but not conversely.
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Remark 3.3. A contra ωβ−continuous surjection do not necessarily preserve hy-
perconnectedness. Let X={1, 2, 3}, τ={φ,X, {1}} and σ={φ,X, {2}, {3}, {2, 3}}.
The identity f : (X, τ)→ (X, σ) is contra ωβ−continuous and (X, τ) is hypercon-
nected, but (X, σ) is not hyperconnected.

Definition 3.4. A space (X, τ) is said to be

(i) ωβ−T2 [2] if for each two distinct points x, y ∈ X, there exist ωβ− open sets
U and V in (X, τ) such that x ∈ U, y ∈ V and U ∩ V = φ.

(ii) Weakly Hausdroff [16] if each element of X is an intersection of regular closed
sets.

(iii) Ultra Hausdorff [17] if every two distinct points of X can be separated by
disjoint clopen sets.

(iv) Ultra normal [17] (resp. ωβ−normal [2]) if each pair of non-empty disjoint
closed sets can be separated by disjoint clopen (resp. ωβ−open) sets.

Theorem 3.5. Let f : (X, τ )→ (Y, σ) be a contra ωβ−continuous injection, then
the following properties holds:

(i) (X, τ) is ωβ − T1 if (Y, σ) is weakly Hausdorff.

(ii) (X, τ) is ωβ − T2 if (Y, σ) is a Urysohn space or ultra Hausdorff.

(iii) (X, τ) is ωβ−normal if (Y, σ) is ultra normal and f is closed.

Proof: (i) Suppose that (Y, σ) is weakly Hausdorff. For any distinct points x and
y in (X, τ ), there exist regular closed sets A, B in (Y, σ) such that f(x) ∈ A,
f(y) /∈ A, f(x) /∈ B and f(y) ∈ B. Since f is contra ωβ−continuous, f−1(A) and
f−1(B) are ωβ−open sets in (X, τ ) such that x ∈ f−1(A), y /∈ f−1(A), x /∈ f−1(B)
and y ∈ f−1(B). This shows that (X, τ) is ωβ − T1.
(ii) The proof follows by Corollary 6.1 and Theorem 6.2 of [13].
(iii) Let F1 and F2 be disjoint closed subsets of (X, τ). Since f is closed and in-
jective, f(F1) and f(F2) are disjoint closed subsets of (Y, σ). Since (Y, σ) is ultra
normal, f(F1) and f(F2) are separated by disjoint clopen set V1 and V2, respec-
tively. Since f is contra ωβ−continuous, Fi ⊆ f−1(Vi) and f−1(Vi) is ωβ−open in
(X, τ ) for i = 1, 2 and f−1(V1) ∩ f−1(V2) = φ. Thus (X, τ ) is ωβ−normal. ✷

4. Covering properties

In this section we study the properties of compact and strongly S−closed spaces
under the contra ωβ−continuous functions.

Definition 4.1. A space (X, τ) is said to be

(i) Strongly S−closed [7] if every closed cover of X has a finite subcover.

(ii) ωβ−compact [3] if every ωβ−open cover of X has a finite subcover.
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(iii) Mildly ωβ−compact if every ωβ−clopen cover of X has a finite subcover.

A subset A of a space X is said to be ωβ−compact relative to X if for any
cover {Vα : α ∈ ∆} of A by ωβ−open sets of X , there exists a finite subset ∆◦ of
∆ such that A ⊆ ∪{Vα : α ∈ ∆◦}.

Theorem 4.2. Let f : (X, τ )→ (Y, σ) be a contra ωβ−continuous surjection.

(i) If A is ωβ−compact relative to (X, τ), then f(A) is strongly S−closed in
(Y, σ).

(ii) If (X, τ) is strongly S−closed, then (Y, σ) is compact.

Proof: (i) Let {Vα : α ∈ ∆} be any cover of f(A) by closed sets of the subspace
f(A). For α ∈ ∆, there exists a closed set Aα of (Y, σ) such that Vα = Aα ∩ f(A).
For each x ∈ A, there exists αx ∈ ∆ such that f(x) ∈ Aαx

. Now by Theorem 2.5,
there exists an ωβ−open set Ux in (X, τ) containing x such that f(Ux) ⊆ Aαx

.
Since the family {Ux : x ∈ A} is a cover of A by ωβ−open sets of (X, τ), there
exists a finite subset A◦ of A such that A ⊆ ∪{Ux : x ∈ A◦}. Therefore, we obtain
f(A) ⊆ ∪{f(Ux) : x ∈ A◦} ⊆ ∪{Aαx

: x ∈ A◦}. Thus f(A) = ∪{Vαx
: x ∈ A◦} and

hence f(A) is strongly S−closed.
(ii) Let {Vα : α ∈ ∆} be any open cover of Y . Since f is contra ωβ−continuous,
{f−1(Vα) : α ∈ ∆} is an ωβ−closed cover of the strongly S−closed space (X, τ).
We have X = ∪{f−1(Vα) : α ∈ ∆◦} for some finite ∆◦ of ∆. Since f is surjective,
Y = ∪{Vα : α ∈ ∆◦}. This shows that (Y, σ) is compact. ✷

A subset A of X is said to be ωβ−regular closed if A = ωβCl(ωβInt(A)).

Definition 4.3. An open cover {Uα : α ∈ ∆} of a topological space (X, τ ) is called
an ωβ−regular cover if for every α ∈ ∆, there exists a non-empty ωβ−regular
closed subset Cα of (X, τ) such that Cα ⊆ Uα and X = ∪

α∈∆

ωβInt(Cα).

Definition 4.4. A topological space (X, τ) is said to be weakly ωβ−regular-Lindelof
if every ωβ−regular cover {Uα : α ∈ ∆} of X has a countable subset {αn : n ∈
N} ⊆ ∆ such that X = ωβCl( ∪

n∈N

Uαn
).

Proposition 4.5. The image of a weakly ωβ−regular-Lindelof space under a contra
ωβ−continuous and continuous function is Lindelof.

Proof: Let f : (X, τ)→ (Y, σ) be a contra ωβ−continuous and continuous function
from a weakly ωβ−regular-Lindelof space (X, τ) into (Y, σ). Let U = {Uα : α ∈ ∆}
be an open cover of f(X). For each x ∈ X , let Uαx

∈ U such that f(x) ∈
Uαx

. Since f is contra ωβ−continuous and continuous, it follows that f−1(Uαx
) is

ωβ−clopen in (X, τ) and hence {f−1(Uαx
) : x ∈ X} is an ωβ−regular cover of the

weakly ωβ−regular-Lindelof space (X, τ ). Thus there exists a countable subfamily
{xn : n ∈ N} such that X = ωβCl( ∪

n∈N

f−1(Uαxn

)) = ωβCl(f−1( ∪
n∈N

Uαxn

)).
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Since ∪
n∈N

Uαxn

is open in (Y, σ) and f is contra ωβ−continuous, f−1( ∪
n∈N

Uαxn

)

is ωβ−closed in (X, τ). Thus ωβCl( ∪
n∈N

f−1(Uαxn

)) = f−1( ∪
n∈N

Uαxn

). So X =

f−1( ∪
n∈N

Uαxn

) and hence f(X) = f(f−1( ∪
n∈N

Uαxn

)) ⊆ ∪
n∈N

Uαxn

. This implies

that f(X) is Lindelof. ✷

Theorem 4.6. Let f : (X, τ ) → (Y, σ) be a surjection. If one of the following
conditions holds, then (Y, σ) is strongly S−closed.

(i) f is contra ωβ−continuous and (X, τ ) is ωβ−compact.

(ii) f is perfectly ωβ−continuous and (X, τ ) is mildly ωβ−compact.

Proof: (i) The proof follows by Theorem 6.4 of [13].
(ii) Let {Vi : i ∈ ∆} be a closed cover of Y . Since f is perfectly ωβ−continuous,
{f−1(Vi) : i ∈ ∆} is an ωβ−clopen cover of X . Clearly, there exists a finite ∆◦ ⊆ ∆
such that X = ∪

i∈∆◦

f−1(Vi) as (X, τ ) is mildly ωβ−compact. Hence Y = ∪
i∈∆◦

Vi.

This shows that (Y, σ) is strongly S−closed. ✷

5. Strongly contra ωβ−closed graphs

Definition 5.1. The graph G(f) of a function f : (X, τ) → (Y, σ) is said to
be strongly contra ωβ−closed if for each (x, y) ∈ (X × Y ) − G(f), there exist
an ωβ−open set U in (X, τ) containing x and a regular closed set V in (Y, σ)
containing y such that (U × V ) ∩G(f) = φ.

Lemma 5.2. For a graph G(f) of a function f : (X, τ ) → (Y, σ), the following
properties are equivalent

(i) G(f) is strongly contra ωβ−closed.

(ii) For each point (x, y) ∈ (X × Y ) − G(f), there exist an ωβ−open set U in
(X, τ) containing x and a regular closed set V in (Y, σ) containing y such
that f(U) ∩ V = φ.

Theorem 5.3. Let f : (X, τ )→ (Y, σ) be a function such that (Y, σ) is a Uryshon
space. Then G(f) is strongly contra ωβ−closed in (X × Y, τ × σ) if one of the
following properties hold:

(i) f is weakly ωβ−continuous.

(ii) f is contra ωβ−continuous.

Proof: We will prove (i), since the prove of (ii) comes from (i). Suppose that
(x, y) ∈ (X × Y ) − G(f). Then y 6= f(x). Since (Y, σ) is Uryshon, there exist
open sets V and W in (Y, σ) containing y and f(x), respectively, such that Cl(V )∩
Cl(W ) = φ. Since f is weakly ωβ−continuous, by Definition 2.14, there exists an
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ωβ−open set U in (X, τ ) containing x such that f(U) ⊆ Cl(W ). This shows that
f(U) ∩ Cl(V ) = f(U) ∩ Cl(Int(V )) = φ, where Cl(Int(V )) is regular closed in
(Y, σ) and hence by Lemma 5.2, G(f) is strongly contra ωβ−closed. ✷

Theorem 5.4. If the collection of all ωβ−open sets form a topological space in
(X, τ ) and f : (X, τ ) → (Y, σ) has a contra ωβ−closed graph, then the inverse
image of a strongly S−closed subspace K of (Y, σ) is ωβ−closed in (X, τ).

Proof: Assume that K is a strongly S−closed subspace of (Y, σ) and x /∈ f−1(K).
For each k ∈ K, (x, k) /∈ G(f). By Lemma 5.2 there exist an ωβ−open set
Uk in (X, τ) containing x and a closed set Vk in (Y, σ) containing k such that
f(Uk) ∩ Vk = φ; hence f(Uk) ∩ (Vk ∩K) = φ, where Vk ∩K is closed in (K,σK).
Since K is a strongly S−closed subspace of (Y, σ), then there exists a finite subset
K◦ ⊆ K such that K ⊆ ∪{Vk : k ∈ K◦}. Set U = ∩{Uk : k ∈ K◦}, then U is an
ωβ−open set in (X, τ) containing x and f(U)∩K ⊆ f(Uk)∩ [∪(Vk : k ∈ K◦)] = φ.
Therefore U ∩f−1(K) = φ and hence x /∈ ωβCl(f−1(K)). This shows that f−1(K)
is ωβ−closed in (X, τ). ✷

Theorem 5.5. Let (Y, σ) be a strongly S−closed space. If the collection of all
ωβ−open sets form a topological space in (X, τ) and a function f : (X, τ)→ (Y, σ)
has the contra ωβ−closed graph, then f is contra ωβ−continuous.

Proof: Suppose that (Y, σ) is strongly S−closed and G(f) is contra ωβ−closed.
By Theorem 3.5 of [7] we can see that the open set in (Y, σ) is strongly S−closed
and by Theorem 5.4 f−1(U) is ωβ−closed in (X, τ) for every open U in (Y, σ).
Therefore, f is contra ωβ−continuous. ✷
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