

(3s.) **v. 32** 1 (2014): **89–97**. ISSN-00378712 in press doi:10.5269/bspm.v32i1.19401

Note on generalized topological spaces with hereditary classes

V. Renukadevi[†] and P. Vimaladevi[‡]

ABSTRACT: In this paper, we extend the study of $\Psi_{\mathcal{H}}$ operator introduced and studied in [5] and rectify the errors in the paper. Moreover, characterizations of μ -codense and strongly μ -codense hereditary classes in generalized topological spaces are also given.

Key Words: generalized topology, μ -closed and μ -open sets, hereditary class, μr -open sets, μ -codense and strongly μ -codense.

Contents

1 Introduction

2 Operator $\Psi_{\mathcal{H}}$

1. Introduction

Let X be a nonempty set. A family μ of subsets of X is called a *generalized* topology (GT) [1] if $\emptyset \in \mu$ and the arbitrary union of members of μ is again in μ . The largest μ -open set contained in a subset A of X is denoted by $i_{\mu}(A)$ [1] and is called the μ -interior of A. The smallest μ -closed set containing A is called the μ -closure of A and is denoted by $c_{\mu}(A)$ [1]. Throughout the paper, by a space we always mean a generalized space (X, μ) . $\sigma(\mu) = \{A \subset X \mid A \subset c_{\mu}i_{\mu}(A)\}$ is the family of all μ -semiopen sets [2]. A subset A of X is said to be $\sigma(\mu)$ -closed if its complement is μ -semiopen. A GT μ is said to be a quasi-topology [4] on X if $M, N \in \mu$ implies $M \cap N \in \mu$.

A hereditary class \mathcal{H} of X is a nonempty collection of subset of X such that $A \subset B, B \in \mathcal{H}$ implies $A \in \mathcal{H}$ [3]. A hereditary class \mathcal{H} of X is an *ideal* [6] if $A \cup B \in \mathcal{H}$ whenever $A \in \mathcal{H}$ and $B \in \mathcal{H}$. With respect to the generalized topology μ of all μ -open sets and a hereditary class \mathcal{H} , for each subset A of X, a subset $A^*(\mathcal{H})$ or simply A^* of X is defined by $A^* = \{x \in X \mid M \cap A \notin \mathcal{H} \text{ for every } M \in \mu \text{ containing } x\}$ [3]. \mathcal{H} is said to be μ -codense if $\mu \cap \mathcal{H} = \{\emptyset\}$ [3] and is said to be strongly μ -codense hereditary class is μ -codense but the converse is not true [3]. A subset A of X is said to be μ -rare [3] (resp. μr -open) if $i_{\mu}c_{\mu}(A) = \emptyset$ (resp. $A = i_{\mu}c_{\mu}(A)$). If \mathcal{H}_r is the collection of all μ -rare sets in (X, μ) , then \mathcal{H}_r is a hereditary class and for this hereditary class, $A^* \subset c_{\mu}i_{\mu}c_{\mu}(A)$ for every subset A of X [3, Proposition 2.11]. If $c^*(A) = A \cup A^*$ for every subset A of X, with respect to μ and a hereditary class \mathcal{H} of subsets of X, then $c^* \in \Gamma$ and $\mu^* = \{A \subset X \mid c^*(X - A) = X - A\}$ is a generalized topology finer than μ [3].

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

89 90

²⁰⁰⁰ Mathematics Subject Classification: 54 A 05, 54 A 10

The following lemmas will be useful in the sequel and we use some of the results without mentioning it, when the context is clear.

Lemma 1.1. [3] Let (X, μ) be a space with a hereditary class \mathcal{H} . If A and B are any two subsets of X, then the following hold.

(a) If $A \in \mathcal{H}$, then $A^* = X - \mathcal{M}_{\mu}$ where $\mathcal{M}_{\mu} = \bigcup \{M \mid M \in \mu\}$.

(b) If $A \subset A^*$, then $c_{\mu}(A) = A^* = c^*(A) = c^*(A^*)$.

(c) \mathcal{H} is μ -codense if and only if $X = X^*$.

(d) A^* is μ -closed for every subset A of X.

(e) If F is μ -closed, then $F^* \subset F$.

Lemma 1.2. [7, Theorem 2.4] If (X, μ) is a quasi-topological space and \mathfrak{H} is a hereditary class of subsets of X, then the following statements are equivalent. (a) \mathfrak{H} is μ -codense. (b) \mathfrak{H} is strongly μ -codense.

Lemma 1.3. [7, Theorem 2.5] If (X, μ) is a space and \mathcal{H} is a hereditary class of subsets of X, then the following statements are equivalent.

(a) H is strongly μ -codense.

(b) $M \subset M^*$ for every $M \in \mu$.

(c) $S \subset S^*$ for every $S \in \sigma(\mu)$.

(d) $c_{\mu}(M) = M^{\star}$ for every $M \in \mu$.

(e) $c_{\mu}(S) = S^{\star}$ for every $S \in \sigma(\mu)$.

2. Operator $\Psi_{\mathcal{H}}$

If \mathcal{H} is a hereditary class on a space (X, μ) , an operator $\Psi_{\mathcal{H}} : \wp(X) \to \wp(X)$ is defined as follows: for every $A \in \wp(X), \Psi_{\mathcal{H}}(A) = \{x \in X \mid \text{there exists a} M \in \mu \text{ such that } x \in M \text{ and } M - A \in \mathcal{H}\}$. The following Theorem 2.1 gives a characterization of the function $\Psi_{\mathcal{H}}$ which is γ^*_{μ} in [5]. Throughout the paper, we use the notation $\Psi_{\mathcal{H}}$.

Theorem 2.1. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then $\Psi_{\mathcal{H}}(A) = X - (X - A)^*$.

Proof: Suppose $x \in X - (X - A)^*$. Then $x \notin (X - A)^*$ and so there exists $M \in \mu$ containing x such that $M \cap (X - A) \in \mathcal{H}$ which implies that $M - A \in \mathcal{H}$. Therefore, $X - (X - A)^* \subset \{x \in X \mid \text{there exists } M \in \mu(x) \text{ such that } M - A \in \mathcal{H}\}$. Conversely, assume that $y \in \Psi_{\mathcal{H}}(A)$. Then there exists $M \in \mu$ containing x such that $M - A \in \mathcal{H}$. Since $M - A \in \mathcal{H}, M \cap (X - A) \in \mathcal{H}$ which implies that $y \notin (X - A)^*$. Therefore, $y \in X - (X - A)^*$. Thus, $\Psi_{\mathcal{H}}(A) = X - (X - A)^*$. \Box

The following Theorem 2.3 gives the properties of the operator $\Psi_{\mathcal{H}}$, where (a) confirms that the range of $\Psi_{\mathcal{H}}$ is a subfamily of μ and (e) is a generalization of Theorem 3.3 of [5]. In Example 3.5 of [5], it is established that the other direction of Theorem 2.3(f) is not true, but \mathcal{H} stated in the above example is not a hereditary class and μ is not even a generalized topology. The following Example 2.2 shows that the inequality will not be an equality in Theorem 2.3(f).

Example 2.2. Consider the generalized topological space (X, μ) with a hereditary class \mathcal{H} where $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{b\}, \{c\}\}.$ If $A = \{a, d\},$ then $\Psi_{\mathcal{H}}(A) = X - \{b, c\}^{\star} = X - \{c, d\} = \{a, b\}$ and $\Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A)) = \Psi_{\mathcal{H}}(\{a,b\}) = X - \{c,d\}^{\star} = X - \{d\} = \{a,b,c\}$ and so $\Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A)) \neq \Psi_{\mathcal{H}}(A).$

Theorem 2.3. Let (X, μ) be a space with a hereditary class \mathcal{H} and $A, B \subset X$. Then the following hold.

- (a) $\Psi_{\mathcal{H}}(A)$ is μ -open [5, Theorem 3.1(ii)].
- (b) $A^* = X \Psi_{\mathcal{H}}(X A)$ [5, Theorem 3.1(iii)].
- (c) If $A \subset B$, then $\Psi_{\mathcal{H}}(A) \subset \Psi_{\mathcal{H}}(B)$ [5, Theorem 3.1(i)].
- (d) $\Psi_{\mathcal{H}}(A \cap B) \subset \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B).$
- (e) If $U \in \mu^*$, then $U \subset \Psi_{\mathcal{H}}(U)$.
- (f) $\Psi_{\mathcal{H}}(A) \subset \Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A))$ [5, Theorem 3.4(i)].
- (g) $\Psi_{\mathcal{H}}(A) = \Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A))$ if and only if $(X A)^{\star} = ((X A)^{\star})^{\star}$.
- (h) $A \cap \Psi_{\mathcal{H}}(A) = i_{\mu}^{\star}(A).$ (i) If $H \in \mathcal{H}$, then $(A \cup H)^{\star} = A^{\star}$ and hence $\Psi_{\mathcal{H}}(A H) = \Psi_{\mathcal{H}}(A).$
- (j) $\Psi_{\mathcal{H}}(\emptyset) = \mathcal{M}_{\mu} X^{\star}$.

Proof: (d) The proof follows from (c).

(e) If $U \in \mu^*$, then X - U is μ^* -closed. Therefore, $(X - U)^* \subset X - U$ which implies that $X - (X - U) \subset X - (X - U)^*$ and so $U \subset \Psi_{\mathcal{H}}(U)$. (g) Suppose that $(X - A)^* = ((X - A)^*)^*$. Then $\Psi_{\mathcal{H}}(A) = X - (X - A)^*$ implies that $\Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A)) = X - (X - \Psi_{\mathcal{H}}(A))^* = X - (X - (X - (X - A)^*))^* = X - (X - (X - A)^*)^*$ $((X-A)^{\star})^{\star} = X - (X-A)^{\star} = \Psi_{\mathcal{H}}(A)$. Hence $\Psi_{\mathcal{H}}(A) = \Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A))$. Conversely, $\Psi_{\mathcal{H}}(A) = \Psi_{\mathcal{H}}(\Psi_{\mathcal{H}}(A))$ implies that $X - (X - A)^* = X - (X - \Psi_{\mathcal{H}}(A))^* = X - (X - \Psi_{\mathcal{H}}(A))^*$ $(X - (X - (X - A)^*))^* = X - ((X - A)^*)^*$. Therefore, $(X - A)^* = ((X - A)^*)^*$. (h) Let $x \in A \cap \Psi_{\mathcal{H}}(A)$. Then $x \in A$ and $x \in \Psi_{\mathcal{H}}(A)$. Since $x \in \Psi_{\mathcal{H}}(A)$, there exists $M_x \in \mu$ containing x such that $M_x - A \in \mathcal{H}$. Therefore, $x \in M_x - (M_x - A) \subset A$. Since β is a basis for μ^* and $M_x - (M_x - A) \in \beta$, $x \in i^*_{\mu}(A)$, where i^*_{μ} is the interior operator in (X, μ^*) . Conversely, assume that $x \in i^*_{\mu}(A)$. Then there exists a μ -open set M_x containing x and $H \in \mathcal{H}$ such that $x \in M_x - H \subset A$. Now $M_x - H \subset A$ implies that $M_x - A \subset H$ which in turn implies that $M_x - A \in \mathcal{H}$ and so $x \in \Psi_{\mathcal{H}}(A)$. Therefore, $x \in A \cap \Psi_{\mathcal{H}}(A)$. Hence $A \cap \Psi_{\mathcal{H}}(A) = i_{\mu}^{\star}(A)$. (i) Suppose that $H \in \mathcal{H}$. Then by Lemma 1.1(a), $(A \cup H)^* = A^* \cup H^* = A^* \cup$ $(X - \mathcal{M}_{\mu}) = A^{\star}$, since $X - \mathcal{M}_{\mu}$ is the smallest μ -closed set contained in every μ -closed set. Again, $\Psi_{\mathcal{H}}(A-H) = X - (X - (A-H))^* = X - ((X-A) \cup H)^* =$ $X - (X - A)^* = \Psi_{\mathcal{H}}(A).$

(j) By Theorem 2.1, $\Psi_{\mathcal{H}}(\emptyset) = X - X^* = (\mathcal{M}_{\mu} \cup (X - \mathcal{M}_{\mu})) - X^* = (\mathcal{M}_{\mu} - X^*) \cup$ $((X - \mathcal{M}_{\mu}) - X^{\star}) = \mathcal{M}_{\mu} - X^{\star}$, since X^{\star} is μ -closed by Lemma 1.1(d) and $X - \mathcal{M}_{\mu}$ is the smallest μ -closed set contained in every μ -closed set.

Theorem 2.4 shows that $\Psi_{\mathcal{H}}$ preserves finite intersection under some additional conditions. The proof also follows from Theorem 3.4 of [8] using the fact that $(A \cup B)^* = A^* \cup B^*.$

Theorem 2.4. Let (X, μ) be a quasi-topological space and \mathcal{H} be an ideal on X. If $A, B \subset X$, then $\Psi_{\mathcal{H}}(A \cap B) = \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$.

Proof: Let $x \in \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$. Then there exist μ -open sets U and V containing x such that $U - A \in \mathcal{H}$ and $V - B \in \mathcal{H}$. If $G = U \cap V$, then G is a μ -open set containing x such that $G - A \in \mathcal{H}$ and $G - B \in \mathcal{H}$. Now $G - (A \cap B) = (G - A) \cup (G - B) \in \mathcal{H}$ and so $x \in \Psi_{\mathcal{H}}(A \cap B)$. Hence $\Psi_{\mathcal{H}}(A \cap B) = \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$. \Box

Example 2.5 below shows that the conditions quasi-topology on X and ideal on \mathcal{H} cannot be dropped in Theorem 2.4.

Example 2.5. (a) Consider the space (X, μ) where $X = \{a, b, c\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. Clearly, μ is not a quasi-topology on X. If $A = \{b\}$ and $B = \{a, c\}$, then $\Psi_{\mathcal{H}}(A) = \{a, b\}$ and $\Psi_{\mathcal{H}}(B) = \{a, c\}$ which implies $\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B) = \{a\}$. But $\Psi_{\mathcal{H}}(A \cap B) = \Psi_{\mathcal{H}}(\emptyset) = \emptyset \neq \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$. (b) Consider the space (X, μ) with a hereditary class \mathcal{H} where $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{c\}\}$. Here \mathcal{H} is not an ideal. If $A = \{b, c, d\}$ and $B = \{a, b\}$, then $\Psi_{\mathcal{H}}(A) = X$ and $\Psi_{\mathcal{H}}(B) = \{a, c\}$ and so $\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B) = \{a, c\}$. Also, $\Psi_{\mathcal{H}}(A \cap B) = \{a\} \neq \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$.

Theorem 2.6. [8, Theorem 3.3] Let (X, μ) be a space with a hereditary class \mathcal{H} . If $\sigma = \{A \subset X \mid A \subset \Psi_{\mathcal{H}}(A)\}$, then σ is a generalized topology on X and $\sigma = \mu^*$.

Proof: Let $A \in \sigma$. Then $A \subset \Psi_{\mathcal{H}}(A) = X - (X - A)^*$ which implies that $(X - A)^* \subset X - A$. Therefore, X - A is μ^* -closed and so A is μ^* -open. Therefore, $\sigma \subset \mu^*$. Conversely, $A \in \mu^*$ and $x \in A$. Then there exists $M \in \mu$ and $H \in \mathcal{H}$ such that $x \in M - H \subset A$. Now $M - H \subset A$ implies that $M - A \subset H$ which in turn implies that $M - A \in \mathcal{H}$ and so $x \in \Psi_{\mathcal{H}}(A)$. Therefore, $\mu^* \subset \sigma$. Hence $\sigma = \mu^*$. Since μ^* is a generalized topology [3], it follows that σ is a generalized topology. \Box

Corollary 2.7. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following hold.

(a) $\mathfrak{M}_{\mu} = \mathfrak{M}_{\mu^{\star}}$ [8, Corollary 3.1]. (b) If $B \subset X - \mathfrak{M}_{\mu}$, then $i^{\star}_{\mu}(B) = \emptyset$.

Theorem 2.8. Let (X, μ) be a space with a hereditary class \mathcal{H} and $A \subset X$. Then the following properties hold.

(a) $\Psi_{\mathcal{H}}(A) = \bigcup \{ U \in \mu \mid U - A \in \mathcal{H} \}$ [5, Theorem 3.2].

(b) $\Psi_{\mathcal{H}}(A) = \bigcup \{ U \in \mu \mid (U - A) \cup (A - U) \in \mathcal{H} \}, \text{ if } A \text{ is } \mu - open.$

Proof: (a) follows immediately from the definition of $\Psi_{\mathcal{H}}$.

(b) Denote $\bigcup \{U \in \mu \mid (U - A) \cup (A - U) \in \mathcal{H}\}\$ by \mathcal{A} . Since \mathcal{H} is hereditary, $\Psi_{\mathcal{H}}(A) \supset \mathcal{A}$ for every $A \subset X$. Assume $A \in \mu$ and $x \in \Psi_{\mathcal{H}}(A)$. Then there exists $M \in \mu$ such that $x \in M$ and $M - A \in \mathcal{H}$. If $U = M \cup A$, then $U \in \mu$ and $x \in U$. Now $(U - A) \cup (A - U) = (M - A) \cup \emptyset = M - A$ implies $(U - A) \cup (A - U) \in \mathcal{H}$ and so $x \in \mathcal{A}$. Therefore, $\Psi_{\mathcal{H}}(A) \subset \mathcal{A}$. Hence $\Psi_{\mathcal{H}}(A) = \mathcal{A}$. \Box

The following Theorem 2.9 characterizes μ -codense hereditary classes in quasitopological spaces.

Theorem 2.9. Let (X, μ) be a quasi-topological space with a hereditary class \mathcal{H} . Then the following conditions are equivalent.

(a) \mathcal{H} is μ -codense. (b) $\Psi_{\mathcal{H}}(\emptyset) = \emptyset$. (c) If $A \subset X$ is μ -closed, then $\Psi_{\mathcal{H}}(A) - A = \emptyset$. (d) If $A \subset X$, then $i_{\mu}c_{\mu}(A) = \Psi_{\mathcal{H}}(i_{\mu}c_{\mu}(A))$. (e) If A is μr -open, then $A = \Psi_{\mathcal{H}}(A)$. (f) If $U \in \mu$, then $\Psi_{\mathcal{H}}(U) \subset i_{\mu}c_{\mu}(U) \subset U^{\star}$.

Proof: (a) \Rightarrow (b). $\Psi_{\mathcal{H}}(\emptyset) = \bigcup \{ U \in \mu \mid U - \emptyset = U \in \mathcal{H} \} = \emptyset$, since $\mu \cap \mathcal{H} = \{ \emptyset \}$. (b) \Rightarrow (c). Suppose $A \subset X$ is μ -closed. If $x \in \Psi_{\mathcal{H}}(A) - A$, then there exists a $U_x \in \mu$ containing x such that $U_x - A \in \mathcal{H}$. But $U_x - A \in \mu$ implies that $U_x - A \in \mu$ $\{U \mid U \in \mathcal{H}\}\$ and so $\Psi_{\mathcal{H}}(\emptyset) \neq \emptyset$, a contradiction. Therefore, $\Psi_{\mathcal{H}}(A) - A = \emptyset$. (c) \Rightarrow (d). Since $i_{\mu}c_{\mu}(A) \in \mu$ for every subset A of X, by Theorem 2.3(e), $i_{\mu}c_{\mu}(A) \subset$ $\Psi_{\mathcal{H}}(i_{\mu}c_{\mu}(A))$. By (c), $\Psi_{\mathcal{H}}(c_{\mu}(A)) \subset c_{\mu}(A)$ and so $\Psi_{\mathcal{H}}(c_{\mu}(A)) = i_{\mu}(\Psi_{\mathcal{H}}(c_{\mu}(A))) \subset i_{\mu}(A)$ $i_{\mu}c_{\mu}(A)$. By Theorem 2.3(b), $\Psi_{\mathcal{H}}(i_{\mu}c_{\mu}(A)) \subset \Psi_{\mathcal{H}}(c_{\mu}(A)) \subset i_{\mu}c_{\mu}(A)$ and so $\Psi_{\mathcal{H}}(i_{\mu}c_{\mu}(A)) = i_{\mu}c_{\mu}(A).$ (d) \Rightarrow (e). Let A be a μr -open subset of X. Then $A = i_{\mu}c_{\mu}(A)$ and so $\Psi_{\mathcal{H}}(A) =$ $\Psi_{\mathcal{H}}(i_{\mu}c_{\mu}(A)) = i_{\mu}c_{\mu}(A) = A.$ (e) \Rightarrow (a). Since \emptyset is μr -open, $\emptyset = \Psi_{\mathcal{H}}(\emptyset) = \bigcup \{U \in \mu \mid U \in \mathcal{H}\}$, by Theorem 2.8(a). Hence $\mu \cap \mathcal{H} = \{\emptyset\}.$ (c) \Rightarrow (f). If $U \in \mu$, then X - U is μ -closed and so $\Psi_{\mathcal{H}}(X - U) = X - U$ which implies that $X - (X - (X - U))^* = X - U$ so that $X - U^* = X - U$. Hence $U^{\star} = U$. Also, $c_{\mu}(U)$ is μ -closed implies that $\Psi_{\mathcal{H}}(c_{\mu}(U)) - c_{\mu}(U) = \emptyset$ which implies that $\Psi_{\mathcal{H}}(c_{\mu}(U)) \subset c_{\mu}(U)$. Therefore, $\Psi_{\mathcal{H}}(U) = i_{\mu}(\Psi_{\mathcal{H}}(U)) \subset i_{\mu}(\Psi_{\mathcal{H}}(c_{\mu}(U))) \subset$ $i_{\mu}c_{\mu}(U) \subset c_{\mu}(U) = U^{\star}$, by Lemma 1.1(b). Hence $\Psi_{\mathcal{H}}(U) \subset i_{\mu}c_{\mu}(U) \subset U^{\star}$. (f) \Rightarrow (a). Suppose $U \in \mu$. Then $U \subset \Psi_{\mathcal{H}}(U) \subset i_{\mu}c_{\mu}(U) \subset U^{\star}$ which implies that \mathcal{H} is strongly μ -codense, by Lemma 1.3 and so \mathcal{H} is μ -codense.

The following Example 2.10 shows that the condition quasi-topology on μ cannot be dropped in Theorem 2.9.

Example 2.10. Consider the space (X, μ) with hereditary class \mathcal{H} as in Example 2.2. Clearly, μ is not a quasi-topology on X and \mathcal{H} is μ -codense. If $A = \{a, d\}$, then A is μ -closed and $\Psi_{\mathcal{H}}(A) - A = \{a, b\} - \{a, d\} = \{b\} \neq \emptyset$.

A hereditary class \mathcal{H} is said to be $\star - strongly \ \mu - codense$ [5] if for $M, N \in$ $\mu, (M \cap N) \cap A \in \mathcal{H}$ and $(M \cap N) - A \in \mathcal{H}$, then $M \cap N = \emptyset$. Nothing is mentioned about the set A. In the proof of Lemma 3.9(i) of [5], A = X, in the proof of Lemma 3.9(ii) of [5], $A = \emptyset$ and in Example 3.10 of [5], A is a nonempty proper subset of X. Hence the set A in the definition of \star -strongly μ -codense hereditary class is any subset A of X. Also, in [5], it is proved that every \star -strongly μ -codense hereditary class is strongly μ -codense but the converse is not true [5, Example

3.10]. However, the converse holds if \mathcal{H} is an ideal as shown by Theorem 2.12 below. Corollary 2.14 follows from Theorem 2.12 and Theorem 3.12 of [5]. If $\mu = \{\emptyset\}$, the trivial generalized topology, in a space (X, μ) , then every hereditary class \mathcal{H} is a \star -strongly μ – codense hereditary class. In this context, we have the following Theorem 2.11.

Theorem 2.11. Let (X, μ) be a space where $\mu = \{\emptyset\}$. Then the following hold. (a) Every hereditary class is a \star -strongly μ -codense hereditary class. (b) $A^{\star} = X$ for every subset A of X. (c) $\Psi_{\mathcal{H}}(A) = \emptyset$ for every subset A of X.

Remark 2.1. If $\mu = \{\emptyset\}$, Theorem 2.11 shows that every hereditary class is \star -strongly μ -codense and $\Psi_{\mathcal{H}}(A) = \emptyset$ and so the results established in Corollary 3.11, Theorem 3.12, Corollary 3.13, Theorem 3.14, Corollary 3.15, Theorem 3.17 and Theorem 3.18 of [5] are vacuously true.

Theorem 2.12. Let (X, μ) be a space with an ideal \mathcal{H} . If \mathcal{H} is strongly μ -codense, then \mathcal{H} is \star -strongly μ -codense.

Proof: Let $M, N \in \mu$ and $A \subset X$ with $(M \cap N) - A \in \mathcal{H}$ and $(M \cap N) \cap A \in \mathcal{H}$. Now $M \cap N = ((M \cap N) - A) \cup ((M \cap N) \cap A) \in \mathcal{H}$, since \mathcal{H} is an ideal. Since \mathcal{H} is strongly μ -codense, $M \cap N = \emptyset$. Hence \mathcal{H} is \star -strongly μ -codense. \Box

Corollary 2.13. Let (X, μ) be a quasi-topological space with an ideal \mathcal{H} . If \mathcal{H} is μ -codense, then \mathcal{H} is \star -strongly μ -codense.

Corollary 2.14. Let (X, μ) be a space with an ideal \mathcal{H} . If \mathcal{H} is strongly μ -codense, then $\Psi_{\mathcal{H}}(A) \subset A^*$ for every subset A of X.

Proof: Follows from Theorem 2.12 and Theorem 3.12 of [5].

Corollary 2.15. Let (X, μ) be a space with a strongly μ -codense ideal \mathfrak{H} and $A \subset X$. If $A \in \mathfrak{H}$, then $\Psi_{\mathfrak{H}}(A) = \emptyset$.

Proof: Follows from Corollary 2.14 and Lemma 1.1(a).

The following Example 2.16 shows that the above Corollary 2.14 is not true for μ -codense ideals.

Example 2.16. Consider the space (X, μ) where $X = \{a, b, c\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. Clearly, \mathcal{H} is a μ -codense ideal. If $A = \{a, c\}$, then $A^* = \{c\}$ and $\Psi_{\mathcal{H}}(A) = \{a, c\}$ which implies that $\Psi_{\mathcal{H}}(A) \notin A^*$.

In [5], before Lemma 3.9, it is stated that in a space (X, μ) , every ideal \mathcal{H} is \star -strongly μ -codense. But this statement is not true, even if \mathcal{H} is a μ -codense ideal, as shown by the following Example 2.17.

95

Example 2.17. Consider the space (X, μ) with hereditary class \mathcal{H} where $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, c\}, \{b, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Clearly, \mathcal{H} is a μ -codense ideal. If $M = \{a, c\}$ and $N = \{b, c\}$, then $M \cap N = \{c\}$. Also, for every $A \subset X$, $(M \cap N) \cap A \in \mathcal{H}$ and $(M \cap N) - A \in \mathcal{H}$. But $M \cap N \neq \emptyset$. Hence \mathcal{H} is not \star -strongly μ -codense. Note that an ideal need not be a strongly μ -codense hereditary class.

In the rest of this section, we derive some properties of the $\Psi_{\mathcal{H}}$ -operator. The following Theorem 2.18 gives characterizations of μ -codense hereditary classes which is a generalization of Lemma 1.1(c).

Theorem 2.18. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following are equivalent.

(a) \mathcal{H} is μ -codense. (b) $\mathcal{M}_{\mu}^{\star} = X$. (c) $\Psi_{\mathcal{H}}(X - \mathcal{M}_{\mu}) = \emptyset$.

Proof: (a) \Leftrightarrow (b). Suppose $x \in X$ and $x \notin \mathfrak{M}_{\mu}^{\star}$. Then there exists $M \in \mu$ such that $x \in M$ and $M \cap \mathfrak{M}_{\mu} \in \mathcal{H}$ which implies that $M \in \mathcal{H}$ and so $M = \emptyset$, since \mathcal{H} is μ -codense. Therefore, $x \in \mathfrak{M}_{\mu}^{\star}$. Hence $\mathfrak{M}_{\mu}^{\star} = X$. Conversely, suppose $M \in \mu \cap \mathcal{H}$. If $M \neq \emptyset$, then there exists $x \in M$ and so $x \in \mathfrak{M}_{\mu}^{\star}$ which implies that $M \cap \mathfrak{M}_{\mu} = M \notin \mathcal{H}$, a contradiction. Therefore, $\mu \cap \mathcal{H} = \{\emptyset\}$. (b) \Leftrightarrow (c). $\Psi_{\mathcal{H}}(X - \mathfrak{M}_{\mu}) = X - (X - (X - \mathfrak{M}_{\mu}))^{\star} = X - \mathfrak{M}_{\mu}^{\star}$. So (b) and (c) are equivalent.

The following Example 2.19 shows that the converse of Theorem 2.9(e) is not true and Theorem 2.20 gives a partial converse.

Example 2.19. Consider the space (X, μ) where $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{b\}\}$. Clearly, \mathcal{H} is a μ -codense ideal. Here $\mathcal{H}_r = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$ so that $\mathcal{H} \subset \mathcal{H}_r$. If $A = \{a, b\}$, then $\Psi_{\mathcal{H}}(A) = X - \{c\}^* = X - \{c\} = \{a, b\}$ and so $\Psi_{\mathcal{H}}(A) = A$. But $i_{\mu}c_{\mu}(A) = i_{\mu}(X) = X \neq \{a, b\}$ and so A is not μ r-open.

Theorem 2.20. Let (X, μ) be a quasi-topological space with a hereditary class \mathcal{H} and $A \subset X$. If $\mathcal{H}_r \subset \mathcal{H}$, then $A = \Psi_{\mathcal{H}}(A)$ implies that A is μr -open.

Proof: Suppose that $A = \Psi_{\mathcal{H}}(A)$. Then A is μ -open and so $A = i_{\mu}(A) \subset i_{\mu}c_{\mu}(A)$. Let $x \in i_{\mu}c_{\mu}(A)$. Then there exists $G \in \mu$ containing x such that $G \subset c_{\mu}(A)$ which implies that $G - A \subset c_{\mu}(A) - A$. Now $i_{\mu}c_{\mu}(c_{\mu}(A) - A) \subset i_{\mu}(c_{\mu}(A) - i_{\mu}(A)) =$ $i_{\mu}(c_{\mu}(A) - A) = i_{\mu}c_{\mu}(A) - c_{\mu}(A) = \emptyset$ and so $c_{\mu}(A) - A \in \mathcal{H}_{r}$ which implies that $c_{\mu}(A) - A \in \mathcal{H}$, since $\mathcal{H}_{r} \subset \mathcal{H}$. Therefore, $G - A \in \mathcal{H}$ so that $x \in \Psi_{\mathcal{H}}(A)$. Hence $i_{\mu}c_{\mu}(A) \subset \Psi_{\mathcal{H}}(A) = A$. Thus, A is μr -open. \Box

Corollary 2.21. Let (X, μ) be a quasi-topological space with a μ -codense hereditary class \mathfrak{H} such that $\mathfrak{H}_r \subset \mathfrak{H}$. Then for every $A \subset X$, $A = \Psi_{\mathfrak{H}}(A)$ if and only if A is μr -open. **Proof:** Follows from Theorem 2.9(e) and Theorem 2.20.

The following Theorem 2.22 gives characterizations of μ -codense hereditary classes in terms of the generalized topology of semiopen sets $\sigma(\mu)$ of the generalized topology μ .

Theorem 2.22. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following are equivalent.

(a) \mathcal{H} is strongly μ -codense.

(b) If A is $\sigma(\mu)$ -closed, then $\Psi_{\mathcal{H}}(A) \subset A$.

(c) $\Psi_{\mathcal{H}}(c_{\mu}(A)) = i_{\mu}c_{\mu}(A)$ for every $A \subset X$.

(d) $\Psi_{\mathcal{H}}(A) = i_{\mu}(A)$ for every μ -closed set A.

(e) $\Psi_{\mathcal{H}}(c_{\sigma}(A)) \subset i_{\sigma}c_{\sigma}(A)$ for every subset A of X.

(f) $\Psi_{\mathcal{H}}(A) \subset i_{\sigma}(A)$ for every $\sigma(\mu)$ -closed set A.

Proof: (a) \Rightarrow (b). Suppose A is $\sigma(\mu)$ -closed. By Lemma 1.3(c), $X - A \subset (X - A)^*$. Therefore, $X - (X - A)^* \subset A$ which implies that $\Psi_{\mathcal{H}}(A) \subset A$.

(b) \Rightarrow (a). If $A \in \sigma$, then X - A is σ -closed. Therefore, by (b), $\Psi_{\mathcal{H}}(X - A) \subset X - A$ and so $A \subset A^*$. By Lemma 1.3(c), \mathcal{H} is strongly μ -codense.

(a) \Rightarrow (c). If $A \subset X$, $\Psi_{\mathcal{H}}(c_{\mu}(A)) = X - (X - c_{\mu}(A))^{\star} = X - c_{\mu}(X - c_{\mu}(A))$, by Lemma 1.3(e) and so $\Psi_{\mathcal{H}}(c_{\mu}(A)) = i_{\mu}c_{\mu}(A)$.

The equivalence of (c) and (d) is clear.

(c) \Rightarrow (b). If A is $\sigma(\mu)$ -closed, by (c), $\Psi_{\mathcal{H}}(c_{\mu}(A)) = i_{\mu}c_{\mu}(A) \subset A$. Since $\Psi_{\mathcal{H}}$ is monotonic, it follows that $\Psi_{\mathcal{H}}(A) \subset A$ which proves (b).

Clearly, (e) and (f) are equivalent. (b) \Rightarrow (f) follows from the fact that $\Psi_{\mathcal{H}}(A) \in \mu$ and (e) \Rightarrow (b) is clear.

Acknowledgments

The authors sincerely thank the referee for the valuable comments and suggestions.

References

- 1. Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2), 65 87, (1997).
- Å. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, 351 -357, (2005).
- Á. Császár, Modifications of generalized topologies via hereditary classes, Acta Math. Hungar., 115, 29 - 36, (2007).
- 4. Á. Császár, Remarks on quasi-topologies, Acta Math. Hungar., 119(1-2), 197 200, (2008).
- Y.K. Kim and W.K. Min, operations induced by hereditary classes on generalized topological spaces, Acta Math. Hungar., DOI:10.1007/s10474-012-0212-9.
- 6. K. Kuratowski, Topology I, Academic Press, New York, 1966.
- V. Renukadevi and K. Karuppayi, On modifications of generalized topologies via hereditary classes, J. Adv. Res. Pure. Math., 2(2), 14 - 20, (2010).

96

 D. Rose and J. Dickerson, Quasi topological spaces, J. Adv. Res. Pure. Math., 4(1), 9 - 18, (2012).

V. Renukadevi, P. Vimaladevi, Department of Mathematics, ANJA College, Sivakasi 626 124, TamilNadu, India. E-mail address: renu_siva2003@yahoo.com[†] E-mail address: vimalsr1333@gmail.com[‡]