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A New Characterization of PSL(2, 27)
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abstract: Let G be a group and πe(G) be the set of element orders of G. Let

k ∈ πe(G) and mk be the number of elements of order k in G. Set nse(G):={mk |k ∈

πe(G)}. In this paper, we prove if G is a group such that nse(G)=nse(PSL(2, 27)),

then G ∼=PSL(2, 27).
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. Let

G be a finite group. Denote by π(G) the set of primes p such that G contains an

element of order p. Also the set of element orders of G is denoted by πe(G). A

finite group G is called a simple Kn−group, if G is a simple group with |π(G)| = n.

Set mi=mi(G)=|{g ∈ G| the order of g is i}|. In fact, mi is the number of elements

of order i in G, and nse(G) := {mi|i ∈ πe(G)}, the set of numbers of elements with

the same order. Throughout this paper, we denote by φ the Euler totient function.

If G is a finite group, then we denote by Pq a Sylow q−subgroup of G and nq(G)

is the number of Sylow q−subgroup of G, that is, nq(G)=|Sylq(G)|. All further

unexplained notation is standard and we refer to [1], for example.

The problem of characterizing groups G by the set nse(G) was first studied by Shao

et al. [2] where the authors proved that the simple K4−group G are characterized

by the set nse(G) and the group order |G|. In [3], the authors showed that the

alternating group An for 4 ≤ n ≤ 6 are uniquely determined by only the set of

numbers of elements of the same order. Later on, it is proved in [4] that the simple

groups PSL(2, q) for q ∈ {7, 8, 11, 13} are also characterized by this set and they
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asked whether G ∼=PSL(2, q) if nse(G) = nse(PSL(2, q)), where q is a prime power.

In this paper, we give a positive answer to this question and show that the group

PSL(2, q) is characterizable by only nse(G) for q = 27. In fact the main theorem

of our paper is as follows:

Main Theorem: Let G be a group. Suppose nse(G)=nse(PSL(2, 27)). Then

G ∼=PSL(2, 27).

We note that although we apply the technique used in [4], but by that method,

we cannot characterized the group with order more than 2000. Because, they used

the GAP program and in the library of GAP, there are only the groups with order

less than 2000. In this paper, we use a new technique for the proof of our main

result and our method can work for the groups with order more than 2000.

2. Preliminary Results

In this section we present some preliminary lemmas that will be used in the

proof of the main theorem.

Lemma 2.1. [5, Theorem 9.3.1] Let G be a finite solvable group and |G| = m · n,

where m = pα1

1 ...pαr

r , (m,n) = 1. Let π = {p1, ..., pr} and hm be the number of

π−Hall subgroups of G. Then hm = q
β
1

1 ...q
β
s

s satisfies the following conditions for

all i ∈ {1, 2, ..., s}:

1. q
β
i

i ≡ 1 (mod pj), for some pj.

2. The order of some chief factor of G is divisible by q
β
i

i .

Lemma 2.2. [6] If G is a simple K3−group, then G is isomorphic to one of the

following groups: A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3,

3) or PSU(4, 2).

Lemma 2.3. [7] Let G be a simple K4-group. Then G is isomorphic to one of the

following groups:

(1) A7, A8, A9, A10.

(2) M11, M11, J2.

(3) (a) L2(r), where r is a prime and satisfies r2 − 1 = 2a.3b.vc with a ≥ 1, b ≥ 1,

c ≥ 1 and v > 3 is a prime;

(b) L2(2
m), where m satisfies 2m − 1 = u, 2m + 1 = 3tb, with m ≥ 2, u, t are

primes, t > 3, b ≥ 1;
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(c) L2(3
m), where m satisfies 3m+1 = 4t, 3m−1 = 2uc or 3m+1 = 4tb, 3m−1 =

2u, with m ≥ 2, u, t odd primes, b ≥ 1, c ≥ 1;

(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17), L4(3),

S4(4), S4(5), S4(7), S4(9), S6(2), O
+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9),

U4(3), U5(2), Sz(8), Sz(32),
3D4(2),

2F4(2)
′.

Lemma 2.4. [2] Let G be a finite group and let P ∈ Sylp(G), where p ∈ π(G).

Let G have a normal series K ✂ L ✂G. If P ≤ L and p ∤ |K|, then the following

hold:

(1) NG/K(PK/K) = NG(P )K/K;

(2) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);

(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is, np(L/K)t =

np(G) = np(L) for some positive integer t, and |NK(P )|t = |K|.

Lemma 2.5. [8] Let G be a finite group and m be a positive integer dividing |G|.

If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Lemma 2.6. [3] Let G be a group containing more than two elements. Let

k ∈ πe(G) and mk be the number of elements of order k in G. If s = sup{mk|k ∈

πe(G)} is finite, then G is finite and |G| ≤ s(s2 − 1).

Lemma 2.7. [9] Let G be a finite group and p ∈ π(G) be odd. Suppose that P is

a Sylow p−subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic and

s > 1, then the number of elements of order n is always a multiple of ps.

Lemma 2.8. [10] Let G be a finite group and M be normal subgroup of G. Then

both the Sylow p−number np(M) and the Sylow p−number np(G/M) of the quotient

G/M divide the Sylow p−number np(G) of G and moreover np(M) np(G/M) |

np(G).

Let G be a group such that nse(G)=nse(PSL(2, 27)). By Lemma 2.6, we can

assume that G is finite. Let mn be the number of elements of order n. We note

that mn= kφ(n), where k is the number of cyclic subgroups of order n in G. Also

we note that if n > 2, then φ(n) is even. If n ∈ πe(G), then by Lemma 2.5 and the

above notation we have:
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In the proof of the main theorem, we apply (∗) and the above comments.

3. Proof of the Main Theorem

Let G be a group such that nse(G)=nse(PSL(2, 27))={1, 351, 728, 2106, 4536}.

At first, we prove that π(G) ⊆ {2, 3, 7, 13}. Since 351 ∈ nse(G), it follows from

(∗) that 2 ∈ π(G) and m2 = 351. Let 2 6= p ∈ π(G), by (∗), p | (1 + mp) and

(p − 1) | mp, which implies that p ∈ {3, 7, 13}. Therefore, π(G) ⊆ {2, 3, 7,

13}. If 3, 7 and 13 ∈ π(G), then m3 = 728, m7 = 2106 and m13 = 4536, by (∗).

Suppose that 13 ∈ π(G). Because φ(132) = 156 and φ(133) = 2028, by (∗) we

can see easily that G does not contain any elements of order 132 and 133. Thus

exp(P13) = 13 and |P13| | (1 +m13) = 4537 by Lemma 2.5. Hence |P13| = 13 and

n13 = m13/φ(13) = 378 | |G|. Therefore if 13 ∈ π(G), because n13 | |G| this implies

that 3 and 7 ∈ π(G). As φ(16) = 8, φ(49) = 42 and φ(729) = 486, it is easy to

check that G does not contain any elements of order 16, 49 and 729. If 7 ∈ π(G),

then |P7| | (1 + m7) = 2107. Hence |P7| | 49. Also since 16 /∈ πe(G), we have

|P2| | 16. We know that if 13 ∈ π(G), then 3 and 7 ∈ π(G). So if we show that

π(G) could not be the sets {2} and {2, 3}, {2, 7} and {2, 3, 7}, then π(G) must

be equal to {2, 3, 7, 13}. We consider the following cases:

Case a. π(G) = {2}. We have πe(G) ⊆ {1, 2, 4, 8}} and so |πe(G)| ≤ 4, which is

a contradiction since |nse(G)|= 5. Thus this case impossible.

Case b. π(G) = {2, 3}. Since 729 6∈ πe(G), we have exp(P3) = 3, 9, 27, 81 or 243.

If exp(P3) = 3, then |P3| | (1 + m3) = 729. Hence |P3| | 3
6. Let |P3| = 3. Then

n3 = m3/φ(3) = 364 | |G| since 7 6∈ π(G), we get a contradiction. So |G| = 2m×3n

where m ≤ 4 and 2 ≤ n ≤ 6, on the other hand, 7722 ≤ |G| and so m = 4 and n = 6.

Since πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 3× 2, 3× 4, 3× 8} and the sum of all the numbers

in nse(G) is 7722, we have |G| = 11664 = 7722 + 728k1 + 2106k2 + 4536k3 where

0 ≤ k1+k2+k3 = |πe(G)|−|nse(G)|≤ 3. Therefore, 3942 = 728k1+2106k2+4536k3.

It is easy to check that this equation has no solution.

If exp(P3) = 9, then |P3| | (1 +m3 +m9) by Lemma 2.5. Since m9 ∈ {2106, 4536},

we have |P3| | 3
4. On the other hand, |P2| | 16 and 7722 ≤ |G|, a contradiction.

Similarly if exp(P3) = 27, then |P3| | 3
4, a contradiction.
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If exp(P3) = 81, |P3| | (1 + m3 + m9 + m27 + m81), so |P3| | 36. It is clear

that |G| = 11664 = 36 × 16. Since πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 3 × 2, 3 × 4,

3 × 8}
⋃

{9, 9 × 2, 9 × 4, 9 × 8}
⋃

{27, 27 × 2, 27 × 4, 27 × 8}
⋃

{81, 81 × 2,

81 × 4, 81 × 8}, we have |G| = 11664 = 7722 + 728k1 + 2106k2 + 4536k3 where

0 ≤ k1 + k2 + k3 = |πe(G)| − |nse(G)| ≤ 15. It is easy to check that this equation

has no solution.

If exp(P3) = 243, then |P3| = 3n where n ≥ 5. If n = 5 since m243 ∈ {2106, 4536},

we have n3 = m243/φ(243) = 13 or 28. As the group P3 is cyclic of order 243, it

has two elements of order 3. Since every element of order 3 lies in one or more of

Sylow 3-subgroups, m3 ≤ 2 × 28 = 56, a contradiction. If n > 5, then by Lemma

2.7, 243 | m243, a contradiction.

Case c. π(G) = {2, 7}. Since 49 6∈ πe(G), we have exp(P7) = 7. Then |P7| |

(1 +m7) = 2107. Hence |P7| | 49. Assume |P7| = 7, so n7 = m7/φ(7) = 351 | |G|

since 13 6∈ π(G), we get a contradiction. If |P7| = 49, then by |P2| | 16 and 7722 ≤

|G|, we get a contradiction.

Case d. π(G) = {2, 3, 7}. With the same argument as in Case c, since 13 6∈ π(G)

we obtain that |P7| = 49. Hence |G| = 2m × 3n × 49 where m ≤ 4 and n ≤ 6.

We know that πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 3 × 2, 3 × 4, 3 × 8}
⋃

{9, 9 × 2,

9 × 4, 9 × 8}
⋃

{27, 27 × 2, 27 × 4, 27 × 8}
⋃

{81, 81 × 2, 81 × 4, 81 × 8}
⋃

{243,

243× 2, 243× 4, 243× 8}
⋃

{7, 2× 7, 4× 7, 8× 7}
⋃

{3× 7, 9× 7, 27× 7, 81× 7,

243 × 7}
⋃

{2 × 3 × 7, 2 × 9 × 7, 2 × 27 × 7, 2 × 81 × 7, 4 × 3 × 7, 4 × 9 × 7,

4 × 27 × 7, 4 × 81 × 27, 8 × 3 × 7, 8 × 9 × 7, 8 × 27 × 7, 8 × 81 × 7}, then

|πe(G)| ≤ 45. Therefore, |G| = 2m × 3n × 49 = 7722 + 728k1 + 2106k2 + 4536k3

where 0 ≤ k1 + k2 + k3 = |πe(G)| − |nse(G)| ≤ 40, m ≤ 4 and n ≤ 6. By an easy

computer calculation we can see that if n = 6 then this equation has no solution.

If n < 6, then n7 = 1, 8 or 2i × 3j where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. If n7 = 1, 8,

since every element of order 7 lies in one or more of Sylow 7-subgroups, we have

m7 ≤ 48× 8, a contradiction. So n7 = 2i × 3j where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5.

We show that G is a nonsolvable group. Suppose that G is a solvable group. Then

by Lemma 2.1, 3j ≡ 1 (mode 7), a contradiction. Hence we conclude that G is

a finite nonsolvable group. Let N be the solvable radical subgroup of G and let

H/N be a chief factor of G. Then H/N is non-abelian and so it is isomorphic to

a direct product of isomorphic non-abelian simple groups. We know that G is a

K3−group, thus H/N is a simple K3−group or H/N is a direct product of simple

K3−groups. By Lemma 2.2, H/N ∼=PSL(2, 7), PSL(2, 7)×PSL(2, 7), PSL(2, 8)

or PSL(2, 8)×PSL(2, 8). On the other hand, by Lemma 2.8 np(H/N) | np(G) for
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every prime p ∈ π(G). Hence H/N ∼=PSL(2, 7) or PSL(2, 8). Let H/N ∼=PSL(2,

7). Since n7(PSL(2, 7)) = 8, by Lemma 2.8 we have 8 | n7(G), so n7(G) = 16× 81.

Therefore, |G| = 16×81×49 or 16×243×49. On the other hand, if |G| = 16×81×49

or 16× 243 × 49, then the equation |G| = 7722 + 728k1 + 2106k2 + 4536k3 where

0 ≤ k1 + k2 + k3 = |πe(G)| − |nse(G)| ≤ 40 has no solution, a contradiction.

Now let H/N ∼=PSL(2, 8). By Lemma 2.8 36 | n7(G), because n7(PSL(2, 8)) = 36,

so n7(G) = 36 or 16× 81. Therefore, |G| = 4× 27× 49, 4× 81× 49, 4× 243× 49,

8 × 9 × 49, 8 × 27 × 49, 8 × 81 × 49, 8 × 243 × 49, 16 × 9 × 49, 16 × 27 × 49,

16 × 81 × 49 or 16 × 243 × 49. As 7722 ≤ |G|, so |G| 6= 4 × 27 × 49, 8 × 9 × 49

and 16 × 9 × 49. Let |G| = 4 × 81 × 49, 8 × 9 × 49, 8 × 81 × 49, 8 × 243 × 49,

16× 9× 49, 16× 81× 49 or 16× 243× 49, then it is easy to check that the equation

|G| = 7722+728k1+2106k2+4536k3 where 0 ≤ k1+k2+k3 = |πe(G)|−|nse(G)| ≤ 40

has no solution. Also if |G| = 4× 243× 49, then exp(P2) = 2 or 4, so |πe(G)| ≤ 34.

Now it is easy to check that the equation |G| = 7722 + 728k1 + 2106k2 + 4536k3

where 0 ≤ k1 + k2 + k3 = |πe(G)| − |nse(G)| ≤ 29 has no solution. Hence this case

is impossible.

Therefore, π(G) = {2, 3, 7, 13}. We know that |P13| = 13, we will show that

91 /∈ πe(G). Suppose that 91 ∈ πe(G). We know that if P and Q are Sylow

13−subgroups of G, then P and Q are conjugate, which implies that CG(P ) and

CG(Q) are conjugate in G. Therefore, m91 = φ(91) ·n13 · k, where k is the number

of cyclic subgroups of order 7 in CG(P13). Since n13 = 378, we have 4536 | m91.

On the other hand, 91 | (1 + m13 + m7 + m91), which is a contradiction. Hence

91 6∈ πe(G).

Since 91 6∈ πe(G), the group P7 acts fixed point freely on the set of elements of

order 13, and so |P7| | m13 = 4536, which implies that |P7| = 7. Also we can

prove that 26 and 21 6∈ πe(G). As 21 6∈ πe(G), the group P3 acts fixed point freely

on the set of elements of order 7, and so |P3| | m7 = 2106, which implies that

|P3| | 81. Since 26 6∈ πe(G), the group P2 acts fixed point freely on the set of ele-

ments of order 13, and so |P2| | m13 = 4536, which implies that |P2| | 8. Therefore,

|G| = 2n × 3m × 7× 13, where n ≤ 3 and m ≤ 4.

We claim that G is a nonsolvable group. Suppose G is a solvable group. Since

n13 = 378, we have 7 ≡ 1 (mod 13) by Lemma 2.1, which is a contradiction.

Hence G is a nonsolvable group. As G is a nonsolvable group and p ‖ |G|, where

p ∈ {7, 13}, G has a normal series 1✂N✂H✂G such that N is a maximal solvable

normal subgroup of G and H/N is a nonsolvable minimal normal subgroup of G/N .

Then H/N is a non-abelian simple K3−group or K4−group.

Let H/N be a non-abelian simple K3−group. By Lemma 2.2, H/N ∼=PSL(2, 7)

or PSL(2, 8). Let H/N ∼=PSL(2, 7). Assume P7 ∈ Syl7(G). Then P7N/N ∈
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Syl7(H/N). By Lemma 2.4, n7(H/N)t = n7(G) for some positive integer t and 7 ∤

t. Since n7(H/N) = n7(PSL(2, 7)) = 8, we have 351 = 8t, which is a contradiction.

Now let H/N ∼= PSL(2, 8). Assume P7 ∈ Syl7(G). Then P7N/N ∈ Syl7(H/N).

By Lemma 2.4, n7(H/N)t = n7(G) for some positive integer t and 7 ∤ t. Since

n7(H/N) = n7(PSL(2, 7)) = 36, we have 351 = 36t, which is a contradiction.

Hence H/N is a non-abelian simple K4−group. By Lemma 2.3, H/N ∼=PSL(2,

13) or PSL(2, 27). Assume that H/N ∼=PSL(2, 13) and let P7 ∈ Syl7(G). Thus

P7N/N ∈ Syl7(H/N) and n7(H/N)t = n7(G) for some positive integer t and 7 ∤ t.

Since n7(H/N) = n7(PSL(2, 13)) = 78, we have 351 = 78t, which is a contradic-

tion. Hence H/N ∼=PSL(2, 27).

Let K/N = CG/N (H/N). Then H/N E G/K EAut(H/N), i.e., G/K is an almost

simple group with socle H/N . Thus G/K ∼=PSL(2, 27), PGL(2, 27), PΓL(2, 27)

or PΣL(2, 27). Therefore, |G| = 2n× 3m× 7× 13 where 2 ≤ n ≤ 3 and 3 ≤ m ≤ 4.

We know that N ≤ K. Since |K| | 6 and N is a maximal solvable normal subgroup

of G, we have N = K. Hence G/N is isomorphic to one of the groups: PSL(2, 27),

PGL(2, 27), PΓL(2, 27) or PΣL(2, 27).

Assume |G| = 4× 81× 7× 13. As G does not contain any elements of order 16, 21,

26, 39, 49, 91, 169 and 243, we have πe(G) ⊆ {1, 2, 4}
⋃

{3, 3×2, 3×4}
⋃

{9, 9×2,

9×4}
⋃

{27, 27×2, 27×4}
⋃

{81, 81×2, 81×4}
⋃

{7, 2×7, 4×7, 8×7}
⋃

{13}. Hence

|πe(G)| ≤ 20. Therefore, |G| = 8 × 27× 7× 13 = 7722 + 728k1 + 2106k2 + 4536k3

where 0 ≤ k1+k2+k3 = |πe(G)|− |nse(G)| ≤ 15. By an easy computer calculation

we can get that this equation has no solution.

Let |G| = 8× 27× 7× 13. Since πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 3× 2, 3× 4, 3× 8}
⋃

{9, 9×2, 9×4, 9×8}
⋃

{27, 27×2, 27×4, 27×8}
⋃

{7, 2×7, 4×7, 8×7}
⋃

{13}, we

have |πe(G)| ≤ 21. Therefore, |G| = 8×27×7×13 = 7722+728k1+2106k2+4536k3

where 0 ≤ k1+k2+k3 = |πe(G)|− |nse(G)| ≤ 16. By an easy computer calculation

we can get that this equation has no solution. Assume |G| = 8× 81× 7× 13. Since

πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 3×2, 3×4, 3×8}
⋃

{9, 9×2, 9×4, 9×8}
⋃

{27, 27×2,

27×4, 27×8}
⋃

{81, 81×2, 81×4, 81×8}
⋃

{7, 2×7, 4×7, 8×7}
⋃

{13}, we have

|πe(G)| ≤ 25. Therefore, |G| = 8 × 81× 7× 13 = 7722 + 728k1 + 2106k2 + 4536k3

where 0 ≤ k1+k2+k3 = |πe(G)|− |nse(G)| ≤ 20. By an easy computer calculation

we can get that this equation has no solution. Therefore, |G| = 4 × 27 × 7 × 13.

By [2], since PSL(2, 27) is a simple K4−group, we can conclude that G ∼=PSL(2,

27), and the proof is complete.
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