A new characterization of the projective linear groups by the Sylow numbers

Alireza Khalili Asboei

ABSTRACT: Let G be a finite group, let $\pi(G)$ be the set of primes p such that G contains an element of order p and let $n_p(G)$ be the number of Sylow p-subgroup of G, that is, $n_p = n_p(G) = |\text{Syl}_p(G)|$. Set $\text{NS}(G) := \{n_p(G) \mid p \in \pi(G)\}$. In this paper we show the projective linear groups $L_2(q)$ are recognizable by $\text{NS}(G)$ and order. Also we prove if $\text{NS}(G) = \text{NS}(L_2(8))$, then finite centerless group G is isomorphic to $L_2(8)$ or $\text{Aut}(L_2(8))$.

Key Words: Finite group, Sylow subgroup, simple group.

Contents

1 Introduction 279
2 Preliminary Results 280
3 Main Results 281

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. A finite group G is called a simple K_n-group, if G is a simple group with $|\pi(G)| = n$. Denote by n_p the largest positive odd divisor of the positive integer n. Also denote by (a, b) the greatest common divisor of positive integers a and b. If G is a finite group, then we denote by n_q the number of Sylow q-subgroup of G, that is, $n_q = n_q(G) = |\text{Syl}_q(G)|$. All other notations are standard and we refer to [11], for example.

In 1992, Bi [6] showed that $L_2(p^k)$ can be characterized only by the order of normalizer of its Sylow subgroups. In other words, if G is a group and $|N_G(P)| = |\text{Syl}_r(L_2(p^k))|$ for every prime r, then $G \cong L_2(p^k)$. Similar characterizations have been found for the following groups: $L_n(q)$ [5], $S_4(q)$ [9], the alternating simple groups [8], $U_n(q)$ [10], the sporadic simple groups [2] and $^2D_n(p^k)$ [1].

Set $\text{NS}(G) := \{n_p(G) \mid p \in \pi(G)\}$. Let S be one of the above simple groups. It is clear that if $n_p(G) = n_p(S)$ for every prime p and $|G| = |S|$, then $|N_G(P)| = |N_S(Q)|$ where $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_p(S)$. By the above references, $G \cong S$.

Now let $\text{NS}(G) = \text{NS}(S)$ and $|G| = |S|$. In this case we don’t know $n_q(G) = n_q(S)$ for any prime p. Thus we can not conclude that $G \cong S$. In this paper first we will show that if $\text{NS}(G) = \text{NS}(L_2(q))$ and $|G| = |L_2(q)|$, then $G \cong L_2(q)$.

2000 Mathematics Subject Classification: 20D06, 20D20

Typeset by 20D20 style. © Soc. Paran. de Mat.
We denote by $k(\text{NS}(G))$ the number of isomorphism classes of the finite centerless groups H satisfying $\text{NS}(G) \cong \text{NS}(H)$. A finite centerless group G is called n-recognizable by $\text{NS}(G)$ if $k(\text{NS}(G)) = n$.

In [3] it is proved that A_5 is recognizable and A_6 is 5-recognizable by only $\text{NS}(G)$. We will show that $k(\text{NS}(L_2(8))) = 2$.

2. Preliminary Results

Lemma 2.1. [5] Let G be a finite group. If $|N_G(R_1)| = |N_{L_n(q)}(R_2)|$ for every prime r, where $R_1 \in \text{Syl}_r(G)$ and $R_2 \in \text{Syl}_r(\text{PSL}(n, q))$, then $G \cong L_n(q)$.

Lemma 2.2. Let G be solvable. Then when $n_p(G)$ is factored as a product of prime powers, each factor is congruent to $1 \mod p$.

Proof: Let P be a Sylow p-subgroup of G. By Sylow’s theorem, $n_p(G) = |G : N_G(P)|$. Consider a chain of subgroups $N_G(P) = H_0 < ... < H_r = G$, where each subgroup is maximal in the next. By Sylow’s theorem we have $|H_i : H_0| \equiv 1 \mod p$ for all i. In fact, P is a Sylow p-subgroup of H_i and $H_0 = N_G(P) = N_{H_i}(P)$.

Thus for all i, $|H_{i+1} : H_0| = |H_{i+1} : H_i| \times |H_i : H_0| \equiv |H_{i+1} : H_i| \equiv 1 \mod p$. Then $|H_{i+1} : H_i| \equiv 1 \mod p$, and since G is solvable, each of these indices is a prime power. Since $n_p(G) = |G : N_G(P)| = \prod_{i=0}^{r-1} |H_{i+1} : H_i|$, each factor of $n_p(G)$ therefore is congruent to $1 \mod p$. \hfill \Box

Lemma 2.3. [13] If G is a simple K_3–group, then G is isomorphic to one of the following groups: A_5, A_6, $L_2(7)$, $L_2(8)$, $L_2(17)$, $L_3(3)$, $U_3(3)$ or $U_4(2)$.

Lemma 2.4. [12] Let G be a finite group and M a normal subgroup. Then $n_p(M)n_p(G/M)$ divides $n_p(G)$.

Lemma 2.5. [14] Let G be a simple group of order $2^a \cdot 3^b \cdot 5^c \cdot 7^d$, $abcd \neq 0$. Then G is isomorphic to one of the following groups: A_n for $n = 7, 8, 9, 10$; J_4; $L_2(49)$, $L_3(4)$, $O_5(7)$, $O_7(2)$, $O_8^+(2)$, $U_3(5)$ and $U_4(3)$.

By Sylow’s theorem implies that if p is prime, then $n_p = 1 + pk$. If $p = 2$, then n_2 is odd. If $p \in \pi(G)$, then

$$
\begin{align*}
\begin{cases}
p \mid (n_p - 1) \\
pn_p & = 1
\end{cases}
\end{align*}
\tag{*}
$$

In the proof of the theorem 3.2 and 3.3, we often apply $(*)$ and the above comments.
3. Main Results

Lemma 3.1. Let \(q = p^n \) and \(p \neq 2 \). Then \(NS(L_2(q)) = \{q(q^2 - 1)/2, q + 1, q(q - 1)/2, q(q + 1)/2 \} \) or \(\{q(q^2 - 1)/24, q + 1, q(q - 1)/2, q(q + 1)/2 \} \). In particular if \(q = 2^n \), then \(NS(L_2(q)) = \{q + 1, q(q - 1)/2, q(q + 1)/2 \} \).

Proof: Let \(q = p^n \) and \(p \neq 2 \). To find the number of Sylow \(p \)-subgroups in \(L_2(q) \) first, look at \(SL_2(q) \). The normalizer of a Sylow \(p \)-subgroup is the set of upper triangular matrices with determinant 1, so the order of the normalizer is \(q(q - 1) \). The order of the whole group \(SL_2(q) \) is \(q(q^2 - 1) \). The number of Sylow \(p \)-subgroups, therefore, is \((q + 1) \). This will be the same as the number of Sylow \(p \)-subgroups of \(L_2(q) \) because the canonical homomorphism from \(SL_2(q) \) to \(L_2(q) \) yields a bijection on Sylow \(p \)-subgroups.

If \(r \neq p \) is an odd prime divisor of \(|G| \), then \(r \) divides exactly one of \(\{q + 1, q - 1\} \) and a Sylow \(r \)-subgroup of \(G \) is cyclic with normalizer dihedral of order \(q - 1 \) or \(q + 1 \). In particular, the number of Sylow \(r \)-subgroups is \(q(q + 1)/2 \) or \(q(q + 1)/2 \). When \(q \) is a power of 2, we have \(L_2(q) = SL_2(q) \) and a Sylow 2-normalizer is a Borel subgroup of order \(q(q - 1) \). Hence there are \(q + 1 \) Sylow 2-subgroups as \(SL_2(q) \) has order \((q - 1)(q + 1) \). When \(q \) is odd, the order of \(L_2(q) \) is \(q(q - 1)(q + 1)/2 \).

A Sylow 2-subgroup of \(SL_2(q) \) is quaternion or generalized quaternion and a Sylow 2-subgroup of \(L_2(q) \) is either a Klein 4-group or a dihedral 2-group with at least 8 elements. In all these cases, a Sylow 2-subgroup of \(SL_2(q) \) contains its centralizer, and the same is true in \(L_2(q) \). The outer automorphism group of a dihedral 2-group with at least 8 elements is a 2-group. Hence a Sylow 2-subgroup of \(L_2(q) \) is self-normalizing when \(q \equiv \pm 1 \) (mod 8), and in that case the number of Sylow 2-subgroups of \(L_2(q) \) is \(q(q^2 - 1)/2 \). When \(q \equiv \pm 3 \) (mod 8), then a Sylow 2-normalizer of \(L_2(q) \) must have order 12, because a Sylow 2-subgroup is a self-centralizing Klein 4-group, but there must be an element of order 3 in its normalizer by Burnside’s transfer theorem. In this case, the number of Sylow 2-subgroups of \(L_2(q) \) is \(q(q^2 - 1)/24 \). Therefore \(NS(L_2(q)) = \{q(q^2 - 1)/2, q + 1, q(q - 1)/2, q(q + 1)/2 \} \) or \(\{q(q^2 - 1)/24, q + 1, q(q - 1)/2, q(q + 1)/2 \} \).

Arguing as above if \(q = 2^n \), then \(NS(L_2(q)) = \{q + 1, q(q - 1)/2, q(q + 1)/2 \} \). □

Theorem 3.2. Let \(G \) be a finite group such that \(NS(G) \neq NS(L_2(q)) \) and \(|G| = |L_2(q)| \). Then \(G \cong L_2(q) \).

Proof: Let \(q = p^n \) and \(q \equiv \pm 1 \) (mod 8). By Sylow’s theorem since \(q + 1 \) is the only Sylow number not divisible by \(p \), \(n_p = q + 1 \). If \(r \in \pi(q + 1) \), then \(n_r = q + 1 \) or \(q(q - 1)/2 \). Suppose that \(n_r = q + 1 \). By Sylow’s theorem \(n_r = rk + 1 = q + 1 \) where \(k \) is a positive number. Then \(rk = q \) and \(r = p \), a contradiction. Therefore \(n_r = q(q - 1)/2 \). Similarly if \(r \in \pi(q - 1) \), then \(n_r = q(q + 1)/2 \). Now it is clear that \(n_r = q(q^2 - 1)/2 \). Thus we have proved that \(n_r(G) = n_r(L_2(q)) \) for every \(r \).

Arguing as above if \(q \equiv \pm 3 \) (mod 8), then \(n_r(G) = n_r(L_2(q)) \) for every \(r \). Since \(|G| = |L_2(q)| \), \(|NG(R)| = |NL_2(q)(R)| \) for every prime \(r \) where \(R_1 \in Syl_r(G) \) and \(R_2 \in Syl_r(L_2(q)) \). Therefore by Lemma 2.1, \(G \cong L_2(q) \).

Arguing as above if \(q = 2^n \) and \(NS(G) = NS(L_2(q)) \), then \(G \cong L_2(q) \). □
Theorem 3.3. Let G be finite centerless group and $NS(G)=NS(L_2(8))$. Then $G \cong L_2(8)$ or $G \cong Aut(L_2(8))$.

Proof: We have $NS(G)=NS(L_2(8))=\{9, 28, 36\}$. First we prove that $\pi(G) = \{2, 3, 7\}$. By Sylow’s theorem $n_p \mid |G|$ for every p, hence by $NS(G)$, we can conclude that $\{2, 3, 7\} \subseteq \pi(G)$. On the other hand, by (\ast) if $p \in \pi(G)$, then $p \mid (n_p-1)$ and $(p, n_p) = 1$, which implies that $p \in \{2, 3, 5, 7\}$.

Let $\pi(G) = \{2, 3, 5, 7\}$. Then $n_2(G) = 9$, $n_3(G) = 28$ and $n_5(G) = n_7(G) = 36$. We show that G is a nonsolvable group. If G is a solvable group since $n_7(G) = 36$ by Lemma 2.2, $9 \equiv 1 \pmod{7}$, a contradiction. Hence G is a nonsolvable group.

Since G is a finite group, it has a chief series. Let $1 = N_0 \leq N_1 \leq \ldots \leq N_{r-1} \leq N_r = G$ be a chief series of G. Since G is a nonsolvable group there exists a maximal number of non-negative integer i such that N_i/N_{i-1} is a simple group or the direct product of isomorphic simple groups and N_{r-1} is a maximal solvable normal subgroup of G. Now set $N_i := H$ and $N_{i-1} := N$. Hence G has the following normal series

$$1 \leq N \triangleleft H \leq G$$

such that H/N is a non-abelian simple group or H/N is a direct product of isomorphic non-abelian simple groups. Since G is a K_4–group, H/N is a simple K_n–group or H/N is a direct product of simple K_n–groups for $n = 3$ or 4. By Lemma 2.4, $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$. Thus H/N is a simple K_3–group or simple K_4–group.

If H/N is a simple K_3–group, then by Lemma 2.3 and 2.4, $H/N \cong L_2(8)$. Now set $\overline{H} := H/N \cong L_2(8)$ and $\overline{G} := G/N$. On the other hand, we have

$$L_2(8) \cong \overline{H} \cong \overline{H}/C_{\overline{G}^{(1)}(\overline{H})}/C_{\overline{G}^{(1)}(\overline{H})} \leq \overline{G}/C_{\overline{G}^{(1)}(\overline{H})} = \frac{\mathbb{C}_{\overline{G}^{(1)}(\overline{H})}}{C_{\overline{G}^{(1)}(\overline{H})}} \leq Aut(\overline{H}).$$

Let $K = \{x \in G \mid xN \in C_{\overline{G}^{(1)}(\overline{H})}\}$, then $G/K \cong \overline{G}/C_{\overline{G}^{(1)}(\overline{H})}$. Hence $L_2(8) \leq G/K \leq Aut(L_2(8))$. Hence $G/K \cong L_2(8)$ or $G/K \cong Aut(L_2(8))$.

Let G/K isomorphic to $L_2(8)$ by Lemma 2.4, $n_2(K) = 1$, $n_3(K) = 1$, $n_7(K) = 1$ and $n_5(K) = 36$. We show that $K = N$. Suppose that $K \neq N$. Since $N < K$ and N is a maximal solvable normal subgroup, K is a nonsolvable normal subgroup of G. Therefore K has the following normal series

$$1 \leq N_1 \triangleleft H_1 \leq K,$$

such that $H_1/N_1 \cong A_5$, A_6, $L_2(7)$, $L_2(8)$, $U_3(3)$, $U_4(2)$ or S where S is one of the groups: A_n for $n = 7, 8, 9, 10$, J_2, $L_2(49)$, $L_3(4)$, $O_5(7)$, $O_7(2)$, $O_9^+(2)$, $U_3(5)$ and $U_3(3)$, by Lemma 2.3 and 2.5. Because $n_2(H_1/N_1) \mid n_2(K) = 1$, we get a contradiction. Thus $N = K$.

Therefore $G/N \cong L_2(8)$, it follows that $5 \in \pi(N)$ and the order of a Sylow 5-subgroup in G and N are equal. As N is normal in G, the number of Sylow 5-subgroups of G and N are equal. Thus the number of Sylow 5-subgroups of N is 36. Since N is solvable by Lemma 2.2, $4 \equiv 1 \pmod{5}$, a contradiction.
Arguing as above if $G/K \cong \text{Aut}(L_2(8))$, then we get a contradiction.

If H/N is simple K_3-group, then by Lemma 2.5, H/N is isomorphic to one of the groups: A_n for $n = 7$, 8, 9, 10, $L_2(49)$, $L_3(4)$, $O_5(7)$, $O_7^+(2)$, $O_5^-(2)$, $U_3(5)$ or $U_4(3)$. Since $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$, we get a contradiction.

Therefore $\pi(G) = \{2, 3, 7\}$. Since G is a nonsolvable group, it has the following normal series

$$1 \leq N < H \leq G$$

such that H/N is a simple K_3-group or H/N is a direct product of simple K_3-groups. By Lemma 2.3 and 2.4, $H/N \cong L_2(8)$. Now set $\overline{H} := H/N \cong L_2(8)$ and $\overline{G} := G/N$. Thus we have

$$L_2(8) \cong \overline{H} \cong \overline{H}(\overline{G}(\overline{H})/\overline{G}(\overline{H})) \leq \overline{G}(\overline{G}(\overline{H})) = \overline{G}(\overline{G}(\overline{H})) \leq \text{Aut}(\overline{H}).$$

Let $K = \{x \in G \mid xK \in \overline{G}(\overline{H})\}$. Then $G/K \cong \overline{G}(\overline{H})$ and $L_2(8) \leq G/K \cong \text{Aut}(L_2(8))$. So G/K isomorphic to $L_2(8)$ or $\text{Aut}(L_2(8))$.

Let G/K isomorphic to $L_2(8)$. By Lemma 2.3, $n_p(K) = 1$ for every prime $p \in \pi(G)$. Thus K is a nilpotent subgroup of G.

We claim that $K = 1$. Let Q be a Sylow q-subgroup of K, since K is nilpotent, Q is normal in G. Now if $P \in \text{Syl}_q(G)$, then P normalizes Q and so if $p \neq q$, then $P \leq N_G(Q) = G$. Also we note that KP/K is a Sylow p-subgroup of G/K. On the other hand, if $R/K = N_{G/K}(KP/K)$, then $R = N_{G}(P)K$. We know that $n_p(G) = n_p(G/K)$, so $|G : R| = |G : N_G(P)|$. Thus $R = N_G(P)$ and therefore $K \leq N_G(P)$. So $Q \leq N_G(P)$. Since $P \leq N_G(Q)$ and $Q \leq N_G(P)$ by Lemma 2.4, this implies that $[P, Q] \leq P$ and $[P, Q] \leq Q$, then $[P, Q] \leq P \cap Q = 1$. So $P \leq C_G(Q)$ and $Q \leq C_G(P)$, in other words P and Q centralize each other. Let $C = C_G(Q)$, then C contains a Sylow p-subgroup of G for all primes p different from q, and thus $|G : C|$ is a power of q. Now let S be a Sylow q-subgroup of G. Then $G = CS$. Also if $Q > 1$, then $C_Q(S)$ is nontrivial, so $C_Q(S) \leq Z(G)$. Since by assumption $Z(G) = 1$, it follows that $Q = 1$. Since q is arbitrary, $K = 1$, as claimed. Therefore G is isomorphic to $L_2(8)$.

Arguing as above if G/K isomorphic to $\text{Aut}(L_2(8))$, then G is isomorphic to $\text{Aut}(L_2(8))$. □

Acknowledgments

The author is thankful to the referee for carefully reading the paper and for his suggestions and remarks.

References

Alireza Khalili Asboei

Department of Mathematics, Farhangian University, Shariati Sari, Iran

E-mail address: khaliliasbo@yahoo.com