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A new characterization of the projective linear groups by the Sylow

numbers

Alireza Khalili Asboei

abstract: Let G be a finite group, let π(G) be the set of primes p such that G

contains an element of order p and let np(G) be the number of Sylow p−subgroup of
G, that is, np = np(G)=|Sylp(G)|. Set NS(G) := {np(G)| p ∈ π(G)}. In this paper
we show the projective linear groups L2(q) are recognizable by NS(G) and order.
Also we prove if NS(G)=NS(L2(8)), then finite centerless group G is isomorphic to
L2(8) or Aut(L2(8)).
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
Let G be a finite group. Denote by π(G) the set of primes p such that G contains
an element of order p. A finite group G is called a simple Kn−group, if G is a
simple group with |π(G)| = n. Denote by n2′ the largest positive odd divisor of the
positive integer n. Also denote by (a, b) the greatest common divisor of positive
integers a and b. If G is a finite group, then we denote by nq the number of Sylow
q−subgroup of G, that is, nq = nq(G)=|Sylq(G)|. All other notations are standard
and we refer to [11], for example.

In 1992, Bi [6] showed that L2(p
k) can be characterized only by the order of

normalizer of its Sylow subgroups. In other words, if G is a group and |NG(P )|
= |NL2(pk)(Q)| where P ∈Sylr(G) and Q ∈Sylr(L2(p

k)) for every prime r, then

G ∼= L2(p
k). Similar characterizations have been found for the following groups:

Ln(q) [5], S4(q) [9], the alternating simple groups [8], Un(q) [10], the sporadic
simple groups [2] and 2Dn(p

k) [1].
Set NS(G) := {np(G)| p ∈ π(G)}. Let S be one of the above simple groups.

It is clear that if np(G) = np(S) for every prime p and |G| = |S|, then |NG(P )| =
|NS(Q)| where P ∈Sylp(G) and Q ∈Sylp(S). By the above references, G ∼= S.

Now let NS(G) =NS(S) and |G| = |S|. In this case we don’t know np(G) =
np(S) for any prime p. Thus we can not conclude that G ∼= S. In this paper first
we will show that if NS(G) =NS(L2(q)) and |G| = |L2(q)|, then G ∼= L2(q).
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We denote by k(NS(G)) the number of isomorphism classes of the finite cen-
terless groups H satisfying NS(G) =NS(H). A finite centerless group G is called
n-recognizable by NS(G) if k(NS(G)) =n.

In [3] it is proved that A5 is recognizable and A6 is 5-recognizable by only
NS(G). We will show that k(NS(L2(8))) =2.

2. Preliminary Results

Lemma 2.1. [5] Let G be a finite group. If |NG(R1)| = |NLn(q)(R2)| for every
prime r, where R1 ∈Sylr(G) and R2 ∈Sylr(PSL(n, q)), then G ∼= Ln(q).

Lemma 2.2. Let G be solvable. Then when np(G) is factored as a product of prime
powers, each factor is congruent to 1 mod p.

Proof: Let P be a Sylow p-subgroup of G. By Sylow’s theorem, np(G) = |G :
NG(P )|. Consider a chain of subgroups NG(P ) = H0 < ... < Hr = G, where each
subgroup is maximal in the next. By Sylow’s theorem we have |Hi : H0| ≡ 1 (mod
p) for all i. In fact, P is a Sylow p-subgroup of Hi and H0 = NG(P ) = NHi

(P ).
Thus for all i , |Hi+1 : H0| = |Hi+1 : Hi| × |Hi : H0| ≡ |Hi+1 : Hi| ≡ 1 (mod p).
Then |Hi+1 : Hi| ≡ 1 (mod p), and since G is solvable, each of these indices is a

prime power. Since np(G) = |G : NG(P )| =

r−1
∏

i=0

|Hi+1 : Hi|, each factor of np(G)

therefore is congruent to 1 mod p. ✷

Lemma 2.3. [13] If G is a simple K3−group, then G is isomorphic to one of the
following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) or U4(2).

Lemma 2.4. [12] Let G be a finite group and M a normal subgroup. Then
np(M)np(G/M) divides np(G).

Lemma 2.5. [14] Let G be a simple group of order 2a · 3b · 5c · 7d, abcd 6= 0. Then
G is isomorphic to one of the following groups: An for n = 7, 8, 9, 10; J2; L2(49),
L3(4), O5(7), O7(2), O

+
8 (2), U3(5) and U4(3).

By Sylow’s theorem implies that if p is prime, then np = 1+ pk. If p = 2, then
n2 is odd. If p ∈ π(G), then















p | (np − 1)
(∗)

(p, np) = 1

In the proof of the theorem 3.2 and 3.3, we often apply (∗) and the above
comments.
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3. Main Results

Lemma 3.1. Let q = pn and p 6= 2. Then NS(L2(q)) = {q(q2 − 1)2′ , q + 1,
q(q−1)/2, q(q+1)/2} or {q(q2−1)/24, q+1, q(q−1)/2, q(q+1)/2}. In particular
if q = 2n, then NS(L2(q)) = {q + 1, q(q − 1)/2, q(q + 1)/2}.

Proof: Let q = pn and p 6= 2. To find the number of Sylow p-subgroups in L2(q)
first, look at SL2(q). The normalizer of a Sylow p-subgroup is the set of upper
triangular matrices with determinant 1, so the order of the normalizer is q(q − 1).
The order of the whole group SL2(q) is q(q2−1). The number of Sylow p-subgroups,
therefore, is (q + 1). This will be the same as the number of Sylow p-subgroups of
L2(q) because the canonical homomorphism from SL2(q) to L2(q) yields a bijection
on Sylow p-subgroups.

If r 6= p is an odd prime divisor of |G|, then r divides exactly one of {q+1, q−1}
and a Sylow r-subgroup of G is cyclic with normalizer dihedral of order q − 1 or
q + 1. In particular, the number of Sylow r-subgroups is q(q + 1)/2 or q(q + 1)/2.
When q is a power of 2, we have L2(q) =SL2(q) and a Sylow 2 -normalizer is a Borel
subgroup of order q(q − 1). Hence there are q + 1 Sylow 2 -subgroups as SL2(q)
has order (q − 1)q(q + 1). When q is odd, the order of L2(q) is q(q − 1)(q + 1)/2.

A Sylow 2 -subgroup of SL2(q) is quaternion or generalized quaternion and a
Sylow 2 -subgroup of L2(q) is either a Klein 4 -group or a dihedral 2 -group with
at least 8 elements. In all these cases, a Sylow 2 -subgroup of SL2(q) contains
its centralizer, and the same is true in L2(q). The outer automorphism group of a
dihedral 2 -group with at least 8 elements is a 2 -group. Hence a Sylow 2 -subgroup
of L2(q) is self-normalizing when q ≡ ±1 (mod 8), and in that case the number
of Sylow 2 -subgroups of L2(q) is q(q2 − 1)2′ . When q ≡ ±3 (mod 8), then a
Sylow 2 -normalizer of L2(q) must have order 12, because a Sylow 2 -subgroup is
a self-centralizing Klein 4 -group, but there must be an element of order 3 in its
normalizer by Burndisde’s transfer theorem. In this case, the number of Sylow 2
-subgroups of L2(q) is q(q2 − 1)/24. Therefore NS(L2(q))= {q(q2 − 1)2′ , q + 1,
q(q − 1)/2, q(q + 1)/2} or {q(q2 − 1)/24, q + 1, q(q − 1)/2, q(q + 1)/2}.

Arguing as above if q = 2n, then NS(L2(q))= {q + 1, q(q − 1)/2, q(q + 1)/2}.✷

Theorem 3.2. Let G be a finite group such that NS(G)=NS(L2(q)) and |G| =
|L2(q)|. Then G ∼= L2(q).

Proof: Let q = pn and q ≡ ±1 (mod 8). By Sylow’s theorem since q + 1 is the
only Sylow number not divisible by p, np = q + 1. If r ∈ π(q + 1), then nr = q + 1
or q(q − 1)/2. Suppose that nr = q + 1. By Sylow’s theorem nr = rk + 1 = q + 1
where k is a positive number. Then rk = q and r = p, a contradiction. Therefore
nr = q(q − 1)/2. Similarly if r ∈ π(q − 1), then nr = q(q + 1)/2. Now it is clear
that n2 = q(q2 − 1)2′ . Thus we have proved that nr(G) = nr(L2(q)) for every r.
Arguing as above if q ≡ ±3 (mod 8), then nr(G) = nr(L2(q)) for every r. Since
|G| = |L2(q)|, |NG(R1)| = |NL2(q)(R2)| for every prime r where R1 ∈Sylr(G) and
R2 ∈Sylr(L2(q)). Therefore by Lemma 2.1, G ∼= L2(q).

Arguing as above if q = 2n and NS(G)=NS(L2(q)), then G ∼= L2(q). ✷
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Theorem 3.3. Let G be finite centerless group and NS(G)=NS(L2(8)). Then
G ∼= L2(8) or G ∼=Aut(L2(8)).

Proof: We have NS(G)=NS(L2(8))={9, 28, 36}. First we prove that π(G) = {2,
3, 7}. By Sylow’s theorem np | |G| for every p, hence by NS(G), we can conclude
that {2, 3, 7} ⊆ π(G). On the other hand, by (∗) if p ∈ π(G), then p | (np− 1) and
(p, np) = 1, which implies that p ∈ {2, 3, 5, 7}.

Let π(G) = {2, 3, 5, 7}. Then n2(G) = 9, n3(G) = 28 and n5(G) = n7(G) = 36.
We show that G is a nonsolvable group. If G is a solvable group since n7(G) = 36
by Lemma 2.2, 9 ≡ 1 (mod 7), a contradiction. Hence G is a nonsolvable group.

Since G is a finite group, it has a chief series. Let 1 = N0 ✂N1 ✂ ...✁Nr−1 ✂

Nr = G be a chief series of G. Since G is a nonsolvable group there exists a
maximal number of non-negative integer i such that Ni/Ni−1 is a simple group
or the direct product of isomorphic simple groups and Ni−1 is a maximal solvable
normal subgroup of G. Now set Ni := H and Ni−1 := N . Hence G has the
following normal series

1✂N ✁H ✂G

such that H/N is a non-abelian simple group or H/N is a direct product of iso-
morphic non-abelian simple groups. Since G is a K4−group, H/N is a simple
Kn−group or H/N is a direct product of simple Kn−groups for n = 3 or 4. By
Lemma 2.4, np(H/N) | np(G) for every prime p ∈ π(G). Thus H/N is a simple
K3−group or simple K4−group.

If H/N is a simple K3−group, then by Lemma 2.3 and 2.4, H/N ∼= L2(8). Now
set H := H/N ∼= L2(8) and G := G/N . On the other hand, we have

L2(8) ∼= H ∼= HCG(H)/CG(H) ≤ G/CG(H) = NG(H)/CG(H) ≤Aut(H).

Let K = {x ∈ G|xN ∈ CG(H)}, then G/K ∼= G/CG(H). Hence L2(8) ≤
G/K ≤Aut(L2(8)). Hence G/K ∼= L2(8) or G/K ∼=Aut(L2(8)).

Let G/K isomorphic to L2(8) by Lemma 2.4, n2(K) = 1, n3(K) = 1, n7(K) = 1
and n5(K) | 36. We show that K = N . Suppose that K 6= N . Since N < K and
N is a maximal solvable normal subgroup G, K is a nonsolvable normal subgroup
of G. Therefore K has the following normal series

1✂N1 ✁H1 ✂K,

such that H1/N1
∼= A5, A6, L2(7), L2(8), U3(3), U4(2) or S where S is one of the

groups: An for n = 7, 8, 9, 10, J2, L2(49), L3(4), O5(7), O7(2), O+
8 (2), U3(5)

and U4(3), by Lemma 2.3 and 2.5. Because n2(H1/N1) | n2(K) = 1, we get a
contradiction. Thus N = K.

Therefore G/N ∼= L2(8), it follows that 5 ∈ π(N) and the order of a Sylow
5-subgroup in G and N are equal. As N is normal in G, the number of Sylow
5-subgroups of G and N are equal. Thus the number of Sylow 5-subgroups of N
is 36. Since N is solvable by Lemma 2.2, 4 ≡ 1 (mod 5), a contradiction.
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Arguing as above if G/K ∼=Aut(L2(8)), then we get a contradiction.
If H/N is simple K4−group, then by Lemma 2.5, H/N is isomorphic to one of

the groups: An for n = 7, 8, 9, 10, J2, L2(49), L3(4), O5(7), O7(2), O
+
8 (2), U3(5)

or U4(3). Since np(H/N) | np(G) for every prime p ∈ π(G), we get a contradiction.
Therefore π(G) = {2, 3, 7}. Since G is a nonsolvable group, it has the following

normal series

1✂N ✁H ✂G

such that H/N is a simple K3−group or H/N is a direct product of simple
K3−groups. By Lemma 2.3 and 2.4, H/N ∼= L2(8). Now set H := H/N ∼= L2(8)
and G := G/N . Thus we have

L2(8) ∼= H ∼= HCG(H)/CG(H) ≤ G/CG(H) = NG(H)/CG(H) ≤Aut(H).

Let K = {x ∈ G | xK ∈ CG(H)}. Then G/K ∼= G/CG(H) and L2(8) ≤
G/K ≤Aut(L2(8)). So G/K isomorphic to L2(8) or Aut(L2(8)).

Let G/K isomorphic to L2(8). By Lemma 2.3, np(K) = 1 for every prime
p ∈ π(G). Thus K is a nilpotent subgroup of G.

We claim that K = 1. Let Q be a Sylow q− subgroup of K, since K is nilpotent,
Q is normal in G. Now if P ∈Sylp(G), then P normalizes Q and so if p 6= q, then
P ≤ NG(Q) = G. Also we note that KP/K is a Sylow p-subgroup of G/K. On
the other hand, if R/K = NG/K( KP/K), then R = NG(P )K. We know that
np(G) = np(G/K), so |G : R| = |G : NG(P )|. Thus R = NG(P ) and therefore
K ≤ NG(P ). So Q ≤ NG(P ). Since P ≤ NG(Q) and Q ≤ NG(P ) by Lemma
2.4, this implies that [P,Q] ≤ P and [P,Q] ≤ Q, then [P,Q] ≤ P ∩ Q = 1. So
P ≤ CG(Q) and Q ≤ CG(P ), in other words P and Q centralize each other. Let
C = CG(Q), then C contains a full Sylow p−subgroup of G for all primes p different
from q, and thus |G : C| is a power of q. Now let S be a Sylow q−subgroup of G.
Then G = CS. Also if Q > 1, then CQ(S) is nontrivial, so CQ(S) ≤ Z(G). Since
by assumption Z(G) = 1, it follows that Q = 1. Since q is arbitrary, K = 1, as
claimed. Therefore G is isomorphic to L2(8).

Arguing as above if G/K isomorphic to Aut(L2(8)), then G is isomorphic to
Aut(L2(8)). ✷
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