

(3s.) **v. 32** 1 (2014): 279–284. ISSN-00378712 in press doi:10.5269/bspm.v32i1.19156

A new characterization of the projective linear groups by the Sylow numbers

Alireza Khalili Asboei

ABSTRACT: Let G be a finite group, let $\pi(G)$ be the set of primes p such that G contains an element of order p and let $n_p(G)$ be the number of Sylow p-subgroup of G, that is, $n_p = n_p(G) = |\text{Syl}_p(G)|$. Set $\text{NS}(G) := \{n_p(G) | p \in \pi(G)\}$. In this paper we show the projective linear groups $L_2(q)$ are recognizable by NS(G) and order. Also we prove if $\text{NS}(G) = \text{NS}(L_2(8))$, then finite centerless group G is isomorphic to $L_2(8)$ or $\text{Aut}(L_2(8))$.

Key Words: Finite group, Sylow subgroup, simple group.

Contents

1	Introduction	279
2	Preliminary Results	280
3	Main Results	281

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. Denote by $n_{2'}$ the largest positive odd divisor of the positive integer n. Also denote by (a, b) the greatest common divisor of positive integers a and b. If G is a finite group, then we denote by n_q the number of Sylow q-subgroup of G, that is, $n_q = n_q(G) = |Syl_q(G)|$. All other notations are standard and we refer to [11], for example.

In 1992, Bi [6] showed that $L_2(p^k)$ can be characterized only by the order of normalizer of its Sylow subgroups. In other words, if G is a group and $|N_G(P)| = |N_{L_2(p^k)}(Q)|$ where $P \in \text{Syl}_r(G)$ and $Q \in \text{Syl}_r(L_2(p^k))$ for every prime r, then $G \cong L_2(p^k)$. Similar characterizations have been found for the following groups: $L_n(q)$ [5], $S_4(q)$ [9], the alternating simple groups [8], $U_n(q)$ [10], the sporadic simple groups [2] and ${}^2D_n(p^k)$ [1].

Set $NS(G) := \{n_p(G) | p \in \pi(G)\}$. Let S be one of the above simple groups. It is clear that if $n_p(G) = n_p(S)$ for every prime p and |G| = |S|, then $|N_G(P)| = |N_S(Q)|$ where $P \in Syl_p(G)$ and $Q \in Syl_p(S)$. By the above references, $G \cong S$.

Now let NS(G) = NS(S) and |G| = |S|. In this case we don't know $n_p(G) = n_p(S)$ for any prime p. Thus we can not conclude that $G \cong S$. In this paper first we will show that if $NS(G) = NS(L_2(q))$ and $|G| = |L_2(q)|$, then $G \cong L_2(q)$.

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 20D06, 20D20

We denote by k(NS(G)) the number of isomorphism classes of the finite centerless groups H satisfying NS(G) = NS(H). A finite centerless group G is called *n*-recognizable by NS(G) if k(NS(G)) = n.

In [3] it is proved that A_5 is recognizable and A_6 is 5-recognizable by only NS(G). We will show that $k(NS(L_2(8))) = 2$.

2. Preliminary Results

Lemma 2.1. [5] Let G be a finite group. If $|N_G(R_1)| = |N_{L_n(q)}(R_2)|$ for every prime r, where $R_1 \in Syl_r(G)$ and $R_2 \in Syl_r(PSL(n,q))$, then $G \cong L_n(q)$.

Lemma 2.2. Let G be solvable. Then when $n_p(G)$ is factored as a product of prime powers, each factor is congruent to 1 mod p.

Proof: Let *P* be a Sylow *p*-subgroup of *G*. By Sylow's theorem, $n_p(G) = |G : N_G(P)|$. Consider a chain of subgroups $N_G(P) = H_0 < ... < H_r = G$, where each subgroup is maximal in the next. By Sylow's theorem we have $|H_i : H_0| \equiv 1 \pmod{p}$ for all *i*. In fact, *P* is a Sylow *p*-subgroup of H_i and $H_0 = N_G(P) = N_{H_i}(P)$. Thus for all *i*, $|H_{i+1} : H_0| = |H_{i+1} : H_i| \times |H_i : H_0| \equiv |H_{i+1} : H_i| \equiv 1 \pmod{p}$. Then $|H_{i+1} : H_i| \equiv 1 \pmod{p}$, and since *G* is solvable, each of these indices is a prime power. Since $n_p(G) = |G : N_G(P)| = \prod_{i=0}^{r-1} |H_{i+1} : H_i|$, each factor of $n_p(G)$

therefore is congruent to $1 \mod p$.

Lemma 2.3. [13] If G is a simple K_3 -group, then G is isomorphic to one of the following groups: A_5 , A_6 , $L_2(7)$, $L_2(8)$, $L_2(17)$, $L_3(3)$, $U_3(3)$ or $U_4(2)$.

Lemma 2.4. [12] Let G be a finite group and M a normal subgroup. Then $n_p(M) n_p(G/M)$ divides $n_p(G)$.

Lemma 2.5. [14] Let G be a simple group of order $2^a \cdot 3^b \cdot 5^c \cdot 7^d$, $abcd \neq 0$. Then G is isomorphic to one of the following groups: A_n for $n = 7, 8, 9, 10; J_2; L_2(49), L_3(4), O_5(7), O_7(2), O_8^+(2), U_3(5)$ and $U_4(3)$.

By Sylow's theorem implies that if p is prime, then $n_p = 1 + pk$. If p = 2, then n_2 is odd. If $p \in \pi(G)$, then

$$\begin{cases} p \mid (n_p - 1) \\ (p, n_p) = 1 \end{cases}$$
(*)

In the proof of the theorem 3.2 and 3.3, we often apply (*) and the above comments.

3. Main Results

Lemma 3.1. Let $q = p^n$ and $p \neq 2$. Then $NS(L_2(q)) = \{q(q^2 - 1)_{2'}, q + 1, q(q-1)/2, q(q+1)/2\}$ or $\{q(q^2 - 1)/24, q + 1, q(q-1)/2, q(q+1)/2\}$. In particular if $q = 2^n$, then $NS(L_2(q)) = \{q + 1, q(q-1)/2, q(q+1)/2\}$.

Proof: Let $q = p^n$ and $p \neq 2$. To find the number of Sylow *p*-subgroups in $L_2(q)$ first, look at $SL_2(q)$. The normalizer of a Sylow *p*-subgroup is the set of upper triangular matrices with determinant 1, so the order of the normalizer is q(q-1). The order of the whole group $SL_2(q)$ is $q(q^2-1)$. The number of Sylow *p*-subgroups, therefore, is (q + 1). This will be the same as the number of Sylow *p*-subgroups of $L_2(q)$ because the canonical homomorphism from $SL_2(q)$ to $L_2(q)$ yields a bijection on Sylow *p*-subgroups.

If $r \neq p$ is an odd prime divisor of |G|, then r divides exactly one of $\{q+1, q-1\}$ and a Sylow r-subgroup of G is cyclic with normalizer dihedral of order q-1 or q+1. In particular, the number of Sylow r-subgroups is q(q+1)/2 or q(q+1)/2. When q is a power of 2, we have $L_2(q) = \operatorname{SL}_2(q)$ and a Sylow 2 -normalizer is a Borel subgroup of order q(q-1). Hence there are q+1 Sylow 2 -subgroups as $\operatorname{SL}_2(q)$ has order (q-1)q(q+1). When q is odd, the order of $L_2(q)$ is q(q-1)(q+1)/2.

A Sylow 2 -subgroup of $SL_2(q)$ is quaternion or generalized quaternion and a Sylow 2 -subgroup of $L_2(q)$ is either a Klein 4 -group or a dihedral 2 -group with at least 8 elements. In all these cases, a Sylow 2 -subgroup of $SL_2(q)$ contains its centralizer, and the same is true in $L_2(q)$. The outer automorphism group of a dihedral 2 -group with at least 8 elements is a 2 -group. Hence a Sylow 2 -subgroup of $L_2(q)$ is self-normalizing when $q \equiv \pm 1 \pmod{8}$, and in that case the number of Sylow 2 -subgroups of $L_2(q)$ is $q(q^2 - 1)_{2'}$. When $q \equiv \pm 3 \pmod{8}$, then a Sylow 2 -normalizer of $L_2(q)$ must have order 12, because a Sylow 2 -subgroup is a self-centralizing Klein 4 -group, but there must be an element of order 3 in its normalizer by Burndisde's transfer theorem. In this case, the number of Sylow 2 -subgroups of $L_2(q)$ is $q(q^2 - 1)/24$. Therefore $NS(L_2(q)) = \{q(q^2 - 1)_{2'}, q + 1, q(q - 1)/2, q(q + 1)/2\}$.

Arguing as above if $q = 2^n$, then NS $(L_2(q)) = \{q + 1, q(q - 1)/2, q(q + 1)/2\}$.

Theorem 3.2. Let G be a finite group such that $NS(G)=NS(L_2(q))$ and $|G| = |L_2(q)|$. Then $G \cong L_2(q)$.

Proof: Let $q = p^n$ and $q \equiv \pm 1 \pmod{8}$. By Sylow's theorem since q + 1 is the only Sylow number not divisible by p, $n_p = q + 1$. If $r \in \pi(q + 1)$, then $n_r = q + 1$ or q(q-1)/2. Suppose that $n_r = q + 1$. By Sylow's theorem $n_r = rk + 1 = q + 1$ where k is a positive number. Then rk = q and r = p, a contradiction. Therefore $n_r = q(q-1)/2$. Similarly if $r \in \pi(q-1)$, then $n_r = q(q+1)/2$. Now it is clear that $n_2 = q(q^2 - 1)_{2'}$. Thus we have proved that $n_r(G) = n_r(L_2(q))$ for every r. Arguing as above if $q \equiv \pm 3 \pmod{8}$, then $n_r(G) = n_r(L_2(q))$ for every r. Since $|G| = |L_2(q)|, |N_G(R_1)| = |N_{L_2(q)}(R_2)|$ for every prime r where $R_1 \in \text{Syl}_r(G)$ and $R_2 \in \text{Syl}_r(L_2(q))$. Therefore by Lemma 2.1, $G \cong L_2(q)$.

Arguing as above if $q = 2^n$ and $NS(G) = NS(L_2(q))$, then $G \cong L_2(q)$.

Theorem 3.3. Let G be finite centerless group and $NS(G)=NS(L_2(8))$. Then $G \cong L_2(8)$ or $G \cong Aut(L_2(8))$.

Proof: We have $NS(G)=NS(L_2(8))=\{9, 28, 36\}$. First we prove that $\pi(G) = \{2, 3, 7\}$. By Sylow's theorem $n_p \mid |G|$ for every p, hence by NS(G), we can conclude that $\{2, 3, 7\} \subseteq \pi(G)$. On the other hand, by (*) if $p \in \pi(G)$, then $p \mid (n_p - 1)$ and $(p, n_p) = 1$, which implies that $p \in \{2, 3, 5, 7\}$.

Let $\pi(G) = \{2, 3, 5, 7\}$. Then $n_2(G) = 9$, $n_3(G) = 28$ and $n_5(G) = n_7(G) = 36$. We show that G is a nonsolvable group. If G is a solvable group since $n_7(G) = 36$ by Lemma 2.2, $9 \equiv 1 \pmod{7}$, a contradiction. Hence G is a nonsolvable group.

Since G is a finite group, it has a chief series. Let $1 = N_0 \leq N_1 \leq ... < N_{r-1} \leq N_r = G$ be a chief series of G. Since G is a nonsolvable group there exists a maximal number of non-negative integer *i* such that N_i/N_{i-1} is a simple group or the direct product of isomorphic simple groups and N_{i-1} is a maximal solvable normal subgroup of G. Now set $N_i := H$ and $N_{i-1} := N$. Hence G has the following normal series

 $1 \trianglelefteq N \lhd H \trianglelefteq G$

such that H/N is a non-abelian simple group or H/N is a direct product of isomorphic non-abelian simple groups. Since G is a K_4 -group, H/N is a simple K_n -group or H/N is a direct product of simple K_n -groups for n = 3 or 4. By Lemma 2.4, $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$. Thus H/N is a simple K_3 -group or simple K_4 -group.

If H/N is a simple K_3 -group, then by Lemma 2.3 and 2.4, $H/N \cong L_2(8)$. Now set $\overline{H} := H/N \cong L_2(8)$ and $\overline{G} := G/N$. On the other hand, we have

$$L_2(8) \cong \overline{H} \cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \overline{G}/C_{\overline{G}}(\overline{H}) = N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \operatorname{Aut}(\overline{H}).$$

Let $K = \{x \in G | xN \in C_{\overline{G}}(\overline{H})\}$, then $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$. Hence $L_2(8) \leq G/K \leq \operatorname{Aut}(L_2(8))$. Hence $G/K \cong L_2(8)$ or $G/K \cong \operatorname{Aut}(L_2(8))$.

Let G/K isomorphic to $L_2(8)$ by Lemma 2.4, $n_2(K) = 1$, $n_3(K) = 1$, $n_7(K) = 1$ and $n_5(K) \mid 36$. We show that K = N. Suppose that $K \neq N$. Since N < K and N is a maximal solvable normal subgroup G, K is a nonsolvable normal subgroup of G. Therefore K has the following normal series

$$1 \leq N_1 \leq H_1 \leq K$$
,

such that $H_1/N_1 \cong A_5$, A_6 , $L_2(7)$, $L_2(8)$, $U_3(3)$, $U_4(2)$ or S where S is one of the groups: A_n for n = 7, 8, 9, 10, J_2 , $L_2(49)$, $L_3(4)$, $O_5(7)$, $O_7(2)$, $O_8^+(2)$, $U_3(5)$ and $U_4(3)$, by Lemma 2.3 and 2.5. Because $n_2(H_1/N_1) \mid n_2(K) = 1$, we get a contradiction. Thus N = K.

Therefore $G/N \cong L_2(8)$, it follows that $5 \in \pi(N)$ and the order of a Sylow 5-subgroup in G and N are equal. As N is normal in G, the number of Sylow 5-subgroups of G and N are equal. Thus the number of Sylow 5-subgroups of N is 36. Since N is solvable by Lemma 2.2, $4 \equiv 1 \pmod{5}$, a contradiction.

282

A NEW CHARACTERIZATION OF THE PROJECTIVE LINEAR GROUPS

Arguing as above if $G/K \cong \operatorname{Aut}(L_2(8))$, then we get a contradiction.

If H/N is simple K_4 -group, then by Lemma 2.5, H/N is isomorphic to one of the groups: A_n for $n = 7, 8, 9, 10, J_2, L_2(49), L_3(4), O_5(7), O_7(2), O_8^+(2), U_3(5)$

or $U_4(3)$. Since $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$, we get a contradiction. Therefore $\pi(G) = \{2, 3, 7\}$. Since G is a nonsolvable group, it has the following normal series

$$1 \trianglelefteq N \lhd H \trianglelefteq G$$

such that H/N is a simple K_3 -group or H/N is a direct product of simple K_3 -groups. By Lemma 2.3 and 2.4, $H/N \cong L_2(8)$. Now set $\overline{H} := H/N \cong L_2(8)$ and $\overline{G} := G/N$. Thus we have

$$L_2(8) \cong \overline{H} \cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \overline{G}/C_{\overline{G}}(\overline{H}) = N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \operatorname{Aut}(\overline{H}).$$

Let $K = \{x \in G \mid xK \in C_{\overline{G}}(\overline{H})\}$. Then $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$ and $L_2(8) \leq G/K \leq \operatorname{Aut}(L_2(8))$. So G/K isomorphic to $L_2(8)$ or $\operatorname{Aut}(L_2(8))$.

Let G/K isomorphic to $L_2(8)$. By Lemma 2.3, $n_p(K) = 1$ for every prime $p \in \pi(G)$. Thus K is a nilpotent subgroup of G.

We claim that K = 1. Let Q be a Sylow q- subgroup of K, since K is nilpotent, Q is normal in G. Now if $P \in \operatorname{Syl}_p(G)$, then P normalizes Q and so if $p \neq q$, then $P \leq N_G(Q) = G$. Also we note that KP/K is a Sylow p-subgroup of G/K. On the other hand, if $R/K = N_{G/K}(KP/K)$, then $R = N_G(P)K$. We know that $n_p(G) = n_p(G/K)$, so $|G:R| = |G:N_G(P)|$. Thus $R = N_G(P)$ and therefore $K \leq N_G(P)$. So $Q \leq N_G(P)$. Since $P \leq N_G(Q)$ and $Q \leq N_G(P)$ by Lemma 2.4, this implies that $[P,Q] \leq P$ and $[P,Q] \leq Q$, then $[P,Q] \leq P \cap Q = 1$. So $P \leq C_G(Q)$ and $Q \leq C_G(P)$, in other words P and Q centralize each other. Let $C = C_G(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus |G:C| is a power of q. Now let S be a Sylow q-subgroup of G. Then G = CS. Also if Q > 1, then $C_Q(S)$ is nontrivial, so $C_Q(S) \leq Z(G)$. Since by assumption Z(G) = 1, it follows that Q = 1. Since q is arbitrary, K = 1, as claimed. Therefore G is isomorphic to $L_2(8)$.

Arguing as above if G/K isomorphic to $\operatorname{Aut}(L_2(8))$, then G is isomorphic to $\operatorname{Aut}(L_2(8))$.

Acknowledgments

The author is thankful to the referee for carefully reading the paper and for his suggestions and remarks.

References

- 1. A. Iranmanesh, N. Ahanjideh, A characterization of ${}^{2}D_{n}(p^{k})$ by order of normalizer of Sylow subgroups, International journal of Algebra, 2(8), 853-865 (2008).
- A. Khosravi, B. Khosaravi, Two new characterization of sporadic simple groups, PU. M. A, 16, 287-293 (2005).
- 3. A. R. Khallili Asboei, A New Characterization of Alternating groups A₅ and A₆, New Zealand J. Math (to appear).

Alireza Khalili Asboei

- 4. A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of Symmetric group S_r , where r is prime number, Ann. Math et Informaticae, 40, 13-23 (2012).
- J. Bi, A characterization of L_n(q) by the normalizers' orders of their Sylow subgroups, Acta. Math. Sinica (New Ser) 11(3), 300-306 (1995).
- 6. J. Bi, A characterization of $L_2(q)$, J. Liaoning Univ (Natural Sciences Edition), 19(2), 1-4 (1992) (Chinese).
- 7. J. Bi, A characterization of finite projective special unitary group $U_6(q)$, J. Liaoning Univ (Natural Sciences Edition), 26(4), 295-298 (1990) (Chinese).
- 8. J. Bi, Characterization of Alternating groups by orders of normalizers of Sylow subgroups, Algebra Colloq, 8(3), 249-256 (2001).
- 9. J. Bi, On the group with the same orders of Sylow normalizers as the finite simple group $S_4(q)$, Algebras Groups and Geom, 18(3), 349-355 (2001).
- J. Bi, On the groups with the same orders of Sylow normalizers as the finite projective special unitary group, Sci. China, Ser A, 47(6), 801-811 (2004).
- 11. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups*, Oxford, Clarendon, Press (1985).
- 12. J. Zhang, Sylow numbers of finite groups, J. Algebra, 176(10), 111-123 (1995).
- M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 120(10), 383-388 (1968).
- W. Shi, The simple groups of order 2^a3^b5^c7^d and Janko's simple groups, J. Southest-China Teachers University, 4, 1-8 (1987) (Chinese).

Alireza Khalili Asboei Department of Mathematics, Farhangian University, Shariati Sari, Iran E-mail address: khaliliasbo@yahoo.com

284