A new characterization of the projective linear groups by the Sylow numbers

Abstract

Alireza Khalili Asboei ABSTRACT: Let G be a finite group, let $\pi(G)$ be the set of primes p such that G contains an element of order p and let $n_{p}(G)$ be the number of Sylow p-subgroup of G, that is, $n_{p}=n_{p}(G)=\left|\operatorname{Syl}_{p}(G)\right|$. Set $\operatorname{NS}(G):=\left\{n_{p}(G) \mid p \in \pi(G)\right\}$. In this paper we show the projective linear groups $L_{2}(q)$ are recognizable by $\operatorname{NS}(G)$ and order. Also we prove if $\mathrm{NS}(G)=\mathrm{NS}\left(L_{2}(8)\right)$, then finite centerless group G is isomorphic to $L_{2}(8)$ or $\operatorname{Aut}\left(L_{2}(8)\right)$.

Key Words: Finite group, Sylow subgroup, simple group.

Contents

1 Introduction

2 Preliminary Results

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. A finite group G is called a simple K_{n}-group, if G is a simple group with $|\pi(G)|=n$. Denote by $n_{2^{\prime}}$ the largest positive odd divisor of the positive integer n. Also denote by (a, b) the greatest common divisor of positive integers a and b. If G is a finite group, then we denote by n_{q} the number of Sylow q-subgroup of G, that is, $n_{q}=n_{q}(G)=\left|\operatorname{Syl}_{q}(G)\right|$. All other notations are standard and we refer to [11], for example.

In 1992, Bi [6] showed that $L_{2}\left(p^{k}\right)$ can be characterized only by the order of normalizer of its Sylow subgroups. In other words, if G is a group and $\left|N_{G}(P)\right|$ $=\left|N_{L_{2}\left(p^{k}\right)}(Q)\right|$ where $P \in \operatorname{Syl}_{r}(G)$ and $Q \in \operatorname{Syl}_{r}\left(L_{2}\left(p^{k}\right)\right)$ for every prime r, then $G \cong L_{2}\left(p^{k}\right)$. Similar characterizations have been found for the following groups: $L_{n}(q)$ [5], $S_{4}(q)$ [9], the alternating simple groups [8], $U_{n}(q)$ [10], the sporadic simple groups [2] and ${ }^{2} D_{n}\left(p^{k}\right)$ [1].

Set $\operatorname{NS}(G):=\left\{n_{p}(G) \mid \quad p \in \pi(G)\right\}$. Let S be one of the above simple groups. It is clear that if $n_{p}(G)=n_{p}(S)$ for every prime p and $|G|=|S|$, then $\left|N_{G}(P)\right|=$ $\left|N_{S}(Q)\right|$ where $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{p}(S)$. By the above references, $G \cong S$.

Now let $\mathrm{NS}(G)=\mathrm{NS}(S)$ and $|G|=|S|$. In this case we don't know $n_{p}(G)=$ $n_{p}(S)$ for any prime p. Thus we can not conclude that $G \cong S$. In this paper first we will show that if $\operatorname{NS}(G)=\mathrm{NS}\left(L_{2}(q)\right)$ and $|G|=\left|L_{2}(q)\right|$, then $G \cong L_{2}(q)$.

[^0]We denote by $k(\mathrm{NS}(G))$ the number of isomorphism classes of the finite centerless groups H satisfying $\operatorname{NS}(G)=\mathrm{NS}(H)$. A finite centerless group G is called n-recognizable by $\mathrm{NS}(G)$ if $k(\mathrm{NS}(G))=n$.

In [3] it is proved that A_{5} is recognizable and A_{6} is 5 -recognizable by only $\mathrm{NS}(G)$. We will show that $k\left(\mathrm{NS}\left(L_{2}(8)\right)\right)=2$.

2. Preliminary Results

Lemma 2.1. [5] Let G be a finite group. If $\left|N_{G}\left(R_{1}\right)\right|=\left|N_{L_{n}(q)}\left(R_{2}\right)\right|$ for every prime r, where $R_{1} \in \operatorname{Syl}_{r}(G)$ and $R_{2} \in \operatorname{Syl}_{r}(\operatorname{PSL}(n, q))$, then $G \cong L_{n}(q)$.

Lemma 2.2. Let G be solvable. Then when $n_{p}(G)$ is factored as a product of prime powers, each factor is congruent to $1 \bmod p$.

Proof: Let P be a Sylow p-subgroup of G. By Sylow's theorem, $n_{p}(G)=\mid G$: $N_{G}(P) \mid$. Consider a chain of subgroups $N_{G}(P)=H_{0}<\ldots<H_{r}=G$, where each subgroup is maximal in the next. By Sylow's theorem we have $\left|H_{i}: H_{0}\right| \equiv 1(\bmod$ p) for all i. In fact, P is a Sylow p-subgroup of H_{i} and $H_{0}=N_{G}(P)=N_{H_{i}}(P)$. Thus for all $i,\left|H_{i+1}: H_{0}\right|=\left|H_{i+1}: H_{i}\right| \times\left|H_{i}: H_{0}\right| \equiv\left|H_{i+1}: H_{i}\right| \equiv 1(\bmod p)$. Then $\left|H_{i+1}: H_{i}\right| \equiv 1(\bmod p)$, and since G is solvable, each of these indices is a prime power. Since $n_{p}(G)=\left|G: N_{G}(P)\right|=\prod_{i=0}^{r-1}\left|H_{i+1}: H_{i}\right|$, each factor of $n_{p}(G)$ therefore is congruent to $1 \bmod p$.

Lemma 2.3. [13] If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ or $U_{4}(2)$.

Lemma 2.4. [12] Let G be a finite group and M a normal subgroup. Then $n_{p}(M) n_{p}(G / M)$ divides $n_{p}(G)$.

Lemma 2.5. [14] Let G be a simple group of order $2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d}$, abcd $\neq 0$. Then G is isomorphic to one of the following groups: A_{n} for $n=7,8,9,10 ; J_{2} ; L_{2}(49)$, $L_{3}(4), O_{5}(7), O_{7}(2), O_{8}^{+}(2), U_{3}(5)$ and $U_{4}(3)$.

By Sylow's theorem implies that if p is prime, then $n_{p}=1+p k$. If $p=2$, then n_{2} is odd. If $p \in \pi(G)$, then

$$
\left\{\begin{array}{l}
p \mid\left(n_{p}-1\right) \tag{*}\\
\left(p, n_{p}\right)=1
\end{array}\right.
$$

In the proof of the theorem 3.2 and 3.3 , we often apply $(*)$ and the above comments.

3. Main Results

Lemma 3.1. Let $q=p^{n}$ and $p \neq 2$. Then $N S\left(L_{2}(q)\right)=\left\{q\left(q^{2}-1\right)_{2^{\prime}}, q+1\right.$, $q(q-1) / 2, q(q+1) / 2\}$ or $\left\{q\left(q^{2}-1\right) / 24, q+1, q(q-1) / 2, q(q+1) / 2\right\}$. In particular if $q=2^{n}$, then $N S\left(L_{2}(q)\right)=\{q+1, q(q-1) / 2, q(q+1) / 2\}$.

Proof: Let $q=p^{n}$ and $p \neq 2$. To find the number of Sylow p-subgroups in $L_{2}(q)$ first, look at $\mathrm{SL}_{2}(q)$. The normalizer of a Sylow p-subgroup is the set of upper triangular matrices with determinant 1 , so the order of the normalizer is $q(q-1)$. The order of the whole group $\mathrm{SL}_{2}(q)$ is $q\left(q^{2}-1\right)$. The number of Sylow p-subgroups, therefore, is $(q+1)$. This will be the same as the number of Sylow p-subgroups of $L_{2}(q)$ because the canonical homomorphism from $\mathrm{SL}_{2}(q)$ to $L_{2}(q)$ yields a bijection on Sylow p-subgroups.

If $r \neq p$ is an odd prime divisor of $|G|$, then r divides exactly one of $\{q+1, q-1\}$ and a Sylow r-subgroup of G is cyclic with normalizer dihedral of order $q-1$ or $q+1$. In particular, the number of Sylow r-subgroups is $q(q+1) / 2$ or $q(q+1) / 2$. When q is a power of 2 , we have $L_{2}(q)=\mathrm{SL}_{2}(q)$ and a Sylow 2 -normalizer is a Borel subgroup of order $q(q-1)$. Hence there are $q+1$ Sylow 2 -subgroups as $\mathrm{SL}_{2}(q)$ has order $(q-1) q(q+1)$. When q is odd, the order of $L_{2}(q)$ is $q(q-1)(q+1) / 2$.

A Sylow 2 -subgroup of $\mathrm{SL}_{2}(q)$ is quaternion or generalized quaternion and a Sylow 2 -subgroup of $L_{2}(q)$ is either a Klein 4 -group or a dihedral 2 -group with at least 8 elements. In all these cases, a Sylow 2 -subgroup of $\mathrm{SL}_{2}(q)$ contains its centralizer, and the same is true in $L_{2}(q)$. The outer automorphism group of a dihedral 2 -group with at least 8 elements is a 2 -group. Hence a Sylow 2 -subgroup of $L_{2}(q)$ is self-normalizing when $q \equiv \pm 1(\bmod 8)$, and in that case the number of Sylow 2 -subgroups of $L_{2}(q)$ is $q\left(q^{2}-1\right)_{2^{\prime}}$. When $q \equiv \pm 3(\bmod 8)$, then a Sylow 2 -normalizer of $L_{2}(q)$ must have order 12, because a Sylow 2 -subgroup is a self-centralizing Klein 4 -group, but there must be an element of order 3 in its normalizer by Burndisde's transfer theorem. In this case, the number of Sylow 2 -subgroups of $L_{2}(q)$ is $q\left(q^{2}-1\right) / 24$. Therefore $\operatorname{NS}\left(L_{2}(q)\right)=\left\{q\left(q^{2}-1\right)_{2^{\prime}}, q+1\right.$, $q(q-1) / 2, q(q+1) / 2\}$ or $\left\{q\left(q^{2}-1\right) / 24, q+1, q(q-1) / 2, q(q+1) / 2\right\}$.

Arguing as above if $q=2^{n}$, then $\mathrm{NS}\left(L_{2}(q)\right)=\{q+1, q(q-1) / 2, q(q+1) / 2\}$.
Theorem 3.2. Let G be a finite group such that $N S(G)=N S\left(L_{2}(q)\right)$ and $|G|=$ $\left|L_{2}(q)\right|$. Then $G \cong L_{2}(q)$.

Proof: Let $q=p^{n}$ and $q \equiv \pm 1(\bmod 8)$. By Sylow's theorem since $q+1$ is the only Sylow number not divisible by $p, n_{p}=q+1$. If $r \in \pi(q+1)$, then $n_{r}=q+1$ or $q(q-1) / 2$. Suppose that $n_{r}=q+1$. By Sylow's theorem $n_{r}=r k+1=q+1$ where k is a positive number. Then $r k=q$ and $r=p$, a contradiction. Therefore $n_{r}=q(q-1) / 2$. Similarly if $r \in \pi(q-1)$, then $n_{r}=q(q+1) / 2$. Now it is clear that $n_{2}=q\left(q^{2}-1\right)_{2^{\prime}}$. Thus we have proved that $n_{r}(G)=n_{r}\left(L_{2}(q)\right)$ for every r. Arguing as above if $q \equiv \pm 3(\bmod 8)$, then $n_{r}(G)=n_{r}\left(L_{2}(q)\right)$ for every r. Since $|G|=\left|L_{2}(q)\right|,\left|N_{G}\left(R_{1}\right)\right|=\left|N_{L_{2}(q)}\left(R_{2}\right)\right|$ for every prime r where $R_{1} \in \operatorname{Syl}_{r}(G)$ and $R_{2} \in \operatorname{Syl}_{r}\left(L_{2}(q)\right)$. Therefore by Lemma 2.1, $G \cong L_{2}(q)$.

Arguing as above if $q=2^{n}$ and $\mathrm{NS}(G)=\mathrm{NS}\left(L_{2}(q)\right)$, then $G \cong L_{2}(q)$.

Theorem 3.3. Let G be finite centerless group and $N S(G)=N S\left(L_{2}(8)\right)$. Then $G \cong L_{2}(8)$ or $G \cong A u t\left(L_{2}(8)\right)$.

Proof: We have $\operatorname{NS}(G)=\operatorname{NS}\left(L_{2}(8)\right)=\{9,28,36\}$. First we prove that $\pi(G)=\{2$, $3,7\}$. By Sylow's theorem $n_{p}| | G \mid$ for every p, hence by $\operatorname{NS}(G)$, we can conclude that $\{2,3,7\} \subseteq \pi(G)$. On the other hand, by $(*)$ if $p \in \pi(G)$, then $p \mid\left(n_{p}-1\right)$ and $\left(p, n_{p}\right)=1$, which implies that $p \in\{2,3,5,7\}$.

Let $\pi(G)=\{2,3,5,7\}$. Then $n_{2}(G)=9, n_{3}(G)=28$ and $n_{5}(G)=n_{7}(G)=36$. We show that G is a nonsolvable group. If G is a solvable group since $n_{7}(G)=36$ by Lemma $2.2,9 \equiv 1(\bmod 7)$, a contradiction. Hence G is a nonsolvable group.

Since G is a finite group, it has a chief series. Let $1=N_{0} \unlhd N_{1} \unlhd \ldots \triangleleft N_{r-1} \unlhd$ $N_{r}=G$ be a chief series of G. Since G is a nonsolvable group there exists a maximal number of non-negative integer i such that N_{i} / N_{i-1} is a simple group or the direct product of isomorphic simple groups and N_{i-1} is a maximal solvable normal subgroup of G. Now set $N_{i}:=H$ and $N_{i-1}:=N$. Hence G has the following normal series

$$
1 \unlhd N \triangleleft H \unlhd G
$$

such that H / N is a non-abelian simple group or H / N is a direct product of isomorphic non-abelian simple groups. Since G is a $K_{4}-$ group, H / N is a simple K_{n} - group or H / N is a direct product of simple K_{n}-groups for $n=3$ or 4 . By Lemma 2.4, $n_{p}(H / N) \mid n_{p}(G)$ for every prime $p \in \pi(G)$. Thus H / N is a simple K_{3} - group or simple K_{4}-group.

If H / N is a simple $K_{3}-$ group, then by Lemma 2.3 and $2.4, H / N \cong L_{2}(8)$. Now set $\bar{H}:=H / N \cong L_{2}(8)$ and $\bar{G}:=G / N$. On the other hand, we have

$$
L_{2}(8) \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \operatorname{Aut}(\bar{H})
$$

Let $K=\left\{x \in G \mid x N \in C_{\bar{G}}(\bar{H})\right\}$, then $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$. Hence $L_{2}(8) \leq$ $G / K \leq \operatorname{Aut}\left(L_{2}(8)\right)$. Hence $G / K \cong L_{2}(8)$ or $G / K \cong \operatorname{Aut}\left(L_{2}(8)\right)$.

Let G / K isomorphic to $L_{2}(8)$ by Lemma $2.4, n_{2}(K)=1, n_{3}(K)=1, n_{7}(K)=1$ and $n_{5}(K) \mid 36$. We show that $K=N$. Suppose that $K \neq N$. Since $N<K$ and N is a maximal solvable normal subgroup G, K is a nonsolvable normal subgroup of G. Therefore K has the following normal series

$$
1 \unlhd N_{1} \triangleleft H_{1} \unlhd K,
$$

such that $H_{1} / N_{1} \cong A_{5}, A_{6}, L_{2}(7), L_{2}(8), U_{3}(3), U_{4}(2)$ or S where S is one of the groups: A_{n} for $n=7,8,9,10, J_{2}, L_{2}(49), L_{3}(4), O_{5}(7), O_{7}(2), O_{8}^{+}(2), U_{3}(5)$ and $U_{4}(3)$, by Lemma 2.3 and 2.5. Because $n_{2}\left(H_{1} / N_{1}\right) \mid n_{2}(K)=1$, we get a contradiction. Thus $N=K$.

Therefore $G / N \cong L_{2}(8)$, it follows that $5 \in \pi(N)$ and the order of a Sylow 5 -subgroup in G and N are equal. As N is normal in G, the number of Sylow 5 -subgroups of G and N are equal. Thus the number of Sylow 5 -subgroups of N is 36 . Since N is solvable by Lemma $2.2,4 \equiv 1(\bmod 5)$, a contradiction.

Arguing as above if $G / K \cong \operatorname{Aut}\left(L_{2}(8)\right)$, then we get a contradiction.
If H / N is simple K_{4}-group, then by Lemma $2.5, H / N$ is isomorphic to one of the groups: A_{n} for $n=7,8,9,10, J_{2}, L_{2}(49), L_{3}(4), O_{5}(7), O_{7}(2), O_{8}^{+}(2), U_{3}(5)$ or $U_{4}(3)$. Since $n_{p}(H / N) \mid n_{p}(G)$ for every prime $p \in \pi(G)$, we get a contradiction.

Therefore $\pi(G)=\{2,3,7\}$. Since G is a nonsolvable group, it has the following normal series

$$
1 \unlhd N \triangleleft H \unlhd G
$$

such that H / N is a simple K_{3}-group or H / N is a direct product of simple K_{3} - groups. By Lemma 2.3 and $2.4, H / N \cong L_{2}(8)$. Now set $\bar{H}:=H / N \cong L_{2}(8)$ and $\bar{G}:=G / N$. Thus we have

$$
L_{2}(8) \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \operatorname{Aut}(\bar{H})
$$

Let $K=\left\{x \in G \mid x K \in C_{\bar{G}}(\bar{H})\right\}$. Then $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$ and $L_{2}(8) \leq$ $G / K \leq \operatorname{Aut}\left(L_{2}(8)\right)$. So G / K isomorphic to $L_{2}(8)$ or $\operatorname{Aut}\left(L_{2}(8)\right)$.

Let G / K isomorphic to $L_{2}(8)$. By Lemma $2.3, n_{p}(K)=1$ for every prime $p \in \pi(G)$. Thus K is a nilpotent subgroup of G.

We claim that $K=1$. Let Q be a Sylow $q-$ subgroup of K, since K is nilpotent, Q is normal in G. Now if $P \in \operatorname{Syl}_{p}(G)$, then P normalizes Q and so if $p \neq q$, then $P \leq N_{G}(Q)=G$. Also we note that $K P / K$ is a Sylow p-subgroup of G / K. On the other hand, if $R / K=N_{G / K}(K P / K)$, then $R=N_{G}(P) K$. We know that $n_{p}(G)=n_{p}(G / K)$, so $|G: R|=\left|G: N_{G}(P)\right|$. Thus $R=N_{G}(P)$ and therefore $K \leq N_{G}(P)$. So $Q \leq N_{G}(P)$. Since $P \leq N_{G}(Q)$ and $Q \leq N_{G}(P)$ by Lemma 2.4, this implies that $[P, Q] \leq P$ and $[P, Q] \leq Q$, then $[P, Q] \leq P \cap Q=1$. So $P \leq C_{G}(Q)$ and $Q \leq C_{G}(P)$, in other words P and Q centralize each other. Let $C=C_{G}(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus $|G: C|$ is a power of q. Now let S be a Sylow q-subgroup of G. Then $G=C S$. Also if $Q>1$, then $C_{Q}(S)$ is nontrivial, so $C_{Q}(S) \leq Z(G)$. Since by assumption $Z(G)=1$, it follows that $Q=1$. Since q is arbitrary, $K=1$, as claimed. Therefore G is isomorphic to $L_{2}(8)$.

Arguing as above if G / K isomorphic to $\operatorname{Aut}\left(L_{2}(8)\right)$, then G is isomorphic to $\operatorname{Aut}\left(L_{2}(8)\right)$.

Acknowledgments

The author is thankful to the referee for carefully reading the paper and for his suggestions and remarks.

References

1. A. Iranmanesh, N. Ahanjideh, A characterization of ${ }^{2} D_{n}\left(p^{k}\right)$ by order of normalizer of Sylow subgroups, International journal of Algebra, 2(8), 853-865 (2008).
2. A. Khosravi, B. Khosaravi, Two new characterization of sporadic simple groups, PU. M. A, 16, 287-293 (2005).
3. A. R. Khallili Asboei, A New Characterization of Alternating groups A_{5} and A_{6}, New Zealand J. Math (to appear).
4. A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of Symmetric group S_{r}, where r is prime number, Ann. Math et Informaticae, 40, 13-23 (2012).
5. J. Bi, A characterization of $L_{n}(q)$ by the normalizers' orders of their Sylow subgroups, Acta. Math. Sinica (New Ser) 11(3), 300-306 (1995).
6. J. Bi, A characterization of $L_{2}(q)$, J. Liaoning Univ (Natural Sciences Edition), 19(2), 1-4 (1992) (Chinese).
7. J. Bi, A characterization of finite projective special unitary group $U_{6}(q)$, J. Liaoning Univ (Natural Sciences Edition), 26(4), 295-298 (1990) (Chinese).
8. J. Bi, Characterization of Alternating groups by orders of normalizers of Sylow subgroups, Algebra Colloq, 8(3), 249-256 (2001).
9. J. Bi, On the group with the same orders of Sylow normalizers as the finite simple group $S_{4}(q)$, Algebras Groups and Geom, 18(3), 349-355 (2001).
10. J. Bi, On the groups with the same orders of Sylow normalizers as the finite projective special unitary group, Sci. China, Ser A, 47(6), 801-811 (2004).
11. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford, Clarendon, Press (1985).
12. J. Zhang, Sylow numbers of finite groups, J. Algebra, 176(10), 111-123 (1995).
13. M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 120(10), 383-388 (1968).
14. W. Shi, The simple groups of order $2^{a} 3^{b} 5^{c} 7^{d}$ and Janko's simple groups, J. Southest-China Teachers University, 4, 1-8 (1987) (Chinese).

Alireza Khalili Asboei
Department of Mathematics,
Farhangian University,
Shariati Sari, Iran
E-mail address: khaliliasbo@yahoo.com

[^0]: 2000 Mathematics Subject Classification: 20D06, 20D20

