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Spectra of the Rhaly Operator on the Sequence Space bv0 ∩ ℓ∞

Binod Chandra Tripathy and Rituparna Das

abstract: In this article we have determined the spectra of the Rhaly operator
on the class of bounded statistically null bounded variation sequence space. We
have also determined the dual of the bounded statistically null bounded variation
sequence space.
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1. Preliminaries and background

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
By R(T ), we denote the range of T , i.e.

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

Throughout B(X) denotes the set of all bounded linear operators on X into
itself. If T ∈ B(X), then the adjoint T ∗ of T is a bounded linear operator on the
dual X∗ of X defined by (T ∗f)(x) = f(Tx), for all f ∈ X∗ and x ∈ X .

Let X 6= {θ} be a complex normed space and T : D(T ) → X be a linear oper-
ator with domain D(T ) ⊆ X . With T , we associate the operator Tλ = T − λI,

where λ is a complex number and I is the identity operator on D(T ). If Tλ has an
inverse which is linear, we denote it by T−1

λ , that is
T−1
λ = (T − λI)−1,
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and call it the resolvent operator of T .

Let X 6= {θ} be a complex normed space and T : D(T ) → X be a linear oper-
ator with domain D(T ) ⊆ X . A regular value λ of T is a complex number such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded

(R3) T−1
λ is defined on a set which is dense in X i.e. R(Tλ) = X .

The resolvent set of T , denoted by ρ(T,X), is the set of all regular values λ

of T . Its complement σ(T,X) = C − ρ(T,X) in the complex plane C is called
the spectrum of T . Furthermore, the spectrum σ(T,X) is partitioned into three
disjoint sets as follows:

The point(discrete) spectrum σp(T,X) is the set such that T−1
λ does not exist.

Any such λ ∈ σp(T,X) is called an eigenvalue of T .

The continuous spectrum σc(T,X) is the set such that T−1
λ exists and satisfies

(R3), but not (R2), that is, T−1
λ is unbounded.

The residual spectrum σr(T,X) is the set such that T−1
λ exists (and may be

bounded or not), but does not satisfy (R3), that is, the domain of T−1
λ is not dense

in X .

By w, we denote the space of all real or complex valued sequences. Throughout
the paper c, c0, bv, c, c0, bv, bs, ℓ1, ℓ∞ represent the spaces of all convergent, null,
bounded variation, statistically convergent, statistically null, statistically bounded
variation, bounded series, absolutely summable and bounded sequences respec-
tively. Also bv0 = bv ∩ c0 and bv0 = bv ∩ c0.

Let λ and µ be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N0 = {0, 1, 2, ...}. Then, we say that
A defines a matrix mapping from λ into µ, and we denote it by A : λ → µ , if for
every sequence x = (xk) ∈ λ, the sequence A = {(Ax)n}n∈N0

, the A-transform of
x, is in µ, where

(Ax)n =

∞
∑

k=0

ankxk, n ∈ N0. (1)

For simplicity in notation, throughout the summation without limits runs from
0 to ∞. By (λ, µ), we denote the class of all matrices such that A : λ → µ. Thus,
A ∈ (λ, µ) if and only if the series on the right hand side of (1) converges for each
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n ∈ N0 and every x ∈ λ and we have Ax = {(Ax)n}n∈N0
∈ µ for all x ∈ λ.

Our main focus in this paper is on the Rhaly matrix A = Ra, where

Ra =









a0 0 0 0 ...

a1 a1 0 0 ...

a2 a2 a2 0 ...

. . . . ...









,

where all the entries are real or complex.

On taking L = lim
n→∞

(n + 1)an, Rhaly [9] determined the spectrum of Ra on
the Hilbert space ℓ2 of square summable sequences.

Mustafa Yildirim [18] determined the spectrum of Ra on the sequence spaces
c0 and c with the assumptions

(a) L = lim
n→∞

(n+ 1)an exists, finite and nonzero,

(b) an > 0 for all n,

(c) ai 6= aj for i 6= j.

Yildirim [20] under the same assumptions has determined the fine spectrum of
Ra on the sequence space c0.

Yildirim [16] determined the spectrum of Ra on the sequence space bv0 with
the assumptions

(a) L = lim
n→∞

(n+ 1)an exists, finite and nonzero,

(b) an > 0 for all n,

(c) (an) is a monotone decreasing sequence.

The purpose of this paper is to determine the spectrum of Ra on the sequence
space bv0 ∩ ℓ∞ under the same conditions used by Yildirim in [16].

Recently the spectra of some matrix operators have been investigated by Tri-
pathy and Paul ( [12,13]), Tripathy and Saikia [14] and others.

2. The sequence space bv0 ∩ ℓ∞

A sequence (xn) is said to be bounded variation sequence if (∆xn) ∈ ℓ1, where
∆xn = xn − xn+1, for all n ∈ N0.
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A subset E of N is said to have natural density δ(E) if δ(E) = lim
n→∞

1
n

n
∑

k=1

χE(k)

exists, where χE is the characteristic function of E. Clearly, δ(E) = 0 for all finite
subset E of N and δ(Ec) = δ(N − E) = 1− δ(E).

A sequence (xn) is said to be statistically convergent to L if for every ε > 0,
δ({k ∈ N : |xk − L| ≥ ε}). We write xn

stat
→

L or stat− lim xn = L.

Alternatively, a sequence (xn) is said to be statistically convergent to L if and
only if there exists a subset K = {ki : i ∈ N} of N such that δ(K) = 1 and
lim

i→∞
xki

= L.

A sequence (xn) is said to be a sequence of statistically bounded variation if
(∆xni

) ∈ ℓ1 such that δ({ni : i ∈ N}) = 1, where ∆xni
= xni

− xni+1 for all i ∈ N

and we denote (xn) ∈ bv.

Let us consider the sequence (xn) defined by

xn =

{

n, if n = k2, k ∈ N,

n−1, otherwise.

Clearly (xn) ∈ bv.

The above example shows that bv contains some unbounded sequence too.

Now, let us consider the sequence (xn) given by

xn =

{

1, if n = i2, i ∈ N,

0, otherwise.

Clearly (xn) is bounded.

Now, let K1 = {n ∈ N : n = i2, i ∈ N}. Then δ(K1) = 0. If K = N −K1, then
δ(K) = 1. If K = {ki : i ∈ N}, then lim

i→∞
xki

= 0. That is, xn
stat
→

0 and hence,

xn ∈ c0. Also
∑

i

|xki
− xki+1|(= 0) < ∞. So (xn) ∈ bv. Then (xn) ∈ bv ∩ c0 ∩ ℓ∞.

Let us denote bv0 = bv ∩ c0.

In this paper we will mainly deal with this type of sequence spaces. Clearly,
bv0∩ℓ∞ is a Banach space with respect to the norm ||x|| = ||(xn)|| =

∑

n

|xn−xn+1|.
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3. Some important results

We procure the following results those will be used in establishing the results
of this article.

Lemma 3.1 (Tripathy [11], Theorem 5). x = (xn) ∈ bv if and only if there exists
sequences (un) and (vn) such that xn = un + vn for all n ∈ N0 where (un) ∈ bv

and δ({k ∈ N : vk 6= 0}) = 0.

The following result is due to Connor [2] as well as Fast [4].

Lemma 3.2. x = (xn) ∈ c ∩ ℓ∞ if and only if x = y + z, where y = (yn) ∈ c

and z = (zn) ∈ δ0 ∩ ℓ∞, where δ0 is the space of all sequences z = (zn) such that
δ({k ∈ N : zk 6= 0}) = 0.

We formulate the following result in view of Lemma 3.2.

Theorem 3.3. x = (xn) ∈ c0 ∩ ℓ∞ if and only if x = y + z, where y = (yn) ∈ c

and z = (zn) ∈ δ0 ∩ ℓ∞, where δ0 is the space of all sequences z = (zn) such that
δ({k ∈ N : zk 6= 0}) = 0.

4. Matrix operators on bv0 ∩ ℓ∞

Theorem 4.1. If (a) L = lim
n→∞

(n+ 1)an exists, finite and nonzero,

(b) an > 0 for all n,

(c) (an) is a monotone decreasing sequence,

then Ra ∈ B(bv0 ∩ ℓ∞).

Proof: Let A = Ra = (ank), where

ank =

{

an, if k ≤ n,

0, otherwise.

Let x = (xn) ∈ bv0 ∩ ℓ∞. Then x = (xn) ∈ bv.

By Lemma 3.1, x = y + z where y = (yn) ∈ bv and z = (zn) be such that
δ({k ∈ N : zk 6= 0}) = 0. Then clearly we have An(x) = An(y) +An(z).

Since, y = (yn) ∈ bv and A = Ra ∈ B(bv) (Yildirim [17]), so it follows that
Ay = {An(y)} ∈ bv.
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Next, let k ∈ N be such that Ak(z) 6= 0.

Now, Ak(z) 6= 0 ⇒
∑

j

akjzj 6= 0

⇒ ak0z0 + ak1z1 + ak2z2 + ...+ aknzn + ak,n+1zn=1 + ... 6= 0

⇒ akz0 + akz1 + akz2 + ...+ akzk 6= 0

⇒ z0 + z1 + z2 + ...+ zk 6= 0

⇒ at least one zi 6= 0, for 0 ≤ i ≤ k.

⇒ either zk 6= 0 or zk = 0.

If zk = 0, then A0(z) 6= 0 ⇒ z0 = 0.

But, A0(z) =
∑

k

ankzk = a0z0. So, A0(z) 6= 0 ⇒ a0z0 6= 0 ⇒ z0 6= 0.

Hence, Ak(z) 6= 0 ⇒ zk 6= 0.

This implies, {k : Ak(z) 6= 0} ⊆ {k : zk 6= 0}.

Hence δ({k : Ak(z) 6= 0}) ≤ δ({k : zk 6= 0}) = 0 i.e. δ({k : Ak(z) 6= 0}) = 0.
i.e. Az = {An(z)} ∈ δ0.

Therefore, by Lemma 3.1, Ax = {An(x)} ∈ bv.

Again, x = (xn) ∈ bv0 ∩ ℓ∞ ⇒ x ∈ c0 ∩ ℓ∞.

Thus by Theorem 3.3, x = y + z where y = (yn) ∈ c0 and z = (zn) ∈ δ0 ∩ ℓ∞,
where δ0 is the space of all sequences z = (zn) such that δ({k ∈ N0 : zk 6= 0}) = 0.

Now, An(x) =
∑

k

ankxk

= An(y) +An(z).

Since, y = (yn) ∈ c0 and A = Ra ∈ B(c0) (Yildirim [18]), so it follows that
Ay = {An(y)} ∈ c0.

Exactly as above, we can show that δ({k : Ak(z) 6= 0}) = 0 i.e. Az = {An(z)} ∈
δ0. Again, |An(z)| = |

∑

k

ankzk|

= |an0z0 + an1z1 + an2z2 + ...+ annzn + ...|
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= |anz0 + anz1 + anz2 + ...+ anzn

≤
n
∑

k=0

|an||zk|

≤ (n+ 1)an
sup

n
|zn| (2)

Since, L = lim
n→∞

(n+ 1)an, so the sequence {(n+ 1)an} is bounded.

Hence from (2), we have |An(z)| ≤
sup
n
(n + 1)an

sup
n
|zn| and therefore, Az =

{An(z)} ∈ ℓ∞.

Thus, Az = {An(z)} ∈ δ0 ∩ ℓ∞.

Therefore, by Theorem 3.3, Ax = {An(x)} ∈ c0 ∩ ℓ∞.

Hence, Ax = {An(x)} ∈ bv0 ∩ ℓ∞ , for all x = (xn) ∈ bv0 ∩ ℓ∞.

Also, ||Ax|| = sup
n

∣

∣

∣

∣

∑

k

ankxk

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

n
∑

k=0

ankxk

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

n
∑

k=0

anxk

∣

∣

∣

∣

= sup
n
(n+ 1)an

sup
n

|xn| = M, say.

Since, L = lim
n→∞

(n+ 1)an, so the sequence {(n+ 1)an} is bounded and hence,
sup
n
(n+ 1)an exists.

Thus, there exists a constant M > 0 such that ||Ax|| ≤ M , for all x = (xn) ∈
bv0 ∩ ℓ∞.

Hence, A = Ra ∈ bv0 ∩ ℓ∞. ✷

In view of Theorem 2.1 of [16], we state the following result.

Theorem 4.2. If the sequence {(n+1)an} is monotone and lim
n→∞

(n+1)an = L <

∞, then

||Ra|| =
sup
i

∑

n

∣

∣

∣

∣

i
∑

k=0

(ank − an,k+1)

∣

∣

∣

∣

.
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5. Dual space of bv0 ∩ ℓ∞

The generalized duals of some sequence spaces has recently been investigated
by Chandra and Tripathy [1].

Theorem 5.1.
(

bv0 ∩ ℓ∞
)∗

is isometrically isomorphic to bs.

Proof: Let us define T :
(

bv0 ∩ ℓ∞
)∗

→ bs by Tf =
(

f(e(0), f(e(1), f(e(2), ...
)

where e(k) = (0, 0, ..., 1, 0, ...), the only one appears at the k-th place.

Trivially, T is linear.

T is one-to-one

Tf = 0 ⇒
(

f(e(0), f(e(1), f(e(2), ...
)

= (0, 0, 0, ...).

⇒ f(e(j)) = 0, for all j = 0, 1, 2, ....

Let x = (xn) ∈ bv0 ∩ ℓ∞.

Then, x =
∞
∑

j=0

xje
(j)

⇒ f(x) =
∞
∑

j=0

xjf(e
(j)) = 0.

⇒ f = 0, where 0 is the null operator.

Thus, ker(T ) = {0} and hence, T is one-to-one.

T is onto

Let g = (gn) = (g0, g1, g2, ...) ∈ bs.

Let us define h : bv0 ∩ ℓ∞ → C by h(x) =
∞
∑

k=0

(∆x)k
k
∑

j=0

gj , where (∆x)k =

xk − xk+1.

Clearly, h is linear.

Now, x = (xn) =
∞
∑

j=0

xje
(j)

⇒ x = (x0 − x1)(1, 0, 0, ...) + (x1 − x2)(1, 1, 0, ...) + (x2 − x3)(1, 1, 1, ...) + ....

⇒ x =
∞
∑

k=0

(∆x)k
k
∑

j=0

e(j).
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⇒ h(x) =
∞
∑

k=0

(∆x)k
k
∑

j=0

h(e(j)).

Then,
k
∑

j=0

h(e(j)) =
k
∑

j=0

gj , k = 0, 1, 2, ....

That is,

h(e(0)) = g0, h(e
(0))+h(e(1)) = g0+g1, h(e

(0))+h(e(1))+h(e(2)) = g0+g1+g2,
. . ..

Solving, we get h(e(j)) = gj, for all j = 0, 1, 2, ....

Again, |h(x)| =

∣

∣

∣

∣

∣

∞
∑

k=0

(∆x)k
k
∑

j=0

gj

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|(∆x)k|

∣

∣

∣

∣

∣

k
∑

j=0

gj

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|(∆x)k|
sup
n

∣

∣

∣

∣

∣

n
∑

j=0

gj

∣

∣

∣

∣

∣

≤ ||x||bv0∩ℓ∞
||g||bs

Hence, h ∈
(

bv0 ∩ ℓ∞
)∗

.

Thus, for g = (gn) ∈ bs, there exists h ∈
(

bv0 ∩ ℓ∞
)∗

such that

Th = (h(e(0)), h(e(1)), h(e(2)), ...) = (g0, g1, g2, ...) = g.

Therefore, T is onto.

Again, |f(x)| =

∣

∣

∣

∣

∣

f

(

∞
∑

k=0

(∆x)k
k
∑

j=0

e(j)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=0

(∆x)k
k
∑

j=0

f
(

e(j)
)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|(∆x)k|

∣

∣

∣

∣

∣

k
∑

j=0

f
(

e(j)
)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|(∆x)k|
sup
n

∣

∣

∣

∣

∣

n
∑

j=0

f
(

e(j)
)

∣

∣

∣

∣

∣

≤ ||x||bv0∩ℓ∞
||Tf ||bs.

So, ||f || ≤ ||Tf ||bs.
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Also,

∣

∣

∣

∣

∣

n
∑

j=0

f
(

e(j)
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f

(

n
∑

j=0

e(j)

)∣

∣

∣

∣

∣

= |f(1, 1, ..., 1, 0, 0, ...)|, where the first n terms

are 1 each

≤ ||f ||||(1, 1, ..., 1, 0, 0, ...)||

≤ ||f ||.

⇒ sup
n

∣

∣

∣

∣

∣

n
∑

j=0

f
(

e(j)
)

∣

∣

∣

∣

∣

≤ ||f ||.

⇒ ||Tf ||bs ≤ ||f ||.

Therefore, ||Tf ||bs = ||f ||.

Hence,
(

bv0 ∩ ℓ∞
)∗

is isometrically isomorphic to bs. ✷

6. Spectra of the Rhaly operator on the sequence space bv0 ∩ ℓ∞

Theorem 6.1. If the sequence {(n+ 1)an} is monotone and lim
n→∞

{(n+ 1)an} =

L < ∞, then S ∩ (2L,∞) ⊆ σp(Ra, bv0 ∩ ℓ∞, where S = {an : n = 0, 1, 2, ...}.

Proof: Since bv ⊆ bv, c0 ⊆ c0, therefore

bv ∩ c0 ⊆ bv ∩ c0.

⇒ bv0 ⊆ bv0.

⇒ bv0 ∩ ℓ∞ ⊆ bv0 ∩ ℓ∞.

⇒ bv0 ⊆ bv0 ∩ ℓ∞ (since bv0 ∩ ℓ∞ = bv0).

Therefore, σp(Ra, bv0) ⊆ σp(Ra, bv0 ∩ ℓ∞).

But, by Theorem 2.2 of Yildirim [16],we have S ∩ (2L,∞) ⊆ σp(Ra, bv0).

Hence, S ∩ (2L,∞) ⊆ σp(Ra, bv0 ∩ ℓ∞). ✷

Lemma 6.2. If the sequence {(n+1)an} is monotone and lim
n→∞

(n+1)an = L < ∞,

then R∗
a, the adjoint operator of Ra, is the transpose of the matrix Ra on bv0 ∩ ℓ∞

and R∗
a ∈ ((bv0 ∩ ℓ∞)∗ ∼= bs).
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Proof: We establish the proof as proved by Yildirim ( [16], Lemma 2.3). Since
bv0 ∩ ℓ∞ is an AK-space and (bv0 ∩ ℓ∞)∗ ∼= bs, therefore from Wilansky ( [15],
p.266), we have

R∗
a = Rt

a =













a0 a1 a2 a3 ...

0 a1 a2 a3 ...

0 0 a2 a3 ...

0 0 0 a3 ...

. . . . ...













,

Since bv0 ∩ ℓ∞ is a Banach space, so ||Ra||(bv0∩ℓ∞) = ||R∗
a||(bv0∩ℓ∞)∗ = ||Rt

a||bs.

Hence, from Theorem 4.1 and Theorem 4.2, Rt
a ∈ B((bv0 ∩ ℓ∞)∗) . ✷

Lemma 6.3. Yildirim ( [16], Lemma 2.4). Let 0 < L = lim
n→∞

(n + 1)an < ∞ and

Zn =
n
∏

ν=0

(

1− aν

λ

)

, λ 6= 0, λ ∈ C. Then the partial sums of
∞
∑

ν=1
Zν are bounded if

and only if LRe 1
λ
≥ 1, λ 6= L.

Theorem 6.4. If the sequence {(n + 1)an} is monotone and 0 < L = lim
n→∞

(n +

1)an < ∞, then S ∪
({

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

− {0}
)

⊂ σp(R
∗
a, (bv0 ∩ ℓ∞)∗ ∼= bs).

Proof: From Yildirim ( [16], Lemma 2.5), we have

S ∪
({

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

− {0}
)

⊂ σp(R
∗
a, bv

∗
0
∼= bs).

By Theorem 5.1, we have (bv0 ∩ ℓ∞)∗ ∼= bs), therefore

S ∪
({

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

− {0}
)

⊂ σp(R
∗
a, (bv0 ∩ ℓ∞)∗ ∼= bs). ✷

Theorem 6.5. If the sequence {(n + 1)an} is monotone and 0 < L = lim
n→∞

(n +

1)an < ∞, then σ(Ra, bv0 ∩ ℓ∞) = S ∪
{

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

.

Proof: From Yildirim ( [16], Lemma 2.8), we have

S ∪
({

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

})

⊆ σp(R
∗
a, bv0

∗ ∼= bs).

By Theorem 5.1, we have (bv0 ∩ ℓ∞)∗ ∼= bs, therefore

S ∪
{

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

⊆ σp(R
∗
a, (bv0 ∩ ℓ∞)∗ ∼= bs).

But, σp(R
∗
a, (bv0 ∩ ℓ∞)∗) ⊆ σ(R∗

a, (bv0 ∩ ℓ∞)∗) = σ(Ra, bv0 ∩ ℓ∞).

Therefore, S ∪
({

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

})

⊆ σ(Ra, bv0 ∩ ℓ∞).
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Proceeding exactly as in the theorem 2.8 of Yildirim [16], we can show that

σ(Ra, bv0 ∩ ℓ∞) ⊆ S ∪
{

λ :
∣

∣λ− L
2

∣

∣ ≤ L
2

}

.

Hence the result. ✷

Conclusion. In this article we have determined the spectra of the Rally oper-
ator on the class of bounded statistically null bounded variation sequences. This
is a new direction and the work can be applied for investigating spectra of other
matrix operators too.
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