Notes On Generalized Jordan $(\sigma, \tau)^{*}$-Derivations Of Semiprime Rings With Involution

Shuliang Huang and Emine Koç

Key Words: Semiprime *-ring, ${ }^{*}$-derivation, $(\sigma, \tau)^{*}$-derivation, Jordan $(\sigma, \tau)^{*}$ -derivation, Jordan triple $(\sigma, \tau)^{*}$-derivation, generalized Jordan $(\sigma, \tau)^{*}$-derivation, generalized Jordan triple $(\sigma, \tau)^{*}$-derivation

ABSTRACT: Let R be a 6 -torsion free semiprime ${ }^{*}$-ring, τ an endomorphism of R, σ an epimorphism of R and $f: R \rightarrow R$ an additive mapping. In this paper we proved the following result: f is a generalized Jordan $(\sigma, \tau)^{*}$-derivation if and only if f is a generalized Jordan triple $(\sigma, \tau)^{*}$-derivation.

Contents

1 Introduction

1. Introduction

Throughout R will represent an assosiative ring with center Z. Recall that a ring R is prime if $x R y=0$ implies $x=0$ or $y=0$, and semiprime if $x R x=0$ implies $x=0$. An additive mapping $x \mapsto x^{*}$ satisfying $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$ is called an involution, or a *-ring.

An additive mapping $d: R \rightarrow R$ is called a derivation (resp. Jordan derivation) if $d(x y)=d(x) y+x d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) x+x d(x)\right)$ holds for all $x, y \in R$. Let σ and τ be two endomorphisms of R. An additive mapping $d: R \rightarrow R$ is said to be a (σ, τ)-derivation (resp. Jordan (σ, τ)-derivation) if $d(x y)=d(x) \sigma(y)+$ $\tau(x) d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) \sigma(x)+\tau(x) d(x)\right)$ holds for all $x, y \in R$. One can easily prove that every derivation is a Jordan derivation, but converse is in general not true. A famous result due to Herstein [7, Theorem 3.3] asserts that a Jordan derivation of a 2 -torsion free prime ring is a derivation. A brief proof of this result can be found in [2]. A Jordan triple derivation $d: R \rightarrow R$ is an additive mapping satisfying $d(x y x)=d(x) y x+x d(y) x+x y d(x)$, for all $x, y \in R$. In [8], Herstein showed that every Jordan derivation of 2 -torsion free ring is a Jordan triple derivation. Bresar proved that every Jordan triple derivation of a 2 -torsion free semiprime ring is a derivation in [4].

Recently, M. Bresar defined the following notation in [5]. An additive mapping $f: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that

$$
f(x y)=f(x) y+x d(y), \text { for all } x, y \in R
$$

2000 Mathematics Subject Classification: 16W10, 39B05.

One may observe that the concept of generalized derivation includes the concept of derivations, also of the left multipliers when $d=0$. Similarly, an additive mapping $f: R \rightarrow R$ is called a generalized Jordan derivation if there is a Jordan derivation $d: R \rightarrow R$ such that $f\left(x^{2}\right)=f(x) x+x d(x)$, for all $x \in R$ and is called a generalized Jordan triple derivation if there exists a derivation $d: R \rightarrow R$ such that $f(x y x)=f(x) y x+x d(y) x+x y d(x)$, for all $x, y \in R$.

Let R be a ring with involution *. An additive mapping $d: R \rightarrow R$ is said to be a ${ }^{*}$-derivation (resp. Jordan *-derivation) if $d(x y)=d(x) y^{*}+x d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) x^{*}+x d(x)\right)$ holds for all $x, y \in R$. The concept of Jordan *-derivations introduced by Bresar and Vukman in [3]. Also, a Jordan triple *-derivation is an additive mapping $d: R \rightarrow R$ with the property $d(x y x)=$ $d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$, for all $x, y \in R$. In [13], Vukman proved the following result: Let R be a 6 -torsion free semiprime ${ }^{*}$-ring and $d: R \rightarrow R$ be an additive mapping satisfiying $d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$, for all $x, y \in R$, then d is a Jordan *-derivation. In [1], Shakir and Fosner introduced $(\sigma, \tau)^{*}$-derivation, Jordan $(\sigma, \tau)^{*}$-derivation and Jordan triple $(\sigma, \tau)^{*}$ derivation as follows: An additive mapping $d: R \rightarrow R$ is called a $(\sigma, \tau)^{*}$-derivation (resp. Jordan $(\sigma, \tau)^{*}$-derivation) if $d(x y)=d(x) \sigma\left(y^{*}\right)+\tau(x) d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) \sigma\left(x^{*}\right)+\tau(x) d(x)\right)$, for all $x, y \in R$. Also d is called a Jordan triple $(\sigma, \tau)^{*}$-derivation if $d(x y x)=d(x) \sigma\left(y^{*} x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x y) d(x)$, for all $x, y \in R$. Shakir and Fosner extended the above mentioned Vukman's Theorem in the setting of Jordan triple $(\sigma, \tau)^{*}$-derivation.

We study more general concept of Jordan *-derivations. An additive mapping $f: R \rightarrow R$ is called a generalized Jordan ${ }^{*}$-derivation if there exists a Jordan *-derivation $d: R \rightarrow R$ such that $f\left(x^{2}\right)=f(x) x^{*}+x d(x)$, for all $x \in R$. An additive mapping $f: R \rightarrow R$ is called a generalized Jordan triple ${ }^{*}$-derivation if there exists a Jordan triple *-derivation $d: R \rightarrow R$ such that $f(x y x)=f(x) y^{*} x^{*}+$ $x d(y) x^{*}+x y d(x)$, for all $x, y \in R$. Inspired by the above definitions, the notion of generalized Jordan $(\sigma, \tau)^{*}$-derivation was extended as follows: Let σ and τ be two endomorphisms of R. An additive mapping $f: R \rightarrow R$ is called a generalized Jordan $(\sigma, \tau)^{*}$-derivation if there exists a Jordan $(\sigma, \tau)^{*}$-derivation $d: R \rightarrow R$ such that $f\left(x^{2}\right)=f(x) \sigma\left(x^{*}\right)+\tau(x) d(x)$, for all $x \in R$. We call f a generalized Jordan triple $(\sigma, \tau)^{*}$-derivation if there exists a Jordan triple $(\sigma, \tau)^{*}$-derivation $d: R \rightarrow R$ such that $f(x y x)=f(x) \sigma\left(y^{*} x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x y) d(x)$, for all $x, y \in R$.

In [3], Bresar and Vukman studied some algebraic properties of Jordan *derivations. These mappings are closely connected with a question of representability of quadratic forms by bilinear forms. This is shown by Zalar in [14]. Also, Bresar and Zalar obtained a representation of Jordan *-derivations in terms of left an right centralizers on the algebra of compact operators on a Hilbert space in [6]. It turns out that the question whether each quadratic form can be represented by some bilinear form is intimately connected with the question whether every Jordan *-derivation is inner, as shown by Semrl [10]. For results concerning this theory we refer to [11], [12], [15].

The major purpose of this paper is to prove the theorem [1, Theorem 2.1] for
a generalized Jordan $(\sigma, \tau)^{*}$-derivation of R.

2. Results

Theorem 2.1. Let R be a 6-torsion free semiprime ${ }^{*}$-ring, τ an endomorphism of R, σ an epimorphism of R and $f: R \rightarrow R$ an additive mapping. Then f is a generalized Jordan $(\sigma, \tau)^{*}$-derivation if and only if f is a generalized Jordan triple $(\sigma, \tau)^{*}$-derivation.

Proof: Assume that f is a generalized Jordan $(\sigma, \tau)^{*}$-derivation. That is

$$
\begin{equation*}
f\left(x^{2}\right)=f(x) \sigma\left(x^{*}\right)+\tau(x) d(x), \text { for all } x \in R \tag{2.1}
\end{equation*}
$$

The linearization of the relation below

$$
f\left(x^{2}+x o y+y^{2}\right)=f(x+y) \sigma\left(x^{*}+y^{*}\right)+\tau(x+y) d(x+y)
$$

where $x o y=x y+y x$. By the additive mapping of f in the above relation, we see that

$$
\begin{aligned}
f\left(x^{2}\right)+f(x o y)+f\left(y^{2}\right) & =f(x) \sigma\left(x^{*}\right)+\tau(x) d(x)+f(x) \sigma\left(y^{*}\right)+f(y) \sigma\left(x^{*}\right) \\
& +\tau(x) d(y)+\tau(y) d(x)+f(y) \sigma\left(y^{*}\right)+\tau(y) d(y)
\end{aligned}
$$

By the equation (2.1), we obtain that

$$
\begin{equation*}
f(x o y)=f(x) \sigma\left(y^{*}\right)+f(y) \sigma\left(x^{*}\right)+\tau(x) d(y)+\tau(y) d(x), \text { for all } x, y \in R \tag{2.2}
\end{equation*}
$$

Using d is a Jordan $(\sigma, \tau)^{*}$-derivation, we get

$$
\begin{equation*}
d(x o y)=d(x) \sigma\left(y^{*}\right)+d(y) \sigma\left(x^{*}\right)+\tau(x) d(y)+\tau(y) d(x), \text { for all } x, y \in R \tag{2.3}
\end{equation*}
$$

Also, x^{2} oy $+2 x y x=x o(x o y)$, we arrive at

$$
f\left(x^{2} o y+2 x y x\right)=f(x o(x o y)), \text { for all } x, y \in R
$$

Using (2.2), we see that

$$
\begin{aligned}
f\left(x^{2} o y+2 x y x\right) & =f\left(x^{2}\right) \sigma\left(y^{*}\right)+f(y) \sigma\left(\left(x^{2}\right)^{*}\right)+\tau\left(x^{2}\right) d(y) \\
& +\tau(y) d\left(x^{2}\right)+f(2 x y x) \\
& =f(x) \sigma\left(x^{*}\right) \sigma\left(y^{*}\right)+\tau(x) d(x) \sigma\left(y^{*}\right)+f(y) \sigma\left(\left(x^{2}\right)^{*}\right) \\
& +\tau\left(x^{2}\right) d(y)+\tau(y) d(x) \sigma\left(x^{*}\right)+\tau(y) \tau(x) d(x)+f(2 x y x)
\end{aligned}
$$

Appliying (2.3) in the last equation, we have

$$
\begin{aligned}
f(x o(x o y)) & =f(x) \sigma\left((x o y)^{*}\right)+f(x o y) \sigma\left(x^{*}\right)+\tau(x) d(x o y)+\tau(x o y) d(x) \\
& =f(x) \sigma\left(x^{*} y^{*}\right)+f(x) \sigma\left(y^{*} x^{*}\right)+f(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right) \\
& +f(y) \sigma\left(x^{*}\right) \sigma\left(x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(y) d(x) \sigma\left(x^{*}\right) \\
& +\tau(x) d(x) \sigma\left(y^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x) \tau(x) d(y) \\
& +\tau(x) \tau(y) d(x)+\tau(x y) d(x)+\tau(y x) d(x) .
\end{aligned}
$$

Last two equations imply that

$$
2 f(x y x)=2 f(x) \sigma\left(y^{*} x^{*}\right)+2 \tau(x) d(y) \sigma\left(x^{*}\right)+2 \tau(x y) d(x), \text { for all } x, y \in R
$$

Since R is $2-$ torsion free, we get

$$
f(x y x)=f(x) \sigma\left(y^{*} x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x y) d(x), \text { for all } x, y \in R
$$

Hence, we obtain that f is a generalized Jordan triple $(\sigma, \tau)^{*}$-derivation.
Let us prove the reverse. We have

$$
\begin{equation*}
f(x y x)=f(x) \sigma\left(y^{*} x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x y) d(x), \text { for all } x, y \in R \tag{2.4}
\end{equation*}
$$

Taking y by $x y x$ in (2.4) and using (2.4), [1, Theorem 2.1], we obtain

$$
\begin{aligned}
& f\left(x^{2}\right) \sigma\left(y^{*}\left(x^{*}\right)^{2}\right)+\tau\left(x^{2}\right) d(y) \sigma\left(\left(x^{*}\right)^{2}\right)+\tau\left(x^{2} y\right) d(x) \sigma\left(x^{*}\right)+\tau\left(x^{2} y x\right) d(x) \\
& =f(x) \sigma\left(x^{*} y^{*}\left(x^{*}\right)^{2}\right)+\tau(x) d(x) \sigma\left(y^{*}\left(x^{*}\right)^{2}\right)+\tau\left(x^{2}\right) d(y) \sigma\left(\left(x^{*}\right)^{2}\right) \\
& +\tau\left(x^{2} y\right) d(x) \sigma\left(x^{*}\right)+\tau\left(x^{2} y x\right) d(x)
\end{aligned}
$$

and so,

$$
\left(f\left(x^{2}\right)-f(x) \sigma\left(x^{*}\right)-\tau(x) d(x)\right) \sigma\left(y^{*}\left(x^{*}\right)^{2}\right)=0
$$

The relation above reduces to

$$
A(x) \sigma\left(y^{*}\right) \sigma\left(\left(x^{*}\right)^{2}\right)=0, \text { for all } x, y \in R
$$

where $A(x)$ stands for $f\left(x^{2}\right)-f(x) \sigma\left(x^{*}\right)-\tau(x) d(x)$. Since σ is an epimorphism of R, we find that

$$
\begin{equation*}
A(x) R \sigma\left(\left(x^{*}\right)^{2}\right)=0, \text { for all } x \in R \tag{2.5}
\end{equation*}
$$

If we multiplying (2.4) from the left side by $\sigma\left(\left(x^{*}\right)^{2}\right)$ and from the right side by $A(x)$, we get

$$
\sigma\left(\left(x^{*}\right)^{2}\right) A(x) R \sigma\left(\left(x^{*}\right)^{2}\right) A(x)=0, \text { for all } x \in R
$$

Since R is semiprime ring, it follows that

$$
\begin{equation*}
\sigma\left(\left(x^{*}\right)^{2}\right) A(x)=0, \text { for all } x \in R \tag{2.6}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
A(x) \sigma\left(\left(x^{*}\right)^{2}\right)=0, \text { for all } x \in R \tag{2.7}
\end{equation*}
$$

Writing x by $x+y$ in (2.7), we have

$$
\begin{aligned}
0 & =A(x+y) \sigma\left(\left(x^{*}+y^{*}\right)^{2}\right) \\
& =\left(f\left(x^{2}+x o y+y^{2}\right)-f(x+y) \sigma\left(x^{*}+y^{*}\right)-\tau(x+y) d(x+y)\right) \sigma\left(\left(x^{*}+y^{*}\right)^{2}\right) \\
& =\left(f\left(x^{2}\right)-f(x) \sigma\left(x^{*}\right)-\tau(x) d(x)+f\left(y^{2}\right)-f(y) \sigma\left(y^{*}\right)-\tau(y) d(y)\right. \\
& \left.+f(\text { xoy })-f(x) \sigma\left(y^{*}\right)-f(y) \sigma\left(x^{*}\right)-\tau(x) d(y)-\tau(y) d(x)\right) \sigma\left(\left(x^{*}+y^{*}\right)^{2}\right) .
\end{aligned}
$$

That is,

$$
(A(x)+A(y)+B(x, y)) \sigma\left(\left(x^{*}+y^{*}\right)^{2}\right)=0, \text { for all } x, y \in R
$$

where $B(x, y)$ stands for $f(x o y)-f(x) \sigma\left(y^{*}\right)-f(y) \sigma\left(x^{*}\right)-\tau(x) d(y)-\tau(y) d(x)$. Appliying equation (2.7), we get

$$
\begin{align*}
0 & =A(y) \sigma\left(\left(x^{*}\right)^{2}\right)+A(x) \sigma\left(\left(y^{*}\right)^{2}\right)+A(x) \sigma\left(x^{*} o y^{*}\right)+A(y) \sigma\left(x^{*} o y^{*}\right) \tag{2.8}\\
& +B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)+B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)+B(x, y) \sigma\left(x^{*} o y^{*}\right)
\end{align*}
$$

Putting $-x$ for x in (2.8) and using $A(-x)=A(x)$ and $B(-x, y)=-B(x, y)$, we obtain that

$$
\begin{align*}
0 & =A(y) \sigma\left(\left(x^{*}\right)^{2}\right)+A(x) \sigma\left(\left(y^{*}\right)^{2}\right)-A(x) \sigma\left(x^{*} o y^{*}\right)-A(y) \sigma\left(x^{*} o y^{*}\right) \tag{2.9}\\
& -B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)-B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)+B(x, y) \sigma\left(x^{*} o y^{*}\right)
\end{align*}
$$

By comparing (2.8) and (2.9), we arrive at

$$
2 A(x) \sigma\left(x^{*} o y^{*}\right)+2 A(y) \sigma\left(x^{*} o y^{*}\right)+2 B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)+2 B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)=0
$$

Since R is 2 -torsion free, we have

$$
\begin{equation*}
A(x) \sigma\left(x^{*} o y^{*}\right)+A(y) \sigma\left(x^{*} o y^{*}\right)+B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)+B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)=0 \tag{2.10}
\end{equation*}
$$

Replacing x by $2 x$ in (2.8), we see that

$$
\begin{aligned}
0 & =4 A(y) \sigma\left(\left(x^{*}\right)^{2}\right)+4 A(x) \sigma\left(\left(y^{*}\right)^{2}\right)+8 A(x) \sigma\left(x^{*} o y^{*}\right)+2 A(y) \sigma\left(x^{*} o y^{*}\right) \\
& +8 B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)+2 B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)+4 B(x, y) \sigma\left(x^{*} o y^{*}\right)
\end{aligned}
$$

Using (2.8) and (2.10) in the last equation, we get

$$
6 A(y) \sigma\left(x^{*} o y^{*}\right)+6 B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)=0, \text { for all } x, y \in R
$$

Since R is 6 -torsion free, we have

$$
A(y) \sigma\left(x^{*} o y^{*}\right)+B(x, y) \sigma\left(\left(y^{*}\right)^{2}\right)=0, \text { for all } x, y \in R
$$

Again appliying equation (2.10), we find that

$$
\begin{equation*}
A(x) \sigma\left(x^{*} o y^{*}\right)+B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right)=0, \text { for all } x, y \in R \tag{2.11}
\end{equation*}
$$

Right multiplication of (2.11) by $A(x)$, we obtain that

$$
A(x) \sigma\left(x^{*} o y^{*}\right) A(x)+B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right) A(x)=0
$$

Using (2.6) gives that

$$
A(x) \sigma\left(x^{*} y^{*}\right) A(x)+A(x) \sigma\left(y^{*} x^{*}\right) A(x)=0, \text { for all } x, y \in R
$$

By the surjectivity of σ, it follows that

$$
\begin{equation*}
A(x) \sigma\left(x^{*}\right) y A(x)+A(x) y \sigma\left(x^{*}\right) A(x)=0, \text { for all } x, y \in R . \tag{2.12}
\end{equation*}
$$

Replacing y by $y \sigma\left(x^{*}\right)$ in the above relation, we get

$$
A(x) \sigma\left(x^{*}\right) y \sigma\left(x^{*}\right) A(x)+A(x) y \sigma\left(\left(x^{*}\right)^{2}\right) A(x)=0, \text { for all } x, y \in R
$$

Again using (2.6) implies that

$$
A(x) \sigma\left(x^{*}\right) y \sigma\left(x^{*}\right) A(x)=0, \text { for all } x, y \in R
$$

and so

$$
\sigma\left(x^{*}\right) A(x) \sigma\left(x^{*}\right) y \sigma\left(x^{*}\right) A(x) \sigma\left(x^{*}\right)=0, \text { for all } x, y \in R .
$$

By the semiprimeness of R, we have

$$
\sigma\left(x^{*}\right) A(x) \sigma\left(x^{*}\right)=0, \text { for all } x \in R .
$$

Multiplying (2.12) by $\sigma\left(x^{*}\right)$ from right and using the last equation, we see that

$$
A(x) \sigma\left(x^{*}\right) y A(x) \sigma\left(x^{*}\right)=0, \text { for all } x, y \in R
$$

and so

$$
\begin{equation*}
A(x) \sigma\left(x^{*}\right)=0, \text { for all } x \in R \tag{2.13}
\end{equation*}
$$

Substitution $x+y$ for x, we have

$$
\begin{aligned}
0 & =A(x+y) \sigma\left(x^{*}+y^{*}\right) \\
& =(A(x)+A(y)+B(x, y)) \sigma\left(x^{*}+y^{*}\right)
\end{aligned}
$$

In view of equation (2.13) the last equation reduces to

$$
A(x) \sigma\left(y^{*}\right)+A(y) \sigma\left(x^{*}\right)+B(x, y) \sigma\left(x^{*}\right)+B(x, y) \sigma\left(y^{*}\right)=0
$$

Replacing x by $-x$ in the above relation and comparing the relation so obtained with the above relation we get

$$
\begin{equation*}
A(x) \sigma\left(y^{*}\right)+B(x, y) \sigma\left(x^{*}\right)=0, \text { for all } x, y \in R \tag{2.14}
\end{equation*}
$$

Right multiplication of (2.14) by $\sigma\left(x^{*}\right) A(x)$, we conclude that

$$
A(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right) A(x)+B(x, y) \sigma\left(\left(x^{*}\right)^{2}\right) A(x)=0
$$

Using (2.6), we obtain that

$$
A(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right) A(x)=0
$$

and so

$$
\sigma\left(x^{*}\right) A(x) y \sigma\left(x^{*}\right) A(x)=0
$$

Since R is semiprime ring, we have

$$
\sigma\left(x^{*}\right) A(x)=0, \text { for all } x \in R
$$

We right multiple in relation (2.14) by $A(x)$ and then use the above relation to get

$$
A(x) \sigma\left(y^{*}\right) A(x)=0, \text { for all } x, y \in R
$$

By the surjectivity of σ and semiprimeness of R, we arrive at $A(x)=0$, for all $x \in R$. This means that $f\left(x^{2}\right)=f(x) \sigma\left(x^{*}\right)+\tau(x) d(x)$, for all $x \in R$, and so f is a generalized Jordan $(\sigma, \tau)^{*}$-derivation, which completes the proof.

Corollary 2.2. Let R be a 6-torsion free semiprime ${ }^{*}$-ring and $f: R \rightarrow R$ an additive mapping. Then f is a generalized Jordan*-derivation if and only if f is a generalized Jordan triple-derivation

The following corollary which is proved Vukman in [13], is a direct consequence of Theorem 2.1.

Corollary 2.3. Let R be a 6 -torsion free semiprime ${ }^{*}$-ring and $d: R \rightarrow R$ an additive mapping. Then d is a Jordan*-derivation if and only if

$$
d(x y x)=d(x) y * x^{*}+x d(y) x^{*}+x y d(x), \text { for all } x, y \in R .
$$

In particular, if we take $f=d$ in Theorem 2.1, then we have the following result which is a generalization of [1, Theorem 2.1] even without σ an automorphism assumption on ring.

Corollary 2.4. Let R be a 6 -torsion free semiprime ${ }^{*}$-ring, τ an endomorphism of R, σ an epimorphism of R and $d: R \rightarrow R$ an additive mapping. Then d is a Jordan $(\sigma, \tau)^{*}$-derivation if and only if

$$
d(x y x)=d(x) \sigma\left(y^{*} x^{*}\right)+\tau(x) d(y) \sigma\left(x^{*}\right)+\tau(x y) d(x), \text { for all } x, y \in R
$$

We can give a following corollary in view of Corollary 2.4 , which is a generalization of [9, Theorem 2].

Corollary 2.5. Let R be a 6 -torsion free semiprime $*-$ ring, θ an epimorphism of R. An additive mapping $T: R \rightarrow R$ is a Jordan left $\theta^{*}-$ centralizer on R if and only if $T(x y x)=T(x) \theta\left(y^{*} x^{*}\right)$, for all $x, y \in R$.

Acknowledgments

The authors wish to express their sincere thanks to the referee for valuable suggestions

References

1. Ali, S., Fosner, A., On Jordan $(\alpha, \beta)^{*}$-derivation in semiprime *- ring, Int. J. Algebra, 2010, 4(3), 99-108.
2. Bresar, M., Vukman, J., Jordan derivations on prime rings, Bull. Austral. Math. Soc., 1988, 37, 321-322.
3. Bresar, M., Vukman, J., On some additive mappings in rings with involution, Aequationes Math., 1989, 38, 178-185.
4. Bresar, M., Jordan mappings of semiprime rings, J. Algebra, 1989, 127, 218-228.
5. Bresar, M., On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 1991, 33, 89-93.
6. Bresar, M., Zalar, B., On the structure of Jordan*-derivations, Colloquium Math., 1992, 63(2), 163-171.
7. Herstein, I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc., 1957, 8, 1104-1110.
8. Herstein, I. N., Topics in ring theory, The University of Chicago Press, Chicago, London, 1969.
9. Liu, C. K., Shiue, W. K., Generalized Jordan triple (θ, ϕ) - derivations of semiprime rings, Taiwanese J. Math., 2007, 11, 1397-1406.
10. Semrl, P., Quadratic functionals and Jordan *-derivations, Studia Math., 1991, 97, 157-165.
11. Vukman, J., A result concerning additive functions in hermitian Banach *-algebras and an application, Proc. Amer. Math. Soc., 1984, 91, 367-372.
12. Vukman, J., Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc., 1987, 100, 133-136.
13. Vukman, J., A note on Jordan*-derivations in semiprime rings with involution, Int. Math. Forum, 2006, 13, 617-622.
14. Zalar, B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 1991, 32(4), 609-614.
15. Zalar, B., Jordan*-derivation pairs and quadratic functionals on modules over *-rings, Aequationes Math., 1997, 54, 31-43.
```
Shuliang Huang
Chuzhou University, Department of Mathematics,
Chuzhou Anhui, 239012, P. R. China
E-mail address: shulianghuang@sina.com
and
Emine Koç
Cumhuriyet University, Faculty of Science,
Department of Mathematics, 58140, Sivas - TURKEY
URL: http://www.cumhuriyet.edu.tr
E-mail address: eminekoc@cumhuriyet.edu.tr
```

