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An Inverse Sturm-Liouviile Problem for a Hill’s Equation

Münevver Tuz

abstract: In this paper, we consider Hill’s equation −y′′ + q(x)y = λy, where
q ∈ L1 [0, π] . A Hill equation defined on a semi-infinite interval will in general have
a mixed spectrum. The continuous spectrum will in general consist of an infinite
number of disjoint finite intervals. Between these intervals, point eigenvalues can
exist. It is shown that under suitable hypotheses on the spectrum a full knowledge ot
the spectrum leads to a unique determination of the potential function in the Hill’s
equation. Moreover , it is shown here that if q(x) is prescribed over the interval
[

π

2
, π

]

, then a single spectrum suffices to determined q(x) on the interval
[

0, π

2

]

.
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1. Introduction

Direct and inverse spectral problems for differential operators without disconti-
nuities have been thoroughly studied.There arc at least four different versions of the
inverse Sturm-Liouville problem.The best known is the one studied by Gel’fand and
Levitan [7], in which the potential and the boundary conditions are uniquely deter-
mined by the spectral function. This ease has also been investigated by Marchenko
[17], Krein [13] and Zikov [24]. In the second version, the potential and the bound-
ary conditions are uniquely determined by two spectra. This case can be reduced
to the previous one as shown by Marchenko [17], Levitan [15], Gasymov and Lev-
itan [6] and Zikov [24]. In the third version, the potential is uniquely determined
by the boundary conditions and two-possible reduced-spectra. This ease has been
studied by Borg [3], Levinson [14] and Hochstadt [9]. The fact, that the boundary
conditions are known implies that the lowest eigenvalue in one of the spectra is
superfluous. Borg [3], Levinson [14], and Hochstadt [9] have shown that if the
boundary conditions and one-possible reduced-spectrum are given, then the poten-
tial is uniquely determined, provided it is an even function around the middle of
the interval.In this paper we will present a constructive method for the last case.
However, some of the results can be extended to the other versions as well. The
basic result is an extension of a formula due to Hochstadt [9] for the difference
of two potentials and our proof rests on the technique developed by Hochstadt
[9]. This formula leads directly to several uniqueness theorems due to Borg [3],
Levinson [14], Hochstadt [9] and Hald [8], as well as a new weIl-posedness result.
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Hochstadt [9] has pointed out that his formula leads to an algorithm for solving
the inverse Sturm-Liouville problem. The trick is to reduce the problem to solving
a system of ordinary differential equations.

The presence of continuities produces essential qualitative modifications in the
investigation of the operators. Some aspects of direct and inverse problems for
continuous boundary value problems in various formulations have been considered
in [4,20] and other works.If q (x) is known on the interval

[

1

2
, 1
]

, then q(x) on

the interval
[

0, 1
2

]

is uniquely determined by the above data.Also, if q
(

1

2
− x
)

=

q
(

1

2
+ x
)

, then q(x) is uniquely determined on the interval [0, 1] by the above
data.In [20] the continuous inverse problem is considered on the half-line. Boundary
value problems with singularities have been studied in [1,4] for further discussion
see the references therein.A representation with transformation operator of problem
was obtained in [2], as in [1].

In this paper we shall be concerned with an inverse problem for the Sturm
Liouville equation.In this section we will consider two Sturm-Liouville problems
with different potentials and different boundary conditions. We will assume that
the potentials are even functions around the middle of the interval. The main result
is that if the sum of the absolute value of the differences of the eigenvalues of the
two Sturm-Liouville problems is finite, then the potentials differ by a continuous
function. We consider the diferential equation

− y′′ + q(x)y = λy, (1.1)

over the interval [0, π] where λ is a real parametre, which may be extended to
the real line by periodicity.We denote by y1(x, λ) and y2(x, λ) solutions of (1.1)
satisfying the initial conditions y1(0, λ) = y′2(0, λ) = 1 and y′1(0, λ) = y2(0, λ) = 0.
We call ∆(λ) = y′2(π, λ) + y1(π, λ) a Hill (or Ljapunov) function. We have we
impose two sets of boundary conditions, namely, the periodic boundary conditions

y(0) = y(π), y′(0) = y′(π), (1.2)

and the semi-periodic boundary conditions

y(0) = −y(π), y′(0) = −y′(π). (1.3)

Let λn (n = 0, 1, ..) denote the periodic eigenvalues of (1.1) with the boundray
conditions (1.2) and λ0, λ1, λ2, ... the zeros of 2 − ∆(λ). µn (n = 0, 1, ...) denote
the semi-periodic eigenvalues of (1.1) with the boundray conditions (1.3) and also
µ1, µ2, µ3, .. is the zeros of 2 + ∆(λ). It is well known that

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < ... . (1.4)

Along with the problem (1.2) and (1.3), we consider yet another problem

−y′′ + q(x)y = λy,

y(0) = y(π) = 0. (1.5)
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We denote the spectrum of the problem (1.5) by ν1 < ν2 < ν3 < ... It is well
known that λ0 < µ0 ≤ ν1 ≤ µ1 < λ1 ≤ ν2 ≤ λ2 < µ2 ≤ ν3 ≤ µ3 < ....It is known
that 4 −∆2(λ) has only a finite number of simple zeros, we also assume, without
loss of generality

∫

q(x)dx = 0.

We shall consider a variation of the abouve inverse problem in that we shall
not require any information about a second spectrum but rather suppose q(x) is
known almost eweywhere on

[

π

2
, π
]

.

In this paper, we consider Hill’s equation −y′′+q(x)y = λy, where q ∈ L1 [0, π] .
A Hill equation defined on a semi-infinite interval will in general have a mixed
spectrum. The continuous spectrum will in general consist of an infinite number
of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It
is shown that under suitable hypotheses on the spectrum a full knowledge ot the
spectrum leads to a unique determination of the potential function in the Hill’s
equation. Moreover , it is shown here that if q(x) is prescribed over the interval
[

π

2
, π
]

, then a single spectrum suffices to determined q(x) on the interval
[

0, π
2

]

.

2. Statement and Proof of Results

In this section, we state and prove our main results.

Theorem 2.1. Consider the operator

Lυ = −υ′′ + q(x)υ = λυ, (2.1)

where q(x + π) = q(x). First q(x) will be assumed to be integrable on the interval

(0, π) , that is

π
∫

0

|q(x)| dx <∞. Let {λn} be the spectrum of L subject to (1.2) and

(1.3).

Consider a second operator

L̃υ = −υ′′ + q̃(x)υ = λυ, (2.2)

where q̃ integrable on (0, π) and satisfy

q̃ (x) = q (x) on
(π

2
, π
)

. (2.3)

Suppose that the spectrum of L̃ subject to (1.2) is also {λn}. Then q̃ (x) = q (x)
almost everywhere on (0, π).
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Proof: The operator to be studied here is defined by

Lu = −u′′ + q(x)u,

u (0) cosα+ u′ (0) sinα = 0, (2.4)

L̃ u = −u′′ + q̃(x)u,

u (0) cos α̃+ u′ (0) sin α̃ = 0, (2.5)

where q(x), q̃ (x) ∈ L1 [0, π] and also satisfies the πperiodicity conditions. The
angles α, α̃ satisfy

0 <
sinα

sin α̃
<∞. (2.6)

We also assume that the associated Hill’s equations

u′′ + (λ− q)u = 0, (2.7)

and
ũ′′ + (λ− q̃) ũ = 0

have the same discriminant ∆(λ). The discriminant ∆(λ) of (2.4) is defined by
∆(λ) = u′2(π, λ) + u1(π, λ). u and ũ denote the corresponding solution ∆(λ) = 2.
With (2.4) we can associate two linearly independent solutions defined by the initial
conditions

u1 (0) = u′2 (0) = 1,

u′1 (0) = u2 (0) = 0. (2.8)

According to Floquet’s theorem, if λ does not belong to the simple spectrum
then (2.7) has solutions satisfying

u+ (x+ π) = ρ+u+ (x) , u− (x+ π) = ρ−u− (x) ,

where ρ+ and ρ− are solutions of

ρ2 −∆(λ)ρ+ 1 = 0.

Then, u satisfies the Volterra integral equation

u(x) = cos
√
λx+

1√
λ
sin

√
λx+

1√
λ

π
∫

0

sin
√
λ (x− t) q(t)u(t)dt. (2.9)

From (2.9) follows that for each x, u(x, λ) is an entire function of λ of order 1

2

and asymptotically, we have

u = cos
(√

λx
)

+O

(

e|Im
√
λ|x

λ

)

, (2.10)
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u′ = −
√
λ sin

(√
λx
)

+O
(

e|Im
√
λ|x
)

, (2.11)

(see Titchmarsh [22]). In addition it can be shown that there exists a KernelK(x, t)
continuous on (0, π) x (0, π) such that every solution of (2.4) can he expressed in
the form

u(x, λ) = cos
(√

λx
)

+

x
∫

0

K(x, t) cos
(√

λt
)

dt. (2.12)

The Kernel K(x, t) is obtained from the solution of a certain Goutsat problem
associated with the equation

Kxx −Ktt − qK = 0.

Results analogous to (2.12) hold for ũ, the solution to (2.7) and (2.8) in terms
of a Kernel K̃(x, t) which has properties similar to K̃(x, t). It should be mentioned
that both K and K̃ depend upon α. I fowever, since we shall assume α is fixed
throughout the problem, we shall not denote this dependence explicitly.

Using equation (2.12) and its analogue for ũ, we find that

u ũ = cos2
(√

λx
)

+

x
∫

0

(

K(x, t) + K̃(x, t)
)

cos
(√

λt
)

cos
(√

λx
)

dt(2.13)

+

x
∫

0

K(x, t) cos
(√

λt
)

dt

x
∫

0

K̃(x, s) cos
(√

λs
)

ds.

By extending the range of K(x, t) and K̃(x, t) evenly with respect to the second
argument, we can rewrite (2.13) as

u ũ =
1 + cos

(

2
√
λx
)

2
+

x
∫

0

K̃(x, τ ) cos
(

2
√
λτ
)

dτ , (2.14)

where

K̃(x, t) = 2[K(x, x− 2τ) + K̃(x, x− 2τ) (2.15)

+

τ
∫

−x+2τ

K(x, s)K̃(x, s− 2τ)ds+

x−2τ
∫

−x

K(x, s)K̃(x, s+ 2τ)ds].

We next define the function

w (λ) = u1(π) sinβ − u′2(π) cosβ, (2.16)

u1 (π) = −ρ− sinβ , u′2 (π) = ρ− cosβ. (2.17)
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The zeros of w (λ) are the eigenvalues of L or L̃ subject to (1.2) and hence it
has only simple zeros because of the separated boundray conditions. Using (2.10)-
(2.11) and (2.16) we obtain the asymptotic formulas

w (λ) = −
√
λ sinβ sin

√
λ+O

(

e|Im
√
λ|x) . (2.18)

The asymptotic results (2.8) and (2.9) imply that u and ũ are entire functions
of order 1

2
and hence w (λ) is also an entire function of order 1

2
. In (2.7) multiplying

the first equation of (2.10) by ũ and u. Hence, this equation integrating, we have

π
∫

0

(

ũu
′′ − ũ′′u

)

dx+

π
∫

0

(q̃ − q) ũu dx = 0. (2.19)

But, by virtue of the boundary conditions

π
∫

0

(

ũu
′′ − ũ′′u

)

dx = ũu
′ − ũ′u |π0= 0. (2.20)

Define

Q(x) ≡ q̃ − q, (2.21)

B(λ) =

π

2
∫

0

Q(x)ũu dx. (2.22)

From the properties of u and ũ, we see that is an entire function. For λ = λn,

we see that the first term in (2.20) vanishes and hence

B(λn) = 0. (2.23)

But this means that the set of zeros of w (λ) is contained in the set of zeros of
B(λ). In addition using (2.12) in (2.22), we see that for all complex λ

|B(λ)| ≦Me(
1

2 )|2τ |, (2.24)

for some constant M.

We next consider the quotient as following

ψ (λ) ≡ B(λ)

w (λ)
. (2.25)

Here ψ (λ) is an entire function. Using (2.18) and (2.24), we see that

|ψ (λ)| = O

(

1√
λ

)

,
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for large |λ| . But by Liouville’s theorem, we must have

ψ (λ) = 0 for all λ (2.26)

or
B(λ) = 0.

It should be mentioned at this time that the factor of 1

2
in the exponent in

(2.24), which corresponds to the length of the interval over wich the functions q
and q̃ agree, is cricial for the validity of our method, for otherwise |ψ (λ)| might
have an exponential growth at infinity.

Substituting (2.13) into (2.22), we obtain as a consequence of (2.26)

1

2

π

2
∫

0

Q(x)



1 + cos
(

2
√
λx
)

+

x
∫

0

K̃(x, τ ) cos
(

2
√
λτ
)

dt



 dx = 0, (2.27)

for all λ. This can be rewriten as

π

2
∫

0

Q(x)dx +

π

2
∫

0

cos
(

2
√
λx
)






Q(τ ) +

π

2
∫

τ

Q(x)K̃(x, τ )dx






dτ = 0. (2.28)

Letting λ→ ∞ for real λ, we see from the Riemann-Lebesque Lemma that we
have

∫

Q(x)dx = 0,

and
π

2
∫

0

cos
(

2
√
λx
)






Q(τ ) +

π

2
∫

τ

Q(x)K̃(x, τ )dx






dτ = 0. (2.29)

But from the completeness of the functions cos
(

2
√
λx
)

,we see that the inte-

grand in(2.29) must also vanish identically. Therefore, we obtain

Q(τ ) +

π

2
∫

τ

Q(x)K̃(x, τ )dx = 0 for 0 < τ <
π

2
. (2.30)

But the equation in (2.30) is a homogenous Volterra integral integral equation
and has only the zero solution. Thus, we have obtained almost everywhere

Q = q̃ − q = 0.

Theorem is proved.
✷
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