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On Solutions of Generalized Kinetic Equations of Fractional Order

Anjali Gupta and C.L. Parihar

Abstract: The object of the present paper is to derive the solution of generalized
kinetic equations of fractional order involving the Wright generalized Bessel function
or Bessel-Mitland function. Results obtained by Chaurasia and Pandey [24] are
derived more precisely through results obtained in the present paper in terms of K4

- function obtained by Sharma [12] belived to be new. Special case, involving the
F-function is considered.
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1. Introduction

Fractional Calculus and special functions have contributed a lot to mathemat-
ical physics and its various branches. The great use of mathematical physics in
distinguished astrophysical problems has attracted astronomers and physicists to
pay more attention to available mathematical tools that can be widely used in
solving several problems of astrophysics/physics.The fractional kinetic equations
discussed here can be used to investigate a wide class of known fractional kinetic
equations.A spherically symmetric non-rotating, self-gravitating model of star like
the sun is assumed to be in thermal equilibrium and hydro static equilibrium.
The star is characterized by its mass, luminosity effective surface temperature ,
radius, central density and central temperature. The stellar structures and their
mathematical models are investigated on the basis of above characters and some
additional information related to the equation of nuclear energy generation rate
and the opacity.

Consider an arbitrary reaction characterized by a time dependent quantityN =
N(t). It is possible to calculate the rate of change by the equation dN

dt
= −d+p. In

general, through feedback or other interaction mechanism, destruction and produc-
tion depend on the quantity N itself: d = d(N) or p = p(N). This dependence is
complicated since the destruction or production at time t depend not only on N(t)
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but also on the past historyN(τ), τ < t, of the variable N. This may be represented
by Haubold and Mathai [10]

dN

dt
= −d(Nt) + p(Ni) (1.1)

where Nt denotes the function defined by Nt(t
∗) = N(t− t∗), t∗ > 0.

Haubold and Mathai [10] studied a special case of this equation, when spa-
tial fluctuation or inhomogenities in quantities N(t) are neglected, is given by the
equation

dNi

dt
= −ciNi(t) (1.2)

with the initial condition Ni(t = 0) = N0 is the number of density of speices
i at time t = 0; constant ci > 0, known as standard kinetic equation. A detailed
discussion of the above equation is given in Kourganoff [25]. The solution of (1.2)
is given by

Ni(t) = N0e
−cit (1.3)

An alternative form of this equation can be obtained on integration:

N(t)−N0 = c0D
−1
t N(t), (1.4)

where 0D
−1
t is the standard fractional integral operator. Haubold and Mathai

[10] have given the fractional generalization of the standard kinetic equation (1.2)
as

N(t)−N0 = cν0D
−ν
t N(t), (1.5)

where 0D
−ν
t is the well known Riemann-Liouville fractional integral operator

(Oldham and Spanier [11]; Samko, Kilbas and Marichev [20]; Miller and Ross [14])
defined by

0D
−ν
t f(x) =

1

Γ(ν)

t
∫

0

(t− u)ν−1f(u) du,R(ν) > 0. (1.6)

The solution of fractional kinetic equation (1.5) is given by (see Haubold and
Mathai [10])

N(t) = N0

∞
∑

k=0

(−1)k

Γ(νk + 1)
(ct)νk. (1.7)

Further Saxena and Mathai and Haubold [15] studied the generalizations of the
fractional kinetic equation in terms of the Mittag-Leffler functions which extented
the work of Haubold and Mathai [10]. In an another paper, Saxena and Mathai
and Haubold [16] developed the solutions for fractional kinetic equations associated
with the generalized Mittag-Leffler function and R-function.

The fractional kinetic equations are also studied by many authors viz. Hille and
Tamarkin [6], Glockle and Nonnenmacher [26], Saichev and Zaslavsky [3], Saxena
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et al. [15,16,17], Zaslavsky [7], Saxena and Kalla [19], Chaurasia and Pandey
[23,24], Chaurasia and kumar [22] etc. for their importance in the solution of cer-
tain physical problems. Recently, Saxena et al. [18] investigated the solution of
fractional reaction equation and the fractional diffusion equation. Laplace trans-
form technique is used.

In the present article we introduce and investigate the further computable exten-
sions of the generalized fractional kinetic equation. The fractional kinetic equation
and its solution, discussed in terms of the Wright generalized Bessel function, are
written in compact and easily computable form.

The wright generalized Bessel function and its relationship with some
other functions

Jδ
ν (z) =

∞
∑

k=0

(−z)k

k!Γ(δk + ν + 1)
. (1.8)

where z ∈ c, δ > 0 and ν > −1. The generalized Wright function yields the
following relationships with various classical special functions:

Wright function

Jδ
ν−1(z) = W (−z; δ; ν) =

∞
∑

k=0

(−z)k

k!Γ(δk + ν)
. (1.9)

Mittag-Leffler function( Mittag [8] and [9])

Jδ
0 (z) =

1

k!
Eδ(−z) =

1

k!

∞
∑

k=0

(−z)k

Γ(δk + 1)
. (1.10)

Generalized Mittag-Leffler function (Wiman[2])

Jδ
ν−1(z) =

1

k!
Eδ,ν(−z) =

1

k!

∞
∑

k=0

(−z)k

Γ(δk + ν)
. (1.11)

Miller and Ross function [14]

J1
ν (az) =

1

k!
zνEz(ν,−a) =

zν

k!

∞
∑

k=0

(−az)k

Γ(k + ν + 1)
. (1.12)

2. Extensions of generalized fractional kinetic equations

Theorem 2.1. If δ > 0, µ+ 1 > 0, ν > 0 and c > 0, then for the solution of the
equation

N(t)−N0J
δ
µ(t) = −cν0D

−ν
t N(t), (2.1)

there holds the formula

N(t) = N0Eδ,µ+1(−t)Eν,k+1(−cνtν). (2.2)
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Proof: We know that ( Erdélyi et al. [1]) the Laplace transform of the Riemann-
Liouville fractional integral is given by

L{0D
−σ
t f(t); p} = p−σF (p), (2.3)

where

F (p) =

∞
∫

u=0

e−pu f(u)du. (2.4)

Now taking the Laplace transform of both sides of (2.1), we have

L{N(t); p} −N0L{J
δ
µ(t); p} = −cνL{0D

−ν
t N(t); p}

N(p)−N0

∞
∫

0

e−pt

∞
∑

k=0

(−t)k

k!Γ(δk + µ+ 1)
dt = −cνp−νN(p),

N(p)[1 + cνp−ν ] = N0

∞
∑

k=0

(−1)k

k!Γ(δk + µ+ 1)

∞
∫

0

e−pttk+1−1dt

By virtue of the relationship, we have

L−1{p−ρ} =
tρ−1

Γρ
,R(ρ) > 0. (2.5)

N(p)[1 + cνp−ν ] = N0

∞
∑

k=0

(−1)kΓk + 1

k!Γ(δk + µ+ 1)pk+1

N(p)[1 + cνp−ν ] = N0

∞
∑

k=0

(−1)k

Γ(δk + µ+ 1)pk+1

N(p) = N0

∞
∑

k=0

(−1)k

Γ(δk + µ+ 1)
{p−(k+1)

∞
∑

r=0

(1)r
[−(p

c
)−ν ]

r

(r)!
}

Taking inverse Laplace transform, we have

L−1{N(p)} = N0

∞
∑

k=0

(−1)k

Γ(δk + µ+ 1)
{L−1

∞
∑

r=0

(−1)r(cνr)p−(k+νr+1)}

N(t) = N0

∞
∑

k=0

(−1)k

Γ(δk + µ+ 1)
{

∞
∑

r=0

(−1)r(cνr)
tk+νr

Γ(νr + k + 1)
}

N(t) = N0

∞
∑

k=0

(−1)ktk

Γ(δk + µ+ 1)
{

∞
∑

r=0

(−1)r(cνr)
tνr

Γ(νr + k + 1)
}
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N(t) = N0Eδ,µ+1(−t)Eν,k+1(−cνtν). (2.6)

Then theorem is, thus, completely proved. ✷

Corollary 2.2. If c > 0, b = 0, δ > 0,ν > 0 µ > 0, δν − µ > 0, then for the
solution of the equation

.

N(t)−N0K
(ν,µ,δ),(−c−ν,0):(p;q)
4 (t) = −

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t), (2.7)

there holds the formula

N(t) = N0K
(ν,µ+νn,δ+n),(−c−ν ,0):(p;q)
4 (t), (2.8)

provided both sides of (2.8) exist.

Proof: TheK4 - function [12] is defined as

K
(α,β,γ),(a,c):(p;q)
4 (a1, ....., ap; b1, .....bq;x) = K

(α,β,γ),(a,c):(p;q)
4 (x)

=

∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

an(γ)n)(x− c)(n+γ)α−β−1

n!Γ((n+ γ)α− β)

where R(αγ − β) > 0 and (ai)n (i = 1, 2, ....., p) and (bj)n (j = 1, 2, ....., q) are
the pochhammer symbols and none of the parameters bjs is a negative integer or
zero. Taking Laplace transform of both sides of the equation (2.7), we have.

L{N(t)} − L{N0K
(ν,µ,δ),(−c−ν ,0):(p;q)
4 (t)} = L{−

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t)}

or

N(p) = N0
pµ−δν

(1 + p−νcν)δ+n

∞
∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

. (2.9)

Finally taking the inverse Laplace transform of equation (2.9), we have

L−1{N(p)} = L−1{N0
pµ−δν

(1 + p−νcν)δ+n

∞
∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

}.

or

N(t) = N0K
(ν,µ+νn,δ+n),(−c−ν ,0):(p;q)
4 (t)

✷
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Corollary 2.3. If c > 0, b ≥ 0, δ > 0,ν > 0 µ > 0, δν − µ > 0, then for the
solution of the equation

N(t)−N0K
(ν,(δν−µ),δ),(−c−ν ,b):(p;q)
4 (t) = −

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t), (2.10)

there holds the formula

N(t) = N0K
[ν,((δ+n)ν−µ),(δ+n)],(−c−ν ,b):(p;q)
4 (t), (2.11)

provided both sides of (2.11) exist.

Corollary 2.4. If c > 0, b = 0, δ > 0,ν > 0 µ > 0, δν − µ > 0, then for the
solution of the equation

N(t)−N0K
(ν,(δν−µ),δ),(−c−ν ,0):(p;q)
4 (t) = −

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t), (2.12)

there holds the formula

N(t) = N0K
[ν,((δ+n)ν−µ),(δ+n)],(−c−ν ,0):(p;q)
4 (t), (2.13)

provided both sides of (2.13) exist.

Corollary 2.5. If c > 0, b ≥ 0, δ > 0,ν > 0 µ > 0, ν − µ > 0, then for the solution
of the equation

N(t)−N0K
(ν,µ,1),(−c−ν ,b):(p;q)
4 (t) = −

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t), (2.14)

there holds the formula

N(t) = N0K
[ν,(µ+νn),(1+n)],(−c−ν,b):(p;q)
4 (t), (2.15)

provided both sides of (2.15) exist.

2.1. Special Cases

A known result can be obtained as the special case of Theorem 2.1 [13].

Corollary 2.6. If c > 0, b ≥ 0, δ > 0,ν > 0 µ > 0, δν − µ > 0, then for the
solution of the equation

N(t)−N0K
(ν,µ,δ),(−c−ν ,b):(p;q)
4 (t) = −cν0D

−ν
t N(t), (2.1.1)

there holds the formula
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N(t) = N0K
[ν,(µ+ν),(δ+1)],(−c−ν,b):(p;q)
4 (t), (2.1.2)

provided both sides of (2.1.2) exist.

Corollary 2.7. If c > 0, ν > 0 then for the solution of the equation

N(t)−N0Fν [−cν , t] = −

n
∑

r=1

(

n

r

)

crν0D
−rν
t N(t), (2.1.3)

there holds the formula

N(t) = N0t
ν−1En+1

ν,ν (−cνtν). (2.1.4)

If we take n = 1 in the above equation (2.1.3), we obtain the following knowing
result given by the Saxena, Mathai and Haubold [16].

if c > 0, ν > 1 then for the solution of the equation

N(t)−N0Fν [−cν , t] = −cν0D
−ν
t N(t), (2.1.5)

there holds the formula

N(t) = N0
tν−1

ν
[Eν,ν−1(−cνtν) + Eν,ν(−cνtν)]. (2.1.6)

3. Conclusion

In this paper, we have derived a solution of generalized fractional kinetic equa-
tion in terms of the Bessel- Mitland function by the use of Laplace transform
technique. The solution of fractional kinetic equations in the series forms of the
K4 -Function is also discussed.
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