
Bol. Soc. Paran. Mat. (3s.) v. 32 1 (2014): 163–173.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v32i1.14757

Solutions for Steklov boundary value problems involving p(x)-Laplace
operators

Mostafa Allaoui, Abdel Rachid El Amrouss

abstract: In this paper we study the nonlinear Steklov boundary value problem
of the following form:

(S)

{

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν

= λf(x, u) on ∂Ω.

Using the variational method, under appropriate assumptions on f , we establish the
existence of at least three solutions of this problem.

Key Words: p(x)-Laplace operator, embedding theorem, variable exponent
Sobolev space, Ricceri’s variational principle.

Contents

1 Introduction 163

2 Preliminaries 164

3 Proof of Theorem 1.1 169

1. Introduction

In recent years, the study of differential equations and variational problems with
p(x) growth conditions has been an interesting topic. We refer to [6,7,8,10,13,14,15]
for the p(x)-Laplacian equations.

This paper is motivated by recent advances in mathematical modeling of non-
Newtonian fluids and elastic mechanics, in particular, the electro-rheological fluids
(smart fluids). This important class of fluids is characterized by the change of vis-
cosity which is not easy and which depends on the electric field. These fluids, which
are known under the name ER fluids, have many applications in elastic mechanics,
fluid dynamics etc.. For more information, the reader can refer to [12,16,17].

These physical problems was facilitated by the development of Lebesgue and
Sobolev spaces with variable exponent. The existence of solutions of p(x)-Laplacian
problems has been studied by several authors (see [3,6,8,9,13,14]).
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Consider the following nonlinear and inhomogeneous Steklov boundary prob-
lem,

(S)

{

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν

= λf(x, u) on ∂Ω,

where Ω ⊂ R
N (N ≥ 2) is a bounded smooth domain, ∂u

∂ν
is the outer unit nor-

mal derivative on ∂Ω, λ > 0 is a real number, p is a continuous function on Ω
with 1 < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) < +∞. The main interest
in studying such problems arises from the presence of the p(x)-Laplace operator
div(|∇u|p(x)−2∇u), which is a generalization of the classical p-Laplace operator
div(|∇u|p−2∇u) obtained in the case when p is a positive constant.

We make the following assumptions on the function f :

(f1) | f(x, s) |≤ C(1+ | s |α(x)−1), ∀(x, s) ∈ ∂Ω× R,

where C ≥ 0 is a constant, α ∈ C(∂Ω) and α(x) > 1 such that ∀x ∈ ∂Ω,

α(x) < p∂(x) :=

{

(N−1)p(x)
N−p(x) , if p(x) < N ,

+∞, if p(x) ≥ N .

(f2) supt∈R

∫ t

0 f(x, s)ds > 0, ∀x ∈ ∂Ω.

(f3) There exists q ∈ C(∂Ω) such that p+ < q− ≤ q(x) < p∂(x) and

lim sup
t→0

sup
x∈∂Ω

∫ t

0
f(x, s)ds

|t|q(x)
< +∞.

Using the three critical point theorem due to Ricceri, under the above assump-
tions on f , we establish the existence of at least three solutions of this problem.

Theorem 1.1. If the function f satisfies (f1) − (f3) and the function p satisfies
p− > α+, then there exist an open interval Λ ⊂ (0,∞) and a positive real number
ρ such that for each λ ∈ Λ, (S) has at least three solutions whose norms are less
than ρ.

This paper is divided into three sections. In Section 2, we recall some basic facts
about the variable exponent Lebesgue and Sobolev spaces, and recall B. Ricceri’s
three-critical-points theorem. In Section 3, we give the proof of theorem1.1.

2. Preliminaries

To guarantee completeness of this paper, we first recall some facts on variable
exponent spaces Lp(x)(Ω) and W 1,p(x)(Ω). For more details, see [2,4,5].
Suppose that Ω is a bounded open domain of RN with smooth boundary ∂Ω and
p ∈ C+(Ω) where C+(Ω) = {p ∈ C(Ω) and infx∈Ω p(x) > 1}. Denote by
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p− := infx∈Ω p(x) and p+ := supx∈Ω p(x).

Define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) = {u | u : Ω → R is measurable and

∫

Ω

|u|p(x)dx < +∞},

with the norm

|u|p(x) = inf{τ > 0;

∫

Ω

|
u

τ
|p(x)dx ≤ 1}.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

with the norm

‖u‖ = inf{τ > 0;

∫

Ω

(|
∇u

τ
|p(x) + |

u

τ
|p(x))dx ≤ 1},

‖u‖ = |∇u|p(x) + |u|p(x).

We refer to [4,5,6] for the basic propreties of the variable exponent Lebesgue and
Sobolev spaces.

Lemma 2.1. (see [5]) Both (Lp(x)(Ω), |.|p(x)) and (W 1,p(x)(Ω), ‖.‖) are separable
and uniformly convex Banach spaces.

Lemma 2.2. (see [5]) Hölder inequality holds, namely

∫

Ω

|uv|dx ≤ 2 | u |p(x)| v |q(x) ∀u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω),

where 1
p(x) +

1
q(x) = 1.

Lemma 2.3. (see [5]) Let I(u) =
∫

Ω(| ∇u |p(x) + | u |p(x))dx, for u ∈ W 1,p(x)(Ω)
we have

• ‖u‖ < 1(= 1, > 1) ⇔ I(u) < 1(= 1, > 1).

• ‖u‖ ≤ 1 ⇒ ‖u‖p
+

≤ I(u) ≤ ‖u‖p
−

.

• ‖u‖ ≥ 1 ⇒ ‖u‖p
−

≤ I(u) ≤ ‖u‖p
+

.

Lemma 2.4. (see [4]) Assume that the boundary of Ω possesses the cone property
and p ∈ C(Ω) and 1 ≤ q(x) < p∗(x) for x ∈ Ω, then there is a compact embedding

W 1,p(x)(Ω) →֒ Lq(x)(Ω),

where

p∗(x) =

{

Np(x)
N−p(x) , if p(x) < N ,

+∞, if p(x) ≥ N .
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Lemma 2.5. (see [5]) If f : Ω× R → R is a carathéodory function and

| f(x, s) |≤ a(x) + b | s |
p1(x)

p2(x) , ∀(x, s) ∈ Ω× R,

where p1, p2 ∈ C+(Ω), a ∈ Lp2(x)(Ω), a(x) ≥ 0 and b ≥ 0 is a constant, then the
Nemytskii operator from Lp1(x)(Ω) into Lp2(x)(Ω) defined by Nf (u)(x) = f(x, u(x))
is a continuous and bounded operator.

Let a : ∂Ω → R be measurable. Define the weighted variable exponent Lebesgue
space by

L
p(x)
a(x)(∂Ω) = {u | u : ∂Ω → R is measurable and

∫

∂Ω

|a(x)||u|p(x)dσ < +∞},

with the norm

|u|(p(x),a(x)) = inf{τ > 0;

∫

∂Ω

|a(x)| |
u

τ
|p(x) dσ ≤ 1},

where dσ is the measure on the boundary. Then L
p(x)
a(x)(∂Ω) is a Banach space. In

particular, when a ∈ L∞(∂Ω), L
p(x)
a(x)(∂Ω) = Lp(x)(∂Ω).

Lemma 2.6. (see [2]) Let ρ(u) =
∫

∂Ω |a(x)||u|p(x)dσ for u ∈ L
p(x)
a(x)(∂Ω) we have

• |u|(p(x),a(x)) ≥ 1 ⇒ |u|p
−

(p(x),a(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),a(x)).

• |u|(p(x),a(x)) ≤ 1 ⇒ |u|p
+

(p(x),a(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),a(x)).

For A ⊂ Ω, denote by p−(A) = infx∈A p(x), p
+(A) = supx∈A p(x). Define

p∂(x) = (p(x))∂ :=

{

(N−1)p(x)
N−p(x) , if p(x) < N ,

∞, if p(x) ≥ N .

p∂r(x)(x) :=
r(x) − 1

r(x)
p∂(x),

where x ∈ ∂Ω, r ∈ C(∂Ω,R) and r(x) > 1.

Lemma 2.7. (see [2]) Assume that the boundary of Ω possesses the cone property
and p ∈ C(Ω) with p− > 1. Suppose that a ∈ Lr(x)(∂Ω), r ∈ C(∂Ω) with

r(x) > p∂ (x)
p∂(x)−1 for all x ∈ ∂Ω. If q ∈ C(∂Ω) and 1 ≤ q(x) < p∂r(x)(x), ∀x ∈ ∂Ω,

then there is a compact embedding W 1,p(x)(Ω) →֒ L
q(x)
a(x)(∂Ω).

In particular, there is a compact embedding W 1,p(x)(Ω) →֒ Lq(x)(∂Ω), where
1 ≤ q(x) < p∂(x), ∀x ∈ ∂Ω.
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Lemma 2.8. (see [1,9,11]) Let X be a separable and reflexive real Banach space,
φ : X → R is a continuous Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗, Ψ : X → R is a continuous Gâteaux differentiable functional whose Gâteaux
derivative is compact, assume that :

i) lim‖u‖X→∞(φ(u) + λψ(u)) = ∞ for all λ > 0,

ii) there exist r ∈ R and u0, u1 ∈ X such that

φ(u0) < r < φ(u1),

iii)

inf
u∈φ−1(−∞,r]

ψ(u) >
(φ(u1)− r)ψ(u0) + (r − φ(u0))ψ(u1)

φ(u1)− φ(u0)
.

Then there exist an open interval Λ ⊂ (0,∞) and a positive constant ρ > 0 such
that for any λ ∈ Λ the equation φ′(u) + λψ′(u) = 0 has at least three solutions in
X whose norms are less than ρ.

Theorem 2.9. If f : ∂Ω× R → R is a carathéodory function and

(f1) | f(x, s) |≤ C(1+ | s |α(x)−1), ∀(x, s) ∈ ∂Ω× R,

where C ≥ 0 is a constant, α ∈ C+(∂Ω) such that ∀x ∈ ∂Ω,

α(x) <

{

(N−1)p(x)
N−p(x) , if p(x) < N ,

+∞, if p(x) ≥ N .
(2.1)

Set X =W 1,p(x)(Ω), F (x, u) =
∫ u

0 f(x, t)dt, ψ(u) = −
∫

∂Ω F (x, u(x))dσ,
then ψ ∈ C1(X,R) and

Dψ(u, ϕ) =< ψ′(u), ϕ >= −

∫

∂Ω

f(x, u(x))ϕdσ,

moreover, the operator ψ′ : X → X∗ is compact.

Proof. From the Mean-value theorem, we have

Dψ(u, ϕ) = lim
t→0

ψ(u+ tϕ)− ψ(u)

t

= − lim
t→0

∫

∂Ω

F (x, u(x) + tϕ(x)) − F (x, u(x)

t
dσ

= − lim
t→0

∫

∂Ω

f(x, u(x) + tθϕ(x))ϕ(x)dσ,

(2.2)

where 0 ≤ θ = θ(u(x), tϕ(x)) ≤ 1.
If u, ϕ ∈ X , then by condition (2.1) and the embedding theorem (lemma2.7),
we have u, ϕ ∈ Lα(x)(∂Ω). Then there is some constant C1 such that

‖w‖Lα(x)(∂Ω) ≤ C1‖w‖X ∀w ∈ X. (2.3)
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By (f1) and Young′s inequality, we have

|f(x, u(x) + tθϕ(x))ϕ(x)| ≤ C(1 + |u(x) + tθϕ(x)|α(x)−1)|ϕ(x)|

≤ C
α(x) − 1

α(x)
[1 + |u(x) + tθϕ(x)|α(x)−1]

α(x)
α(x)−1

+
1

α(x)
|ϕ(x)|α(x).

(2.4)

Using the inequality

(a+ b)p ≤ 2p−1(|a|p + |b|p), p ≥ 1,

which implies that for |t| ≤ 1,

C(
α(x) − 1

α(x)
)[1 + |u(x) + tθϕ(x)|α(x)−1]

α(x)
α(x)−1 +

1

α(x)
|ϕ(x)|α(x)

≤ C
(α(x)− 1)

α(x)
2

1
α(x)−1 [1 + |u(x) + tθϕ(x)|α(x)] +

1

α(x)
|ϕ(x)|α(x)

≤ C
(α(x)− 1)

α(x)
2

1
α(x)−1 [1 + 2α(x)−1[|u(x)|α(x) + |ϕ(x)|α(x)]]

+
1

α(x)
|ϕ(x)|α(x).

Notice that the right hand side of the above inequality is independent of t and
integrable on ∂Ω, then by the Lebesgue dominated convergence theorem, we have

Dψ(u, ϕ) = −

∫

∂Ω

f(x, u(x))ϕ(x)dσ. (2.5)

Obviously the operator Dψ(u, ϕ) is a linear operator for a given u.
We know that the Nemytskii operator Nf : u(x) 7→ f(x, u(x)) is a continuous

bounded operator from Lα(x)(∂Ω) into L
α(x)

α(x)−1 (∂Ω).
Then by (2.3) and (2.5), we have

Dψ(u, ϕ) = −

∫

∂Ω

f(x, u(x))ϕ(x)dσ ≤ 2C1‖f(x, u)‖
L

α(x)
α(x)−1 (∂Ω)

‖ϕ(x)‖X .

Then Dψ(u, ϕ) is a linear bounded functional, therefore the Gâteaux derivative of
the linear bounded functional ψ(u) exists and

Dψ(u, ϕ) =< Dψ(u), ϕ >= −

∫

∂Ω

f(x, u(x))ϕ(x)dσ ∀u, ϕ ∈ X. (2.6)

We will prove that ψ′ : X → X∗ is completely continuous. For u, v, ϕ ∈ X , from
(2.5) and (2.6), we obtain

| < Dψ(u)−Dψ(v), ϕ > | ≤ 2C1‖f(x, u)− f(x, v)‖
L

α(x)
α(x)−1 (∂Ω)

‖ϕ‖X .
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Then
‖Dψ(u)−Dψ(v)‖X∗ ≤ 2C1‖f(x, u)− f(x, v)‖

L
α(x)

α(x)−1 (∂Ω)
.

The above inequality shows that the operator T : L
α(x)

α(x)−1 (∂Ω) → X∗ defined by
T (f(x, u)) = Dψ(u) is continuous. Then the composite operator Dψ = ToNfoI :
u → Dψ(u) from X into X∗ is continuous. Therefore ψ is Frèchet differentiable
and its Frèchet derivative is ψ′(u) = Dψ(u). This shows that ψ ∈ C1(X,R),
Dψ(u, ϕ) =< ψ′(u), ϕ >= −

∫

∂Ω
f(x, u(x))ϕ(x)dσ and ψ′ : X → X∗ is compact.

✷

Definition 2.10. We say that u ∈ X is a weak solution of (S) if
∫

Ω

|∇u|p(x)−2∇u∇vdx+

∫

Ω

|u|p(x)−2uvdx = λ

∫

∂Ω

f(x, u)vdσ, for all v ∈ X.

Let

φ(u) =

∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx,

ψ(u) = −

∫

∂Ω

F (x, u)dσ,

where F (x, t) =
∫ t

0
f(x, s)ds.

Then under (f1), we have

(φ′(u), v) =

∫

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx,

and

(ψ′(u), v) = −

∫

∂Ω

f(x, u)vdσ.

3. Proof of Theorem 1.1

To prove our result we use lemma 2.8.
It is well known that φ is a continuous convex functional, then it is weakly lower
semicontinuous and its inverse derivative is continuous, from theorem 2.9 the pre-
condition of lemma 2.8 is satisfied. In following we must verify that the conditions
(i), (ii) and (iii) in lemma 2.8 are fulfilled.

Proof: For u ∈ X such that ‖u‖X ≥ 1, we have

ψ(u) = −

∫

∂Ω

F (x, u)dσ = −

∫

∂Ω

[

∫ u(x)

0

f(x, t)dt]dσ

≤ C

∫

∂Ω

[|u(x)|+
1

α(x)
|u|α(x)]dσ

≤ C

∫

∂Ω

|u(x)|dσ +
C

α−

∫

∂Ω

|u|α(x)dσ.
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By embedding theorem, we have u ∈ Lα(x)(∂Ω), therefore

∫

∂Ω

|u|α(x)dσ ≤ max{‖u‖α
+

Lα(x)(∂Ω), ‖u‖
α−

Lα(x)(∂Ω)}

≤ C′‖u‖α
+

X .

Then
|ψ(u)| ≤ C2‖u‖X + C3‖u‖

α+

X .

On the other hand,

φ(u) =

∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

≥
1

p+
‖u‖p

−

X ,

which implies that for any λ > 0,

φ(u) + λψ(u) ≥
1

p+
‖u‖p

−

X − λC2‖u‖X − λC3‖u‖
α+

X .

For p− > α+ we have,

lim
‖u‖X→∞

(φ(u) + λψ(u)) = ∞,

then (i) of lemma 2.8 is verified.
lt remains to show (ii) and (iii) of this lemma (Ricceri).
Let u0 = 0, we can easily have,

φ(u0) = ψ(u0) = 0.

Now we claim that there exist r > 0 and u1 ∈ X such that φ(u0) > r and

inf
u∈φ−1((−∞,r])

ψ(u) > r
ψ(u1)

φ(u1)
.

If ‖u‖ ≥ 1, we have

1

p+
‖u‖p

−

≤ φ(u) ≤
1

p−
‖u‖p

+

.

If ‖u‖ < 1, we have

1

p+
‖u‖p

+

≤ φ(u) ≤
1

p−
‖u‖p

−

.

From (f3), there exist η ∈ [0, 1] and C4 > 0 such that

F (x, t) ≤ C4|t|
q(x) ≤ C4|t|

q− , ∀t ∈ [−η, η] uniformly for x ∈ ∂Ω.
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In view of (f1), if we put

C5 = max{C4, sup
η≤|t|<1

A(1 + |t|α
−

)

|t|q−
, sup
|t|≥1

A(1 + |t|α
+

)

|t|q−
},

where A is a positive constant, then we have

F (x, t) ≤ C5|t|
q− , ∀t ∈ R uniformly for x ∈ ∂Ω.

Consequently, fix r such that 0 < r < 1. When 1
p+ ‖u‖

p+

≤ r < 1, then by the

Sobolev embedding theorem (X →֒ Lq−(∂Ω) is continuous), we have

∫

∂Ω

F (x, u)dσ ≤ C5

∫

∂Ω

|u|q
−

dσ ≤ C6‖u‖
q− ≤ C7r

( q−

p+
)
,

where C6 and C7 are two positive constants.
Since q− > p+, we have

lim
r→0+

sup 1

p+
‖u‖p+≤r

∫

∂Ω
F (x, u)dσ

r
= 0. (3.1)

By (f2), we can choose a constant b ∈ X \ {0} such that
∫

∂Ω F (x, b)dσ > 0.

Fix r0 such that r0 <
1
p+ min{‖b‖p

+

, ‖b‖p
−

, 1}.

When ‖b‖ > 1, we have

1

p+
‖b‖p

−

≤ φ(b) ≤
1

p−
‖b‖p

+

. (3.2)

From (3.1) and (3.2), we know that when 0 < r < r0, then φ(b) > r and

sup
1

p+
‖u‖p+≤r

∫

∂Ω

F (x, u)dσ ≤
r

2

∫

∂Ω F (x, u)dσ
1
p−

‖b‖p+
.

So

sup
1

p+
‖u‖p+≤r

∫

∂Ω

F (x, u)dσ < r

∫

∂Ω
F (x, u)dσ
1
p−

‖b‖p+
.

Since r < r0, we have

φ−1((−∞, r]) ⊆ {u ∈ X :
1

p+
‖u‖p

+

≤ r}.

Then

sup
φ(u)≤r

−ψ(u) < −r
ψ(u1)

φ(u1)
,
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with u1 = b, which implies that

inf
u∈φ−1((−∞,r])

ψ(u) > r
ψ(u1)

φ(u1)
.

So we can find r > 0, u1 = b and φ(b) > r satisfying (ii) and (iii) of lemma 2.8.
When ‖b‖ ≤ 1, we have

1

p+
‖b‖p

+

≤ φ(b) ≤
1

p−
‖b‖p

−

. (3.3)

From (3.1) and (3.3), we know that when 0 < r < r0, then φ(b) > r and

sup
1

p+
‖u‖p+≤r

∫

∂Ω

F (x, u)dσ ≤
r

2

∫

∂Ω F (x, u)dσ
1
p−

‖b‖p−
.

So

sup
1

p+
‖u‖p+≤r

∫

∂Ω

F (x, u)dσ < r

∫

∂Ω F (x, u)dσ
1
p−

‖b‖p−
.

Since r < r0, we have

φ−1((−∞, r]) ⊆ {u ∈ X :
1

p+
‖u‖p

+

≤ r}.

Then

sup
φ(u)≤r

−ψ(u) < −r
ψ(u1)

φ(u1)
,

with u1 = b.
Therefore

inf
u∈φ−1((−∞,r])

ψ(u) > r
ψ(u1)

φ(u1)
.

So

inf
u∈φ−1((−∞,r])

ψ(u) >
(φ(u1)− r)ψ(u0) + (r − φ(u0))ψ(u1)

φ(u1)− φ(u0)
,

which means that condition (iii) in lemma 2.8 is verified. Since the assumptions
of lemma 2.8 are verified, there exist an open interval Λ ⊂ (0,∞) and a positive
constant ρ > 0 such that for any λ ∈ Λ the equation φ′(u) + λψ′(u) = 0 has at
least three solutions in X whose norms are less than ρ. ✷
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