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Bishop Equations of Smarandache TM1 Curves of Biharmonic B-Slant

Helices in Heis3

Talat Körpınar and Essin Turhan

abstract: In this paper, we study Bishop equations for Smarandache TM1

curves of biharmonic B-slant helices according to Bishop frame in the Heisenberg
group Heis3. Finally, we characterize the Smarandache TM1 curves of biharmonic
B-slant helices in terms of Bishop frame in the Heisenberg group Heis3.
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1. Preliminaries

Definition 1.1. Let G be a group. Define the sequence of groups (Γn (G))n≥1
by

Γ0 (G) = G, Γn+1 (G) = [Γn (G) ,G] . G is called nilpotent if there is an n ∈ N

such that Γn (G) = e. The smallest integer n with the above property is called the
class of nilpotence of G, [3].

The subset of M3 (R) given by

G =











1 a c

0 1 b

0 0 1



 : a, b, c ∈ R







defines a noncommutative group with the usual matrix multiplication. Consider
the matrices

A =





1 a1 a3
0 1 a2
0 0 1



 , B =





1 b1 b3
0 1 b2
0 0 1



 .
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Then

AB =





1 a1 + b1 a3 + b3 + a1b2
0 1 a2 + b2
0 0 1



 ,

A−1 =





1 −a1 a1a2 − a3
0 1 −a2
0 0 1



 , B−1 =





1 −b1 b1b2 − b3
0 1 −b2
0 0 1



 .

The commutator

[A,B] = ABA−1B−1 =





1 0 a1b2 − b1a2
0 1 0
0 0 1





and hence the commutator subgroup is

Γ1 (G) = [G,G] =











1 0 k

0 1 0
0 0 1



 : k ∈ R







.

Let

C =





1 0 k

0 1 0
0 0 1



 .

Then

AC =





1 a c+ k

0 1 b

0 0 1



 = CA,

and therefore
[A,C] = AC (AC)

−1
= I3.

Hence
Γ2 (G) = [Γ1 (G) ,G] = I2 = e,

and the group G is nilpotent of class 2. G is called the Heisenberg group with 3
parameters, [3].

2. Biharmonic B-Slant Helices with Bishop Frame In The Heisenberg

Group Heis3

Let γ : I −→ Heis3 be a non geodesic curve on the Heisenberg group Heis3

parametrized by arc length. Let {T,N,B} be the Frenet frame fields tangent to
the Heisenberg group Heis3 along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in the
direction of ∇TT (normal to γ), and B is chosen so that {T,N,B} is a positively
oriented orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = −κT+ τB, (2.1)

∇TB = −τN,
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where κ is the curvature of γ and τ is its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.

In the rest of the paper, we suppose everywhere κ 6= 0 and τ 6= 0.
The Bishop frame or parallel transport frame is an alternative approach to

defining a moving frame that is well defined even when the curve has vanishing
second derivative. The Bishop frame is expressed as

∇TT = k1M1 + k2M2,

∇TM1 = −k1T, (2.2)

∇TM2 = −k2T,

where

g (T,T) = 1, g (M1,M1) = 1, g (M2,M2) = 1,

g (T,M1) = g (T,M2) = g (M1,M2) = 0.

Here, we shall call the set {T,M1,M2} as Bishop trihedra, k1 and k2 as Bishop
curvatures, θ (s) = arctan k2

k1

, τ(s) = θ′ (s) and κ(s) =
√

k22 + k21 , [1]. Thus, Bishop
curvatures are defined by

k1 = κ(s) cos θ (s) ,

k2 = κ(s) sin θ (s) .

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T 1
e1 + T 2

e2 + T 3
e3,

M1 = M1
1e1 +M2

1e2 +M3
1e3,

M2 = M1
2e1 +M2

2e2 +M3
2e3.

3. Smarandache TM1 Curves of Biharmonic B-Slant Helices with

Bishop Frame In The Heisenberg Group Heis3

Definition 3.1. Let γ : I −→ Heis3 be a unit speed biharmonic B−slant helix and
{T,M1,M2} be its moving Bishop frame. Smarandache TM1 curves are defined
by

γTM1 =
1

√

2k21 + k22
(T+M1) . (3.1)

Lemma 3.2. Let γ : I −→ Heis3 be a unit speed biharmonic B−slant helix. Then,
the equation of Smarandache TM1 curves of γ is

γTM1 =
1

√

2k21 + k22
[cosS cos [Cs+D] + sinS cos [Cs+D]]e1

+
1

√

2k21 + k22
[cosS sin [Cs+D] + sinS sin [Cs+D]]e2

+
1

√

2k21 + k22
[cosS− sinS]e3, (3.2)
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where D is constant of integration and

C =
√

k21 + k22 − cos2 S− sinS.

Proof: Using Bishop formulas (3.3) and (2.1), we have (3.2), the lemma is proved.
✷

We need following theorem.

Theorem 3.3. Let γ : I −→ Heis3 be a unit speed biharmonic B−slant helix.
Then, the parametric equations of Smarandache TM1 curves of γ are

xγTM1 =
1

√

2k21 + k22
[cosS cos [Cs+D] + sinS cos [Cs+D]],

yγTM1 =
1

√

2k2
1
+ k2

2

[cosS sin [Cs+D] + sinS sin [Cs+D]],

zγTM1 =
1

√

2k21 + k22
[cosS cos [Cs+D] + sinS cos [Cs+D]]

1
√

2k21 + k22
[cosS sin [Cs+D] + sinS sin [Cs+D]]

+
1

√

2k21 + k22
[cosS− sinS],

where D is constant of integration and

C =
√

k21 + k22 − cos2 S− sinS.

Proof: Using orthonormal basis we easily have above system. Hence, the proof is
completed. ✷

The equations of a unit speed biharmonic B-slant helix and its the equation of
Smarandache TM1 curve are illustrated colour Blue, Red , respectively.
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Fig. 1

In this section, we shall call the set {T̃, M̃1, M̃2} as Bishop trihedra, k̃1 and k̃2
as Bishop curvatures of Smarandache TM1 curve.

We can now state the main result of the paper.

Theorem 3.4. Let γ : I −→ Heis3 be a unit speed biharmonic B-slant helix
with constant Bishop curvatures. Then, the Bishop equations of Smarandache TM1

curves of γ are

∇
T̃
T̃ = W[

(

−k21−k22
)

cosS cos [Cs+D]− k21 sinS cos [Cs+D]

−k1k2 sin [Cs+D]]e1 +W[
(

−k21−k22
)

cosS sin [Cs+D]

−k21 sinS sin [Cs+D] + k1k2 cos [Cs+D]]e2

+W[
(

k21+k22
)

sinS− k1k2 cosS]e3,

∇
T̃
M̃1 = −k̃1W[−k1 cosS cos [Cs+D] + k1 sinS cos [Cs+D]

+k2 sin [Cs+D]]e1 − k̃1W[−k1 cosS sin [Cs+D]

+k1 sinS sin [Cs+D]− k2 cos [Cs+D]]e2

−k̃1W[k1 sinS+ k2 cosS]e3],
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∇
T̃
M̃2 = −k̃2W[−k1 cosS cos [Cs+D] + k1 sinS cos [Cs+D]

+k2 sin [Cs+D]]e1 − k̃2W[−k1 cosS sin [Cs+D]

+k1 sinS sin [Cs+D]− k2 cos [Cs+D]]e2

−k̃2W[k1 sinS+ k2 cosS]e3],

where k̃1, k̃2 are Bishop curvatures of γ̃ and D is constant of integration and

C =
√

k21 + k22 − cos2 S− sinS and W =
1

√

2k2
2
+ k2

1

.

Proof: Differentiating (3.1) and using (3.2), we easily have

T̃ = W[−k1 cosS cos [Cs+D] + k1 sinS cos [Cs+D] + k2 sin [Cs+D]]e1

+W[−k1 cosS sin [Cs+D] + k1 sinS sin [Cs+D]− k2 cos [Cs+D]]e2

+W[k1 sinS+ k2 cosS]e3], (3.3)

where W = 1√
2k2

2
+k2

1

.

From the above system of equations, we have the following equation

∇
T̃
T̃ = W[

(

−k21−k22
)

cosS cos [Cs+D]− k21 sinS cos [Cs+D]

−k1k2 sin [Cs+D]]e1 +W[
(

−k21−k22
)

cosS sin [Cs+D]

−k21 sinS sin [Cs+D] + k1k2 cos [Cs+D]]e2

+W[
(

k21+k22
)

sinS− k1k2 cosS]e3. (3.4)

Combining (3.3) and (3.4), we have theorem. This concludes the proof of
theorem. ✷

From the above theorem, one concludes

Corollary 3.5. Let γ : I −→ Heis3 be a unit speed biharmonic B-slant helix
with constant Bishop curvatures. Then, the Bishop vectors of Smarandache TM1

curves of γ are

T̃ = W[−k1 cosS cos [Cs+D] + k1 sinS cos [Cs+D] + k2 sin [Cs+D]]e1

+W[−k1 cosS sin [Cs+D] + k1 sinS sin [Cs+D]− k2 cos [Cs+D]]e2

+W[k1 sinS+ k2 cosS]e3],
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M̃1 = [
W

κ̃
cos [τs+̟] [

(

−k21−k22
)

cosS cos [Cs+D]− k1k2 sinS cos [Cs+D]

−k22 sin [Cs+D]]−W
2

κ̃
sin [τs+̟][[−k21k2−

(

k21 + k22
)

k2] sinS cos [Cs+D]

+[k31+k1
(

k21 + k22
)

] sin [Cs+D]]]e1 + [
W

κ̃
cos θ [τs+̟]

[
(

−k21−k22
)

cosS sin [Cs+D]− k1k2 sinS sin [Cs+D] + k22 cos [Cs+D]]

−W
2

κ̃
sin [τs+̟] [[−k21k2 −

(

k21 + k22
)

k2] sinS sin [Cs+D]− [k31

+k1
(

k21 + k22
)

] cos [Cs+D]]]e2 + [
W

κ̃
cos [τs+̟] [

(

k21+k22
)

sinS

−k22 cosS]− W
2

κ̃
sin θ (s) [−k21k2 −

(

k21 + k22
)

k2] cosS]e3,

M̃2 = [
W

κ̃
sin [τs+̟] [

(

−k21−k22
)

cosS cos [Cs+D]− k1k2 sinS cos [Cs+D]

−k22 sin [Cs+D]]+
W

2

κ̃
cos [τs+̟][[−k21k2−

(

k21+k22
)

k2] sinS cos [Cs+D]

+[k31+k1
(

k21 + k22
)

] sin [Cs+D]]]e1 + [
W

κ̃
sin [τs+̟] [

(

−k21−k22
)

cosS

sin [Cs+D]− k1k2 sinS sin [Cs+D] + k22 cos [Cs+D]]

+
W

2

κ̃
cos [τs+̟] [[−k21k2 −

(

k21 + k22
)

k2] sinS sin [Cs+D]

−[k31+k1
(

k21 + k22
)

] cos [Cs+D]]]e2 + [
W

κ̃
sin [τs+̟] [

(

k21+k22
)

sinS

−k22 cosS] +
W

2

κ̃
cos θ (s) [−k21k2 −

(

k21 + k22
)

k2] cosS]e3,

where D,̟ are constants of integration and

C =
√

k21 + k22 − cos2 S− sinS.
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