

(3s.) v. 31 2 (2013): 55-65. ISSN-00378712 in press doi: 10.5269 / bspm.v31i2.15316

On Some New Modular Sequence Spaces

Çiğdem A. Bektaş and Gülcan Atıci

ABSTRACT: Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space ℓ_M which is called an Orlicz sequence space. Another generalization of Orlicz sequence spaces is due to Woo [9]. An important subspace of $\ell(\mathcal{M})$, which is an AK-space, is the space $h(\mathcal{M})$. We define the sequence spaces $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and $\ell^{\lambda}_{\mathcal{N}}(\Delta^m)$, where $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ are sequences of Orlicz functions such that M_k and N_k be mutually complementary for each k. We also examine some topological properties of these spaces. We give the α -, β - and γ duals of the sequence space $h(\mathcal{M})$ and α -duals of the squence spaces $\ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N},\lambda)$.

Key Words: Difference sequence spaces, Orlicz function, $\alpha -$, $\beta -$ and γ duals.

Contents

1	Introduction	55
2	Main Results	58
3	Interrelationship Between the Spaces $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and $\ell^{\lambda}_{\mathcal{M}}(\Delta^m)$	61

Dual Spaces of $h(\mathcal{M}), \ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N}, \lambda)$ 62 4

1. Introduction

The difference sequence spaces was introduced by Kızmaz [6] and the concept was generalized by Et and Colak [2]. After, Et and Esi [3] extended the difference sequence spaces to the sequence spaces

$$X\left(\Delta_v^m\right) = \left\{x = (x_k) : (\Delta_v^m x_k) \in X\right\}$$

for $X = \ell_{\infty}$, c or c_0 , where $v = (v_k)$ be any fixed sequence of non-zero complex numbers and $(\Delta_v^m x_k) = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1}), \ \Delta_v^m x_k = \sum_{i=0}^m (-1)^i {m \choose i} v_{k+i} x_{k+i}$ for all $k \in \mathbb{N}$.

The sequence spaces $\Delta_v^m(\ell_\infty)$, $\Delta_v^m(c)$ and $\Delta_v^m(c_0)$ are Banach spaces normed by

$$||x||_{\Delta} = \sum_{i=1}^{m} |v_i x_i| + ||\Delta_v^m x||_{\infty}.$$

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 46A45

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the Orlicz sequence space

$$\ell_M = \left\{ x = (x_k) : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is a Banach space with the norm

$$||x|| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}.$$

It is well known that if M is a convex function and M(0) = 0, then $M(\lambda x) \le \lambda M(x)$ for all λ with $0 \le \lambda \le 1$.

Let λ be a sequence space and defined

$$\lambda^{\alpha} = \{a = (a_k) : \sum_{k=1}^{\infty} |a_k x_k| < \infty, \text{ for all } x \in \lambda\},\$$

$$\lambda^{\beta} = \{a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ converges, for all } x \in \lambda\},\$$

$$\lambda^{\gamma} = \{a = (a_k) : \sup_n \left|\sum_{k=1}^n a_k x_k\right| < \infty, \text{ for all } x \in \lambda\}$$
[5]

Then λ^{α} , λ^{β} , λ^{γ} are called α -, β -, γ -dual spaces of λ , respectively. It is easy to show that $\emptyset \subset \lambda^{\alpha} \subset \lambda^{\beta} \subset \lambda^{\gamma}$. If $\lambda \subset \mu$, then $\mu^{\eta} \subset \lambda^{\eta}$ for $\eta = \alpha, \beta, \gamma$. We shall write $\lambda^{\alpha\alpha} = (\lambda^{\alpha})^{\alpha}$ [5].

Definition 1.1. Let λ be a sequence space. Then λ is called

(i) Solid (or normal), if $(\alpha_k x_k) \in \lambda$ whenever $(x_k) \in \lambda$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$.

(ii) Monotone, if provided λ contains the canonical preimages of all its stepspaces. (iii) Perfect, if $\lambda = \lambda^{\alpha \alpha}$ [5].

Proposition 1.2. λ is perfect $\Rightarrow \lambda$ is normal $\Rightarrow \lambda$ is monotone [5].

Proposition 1.3. Let λ be a sequence space. If λ is monotone, then $\lambda^{\alpha} = \lambda^{\beta}$, and if λ is normal, then $\lambda^{\alpha} = \lambda^{\gamma}$.

A Banach sequence space (λ, S) is called a BK-space if the topology S of λ is finer than the co-ordinatewise convergence topology, or equivalently, the projection maps $P_i : \lambda \to K$, $P_i(x) = x_i$, $i \ge 1$ are continuous, where K is the scalar field \mathbb{R} (the set of all reals) or \mathbb{C} (the complex plane). For $x = (x_1, ..., x_n, ...)$ and $n \in \mathbb{N}$ (the set of natural numbers), we write the n^{th} section of x as $x^{(n)} = (x_1, ..., x_n, 0, 0, ...)$. If $\{x^{(n)}\}$ tends to x in (λ, S) for each $x \in \lambda$, we say that (λ, S) is an AK-space. The norm $\|.\|_{\lambda}$ generating the topology S of λ is said to be monotone if $\|x\|_{\lambda} \le \|y\|_{\lambda}$ for $x = \{x_i\}, y = \{y_i\} \in \lambda$ with $|x_i| \le |y_i|$, for all $i \ge 1$ [4].

56

Any Orlicz function M_k always has the integral representation

$$M_k(x) = \int_0^x p_k(t) dt,$$

where p_k , known as the kernel of M_k , is non-decreasing, is right continuous for t > 0, $p_k(0) = 0$, $p_k(t) > 0$ for t > 0 and $p_k(t) \to \infty$ as $t \to \infty$.

Given an Orlicz function M_k with kernel $p_k(t)$, define

$$q_k(s) = \sup \{t : p_k(t) \le s, s \ge 0\}$$

Then $q_k(s)$ possesses the same properties as $p_k(t)$ and the function N_k defined as

$$N_k(x) = \int\limits_0^x q_k(s) ds$$

is an Orlicz function. The functions M_k and N_k are called mutually complementary Orlicz functions.

For a sequence $\mathcal{M} = (M_k)$ of Orlicz functions, the modular sequence class $\tilde{\ell}(\mathcal{M})$ is defined by

$$\tilde{\ell}(\mathcal{M}) = \{x = (x_k) : \sum_{k=1}^{\infty} M_k(|x_k|) < \infty\}$$

Using the sequence $\mathcal{N} = (N_k)$ of Orlicz functions, similarly we define $\ell(\mathcal{N})$. The class $\ell(\mathcal{M})$ is defined by

$$\ell(\mathfrak{M}) = \{ x = (x_k) : \sum_{k=1}^{\infty} x_k y_k \text{ converges, for all } y \in \tilde{\ell}(\mathfrak{N}) \}.$$
(1)

For a sequence $\mathcal{M} = (M_k)$ of Orlicz functions, the modular sequence space $\ell(\mathcal{M})$ is also defined as

$$\ell(\mathcal{M}) = \{ x = (x_k) : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}.$$

The space $\ell(\mathcal{M})$ is a Banach space with respect to the norm $||x||_{\mathcal{M}}$ defined as

$$||x||_{\mathcal{M}} = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) \le 1\}.$$

These spaces were introduced by Woo [9] around the year 1973, and generalizes the Orlicz sequence space ℓ_M and the modulared sequence spaces considered earlier by Nakano in [8].

Proposition 1.4. Let M_k and N_k be mutually complementary functions for each k. Then

(i) For $x, y \ge 0$, $xy \le M_k(x) + N_k(y)$. (ii) For $x \ge 0$, $xp_k(x) = M_k(x) + N_k(p_k(x))$. An important subspace of $\ell(\mathcal{M})$, which is an *AK*-space, is the space $h(\mathcal{M})$ defined as

$$h(\mathfrak{M}) = \{ x \in \ell(\mathfrak{M}) : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}.$$

A sequence (M_k) of Orlicz functions is said to satisfy uniform Δ_2 - condition at '0' if there exist p > 1 and $k_0 \in \mathbb{N}$ such that for all $x \in (0, 1)$ and $k > k_0$, we have $\frac{xM'_k(x)}{M_k(x)} \leq p$, or equivalently, there exist a constant K > 1 and $k_0 \in \mathbb{N}$ such that $\frac{M_k(2x)}{M_k(x)} \leq K$ for all $k > k_0$ and $x \in (0, \frac{1}{2}]$. If the sequence (M_k) satisfies uniform Δ_2 -condition, then $h(\mathcal{M}) = \ell(\mathcal{M})$ and vice-versa [9].

2. Main Results

Definition 2.1. Let M_k and N_k be mutually complementary functions for each k and let $\lambda = {\lambda_k}$ be a sequence of strictly positive real numbers. Then we define the following sequence spaces:

$$\ell_{\lambda}^{\mathcal{M}}(\Delta^{m}) = \{ x = (x_{k}) : \sum_{k \ge 1} M_{k} \left(\frac{|\Delta^{m} x_{k}|}{\lambda_{k} \rho} \right) < \infty, \text{ for some } \rho > 0 \}$$

and

$$\ell_{\mathcal{N}}^{\lambda}(\Delta^{m}) = \{ x = (x_{k}) : \sum_{k \ge 1} N_{k} \left(\frac{\lambda_{k} \left| \Delta^{m} x_{k} \right|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \}.$$

The spaces $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and $\ell^{\lambda}_{\mathcal{N}}(\Delta^m)$ also can be written as

$$\ell_{\lambda}^{\mathcal{M}}(\Delta^{m}) = \{ x = (x_{k}) : \{ \frac{\Delta^{m} x_{k}}{\lambda_{k}} \} \in \ell(\mathcal{M}) \}$$

and

$$\ell_{\mathcal{N}}^{\lambda}(\Delta^{m}) = \{ x = (x_{k}) : \{ \lambda_{k} \Delta^{m} x_{k} \} \in \ell(\mathcal{N}) \}$$

Throughout the paper we write $M_k(1) = 1$ and $N_k(1) = 1$ for all $k \in \mathbb{N}$.

Theorem 2.2. Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions. Then $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and $\ell^{\lambda}_{\mathcal{N}}(\Delta^m)$ are linear spaces over the field of complex numbers.

Proof:

Let $x, y \in \ell_{\lambda}^{\mathcal{M}}(\Delta^m)$ and $a, b \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sum_{k\geq 1} M_k\left(\frac{|\Delta^m x_k|}{\lambda_k \rho_1}\right) < \infty$$

and

$$\sum_{k\geq 1}M_k\left(\frac{|\Delta^m y_k|}{\lambda_k\rho_2}\right)<\infty.$$

Define $\rho_3 = \max(2 |a| \rho_1, 2 |b| \rho_2)$. Since M_k are non-decreasing and convex functions and Δ^m is linear, we have

$$\sum_{k\geq 1} M_k \left(\frac{|\Delta^m \left(ax_k + by_k \right)|}{\lambda_k \rho_3} \right) \leq \sum_{k\geq 1} M_k \left(\frac{|\Delta^m x_k|}{\lambda_k \rho_1} \right) + \sum_{k\geq 1} M_k \left(\frac{|\Delta^m y_k|}{\lambda_k \rho_2} \right) < \infty.$$

This proves that $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ is a linear space. The proof for $\ell^{\lambda}_{\mathcal{N}}(\Delta^m)$ is similar.

The proofs of the following theorems are easy and thus omitted.

Theorem 2.3. The sequence space $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ is a normed space with norm

$$\|x\|_{\lambda}^{\mathcal{M}} = \sum_{i=1}^{m} |x_i| + \inf\{\rho > 0 : \sum_{k \ge 1} M_k\left(\frac{|\Delta^m x_k|}{\lambda_k \rho}\right) \le 1\}$$

Theorem 2.4. The sequence space $\ell_{\mathcal{N}}^{\lambda}(\Delta^m)$ is a normed space with norm

$$\|x\|_{\mathcal{N}}^{\lambda} = \sum_{i=1}^{m} |x_i| + \inf\{\rho > 0 : \sum_{k \ge 1} N_k\left(\frac{\lambda_k |\Delta^m x_k|}{\rho}\right) \le 1\}.$$

Theorem 2.5. The spaces $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta^{m}), \|.\|_{\lambda}^{\mathcal{M}}\right)$ and $\left(\ell_{\mathcal{N}}^{\lambda}(\Delta^{m}), \|.\|_{\mathcal{N}}^{\lambda}\right)$ are Banach spaces.

Theorem 2.6. The sequence spaces $\ell_{\lambda}^{\mathcal{M}}(\Delta^m)$ equipped with the norm $\|.\|_{\lambda}^{\mathcal{M}}$ and $\ell_{\mathcal{N}}^{\lambda}(\Delta^m)$ equipped with the norm $\|.\|_{\mathcal{N}}^{\lambda}$ are BK-spaces.

Proof:

The space $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta^{m}), \|.\|_{\lambda}^{\mathcal{M}}\right)$ is a Banach space by Theorem 2.5. Now let

$$\|x^n - x\|_{\lambda}^{\mathcal{M}} \to 0$$

as $n \to \infty$. Then

$$|x_k^n - x_k| \to 0$$

as $n \to \infty$ for each $k \le m$ and

$$\inf\{\rho > 0: \sum_{k \ge 1} M_k\left(\frac{|\Delta^m x_k^n - \Delta^m x_k|}{\lambda_k \rho}\right) \le 1\} \to 0$$

as $n \to \infty$ for all $k \in \mathbb{N}$. If $M_k\left(\frac{|\Delta^m x_k^n - \Delta^m x_k|}{\lambda_k ||x||_{\lambda}^{\mathfrak{M}}}\right) \leq 1$ then $\frac{|\Delta^m x_k^n - \Delta^m x_k|}{\lambda_k ||x||_{\lambda}^{\mathfrak{M}}} \leq 1$ for all k. Therefore we also obtain

$$\left|\Delta^m x_k^n - \Delta^m x_k\right| \le \lambda_k \left\|x^n - x\right\|_{\lambda}^{\mathcal{M}}.$$

Since $||x^n - x||_{\lambda}^{\mathcal{M}} \to 0$, then $|\Delta^m x_k^n - \Delta^m x_k| \to 0$ and

$$\left|\sum_{v=0}^{m} \left(-1\right)^{v} \binom{m}{v} \left(x_{k+v}^{n} - x_{k+v}\right)\right| \to 0$$

as $n \to \infty$ for all $k \in \mathbb{N}$. On the other hand, since we may write

$$\begin{aligned} \left| x_{k+m}^{n} - x_{k+m} \right| &\leq \left| \sum_{v=0}^{m} \left(-1 \right)^{v} \binom{m}{v} \left(x_{k+v}^{n} - x_{k+v} \right) \right| \\ &+ \left| \binom{m}{0} \left(x_{k}^{n} - x_{k} \right) \right| + \dots + \left| \binom{m}{m-1} \left(x_{k+m-1}^{n} - x_{k+m-1} \right) \right| \end{aligned}$$

then $|x_k^n - x_k| \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. Hence $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta^m), \|.\|_{\lambda}^{\mathcal{M}}\right)$ is a *BK*space.

The proof is similar for $\ell_{\mathcal{N}}^{\lambda}(\Delta^m)$.

Theorem 2.7. If
$$\mu$$
 is a normal sequence space containing λ , then $\ell_{\lambda}^{\mathcal{M}}(\Delta^m)$ is
a proper subspace of μ . In addition, if μ is equipped with the monotone norm
(quasi-norm) $\|.\|_{\mu}$, the inclusion map $I : \ell_{\lambda}^{\mathcal{M}}(\Delta^m) \to \mu(\Delta^m)$ is continuous with
 $\|I\| \leq \|\{\lambda_k\}\|_{\mu}$.

Proof: Let $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta^m)$. Since $\sum_{k\geq 1} M_k\left(\frac{|\Delta^m x_k|}{\lambda_k \rho}\right) < \infty$ for some $\rho > 0$, then there

exists a constant K > 0 such that $\frac{|\Delta^m x_k|}{\lambda_k \rho} \leq K$ for all $k \in \mathbb{N}$. Since μ is a normal sequence space containing λ , we have $(\Delta^m x_k) \in \mu$ and so that $x \in \mu(\Delta^m)$. Hence $\ell^{\mathcal{M}}_{\lambda}(\Delta^m) \subset \mu(\Delta^m).$

Further, since $M_k(1) = 1$ for all $k \in \mathbb{N}$, then

$$\sum_{k\geq 1} M_k\left(\frac{|\Delta^m x_k|}{\lambda_k \|x\|_{\lambda}^{\mathcal{M}}}\right) \leq 1$$

and so that

$$|\Delta^m x_k| \leq \lambda_k ||x||_{\lambda}^{\mathcal{M}}$$
, for all $k \in \mathbb{N}$.

As $\|.\|_{\mu}$ is monotone, $\|Ix\|_{\mu} = \|(\Delta^m x_k)\|_{\mu} \le \|\{\lambda_k\}\|_{\mu} \|x\|_{\lambda}^{\mathcal{M}}$ and hence $\|I\| \le \|\{\lambda_k\}\|_{\mu}$.

Theorem 2.8. If η is a normal sequence space containing $\{\frac{1}{\lambda_k}\} \equiv \lambda^{-1}$, then $\ell_{\mathcal{N}}^{\lambda}(\Delta^{m})$ is a proper subspace of η . If the norm (quasi-norm) $\|.\|_{\eta}$ on η is monotone, then the inclusion map $J: \ell_{\mathcal{N}}^{\lambda}(\Delta^m) \to \eta(\Delta^m)$ is continuous with $\|J\| \leq \left\| \{\lambda_k^{-1}\} \right\|_{\eta}$.

The proof is similar to Theorem 2.7 and therefore we omitted.

60

3. Interrelationship Between the Spaces $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and $\ell^{\lambda}_{\mathcal{M}}(\Delta^m)$

If $\lambda_k = 1$ for all $k \in \mathbb{N}$, then the sequence space $\ell^{\lambda}_{\mathcal{M}}(\Delta^m)$ reduces to the sequence space

$$\ell_{\mathcal{M}}(\Delta^m) = \{ x = (x_k) : \sum_{k \ge 1} M_k\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}.$$

Theorem 3.1. If $\lambda = \{\lambda_k\}$ is a bounded sequence such that $\inf \lambda_k > 0$, then $\ell^{\lambda}_{\mathcal{M}}(\Delta^m) = \ell^{\mathcal{M}}_{\lambda}(\Delta^m) = \ell_{\mathcal{M}}(\Delta^m).$

Proof:

Let $x \in \ell_{\mathcal{M}}(\Delta^m)$. Then $\sum_{k \geq 1} M_k\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty$ for some $\rho > 0$. Since $\lambda = \{\lambda_k\}$ is bounded, we can write $a \leq \lambda_k \leq b$ for some $b > a \geq 0$. Define $\rho_1 = \rho b$. Since M_k is increasing, it follows that $\sum_{k\geq 1} M_k \left(\frac{\lambda_k |\Delta^m x_k|}{\rho_1}\right) \leq \sum_{k\geq 1} M_k \left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty$. Hence $\ell_{\mathcal{M}}(\Delta^m) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta^m)$. The other inclusion $\ell_{\mathcal{M}}^{\lambda}(\Delta^m) \subset \ell_{\mathcal{M}}(\Delta^m)$ follows from the inequality $\sum_{k\geq 1} M_k \left(\frac{|\Delta^m x_k|}{\rho/a}\right) \leq \sum_{k\geq 1} M_k \left(\frac{\lambda_k |\Delta^m x_k|}{\rho}\right) < \infty$. Therefore $\ell_{\mathcal{M}}^{\lambda}(\Delta^m) =$ $\ell_{\mathcal{M}}(\Delta^m)$. Similarly, one can prove $\ell_{\lambda}^{\mathcal{M}}(\Delta^m) = \ell_{\mathcal{M}}(\Delta^m)$.

Theorem 3.2. If $\{\lambda_k\} \in \ell_{\infty}$ with $a = \sup_{k \ge 1} \lambda_k \ge 1$ and $\{\lambda_k^{-1}\}$ is unbounded, then $\ell_{\lambda}^{\mathcal{M}}(\Delta^m)$ is properly contained in $\ell_{\mathcal{M}}^{\lambda}(\Delta^m)$ and the inclusion map $T : \ell_{\lambda}^{\mathcal{M}}(\Delta^m) \to \ell_{\mathcal{M}}^{\lambda}(\Delta^m)$ is continuous with $||T|| \le a^2$.

Proof:

For any $\rho > 0$ and $\rho' = \rho a^2$, we have

$$\sum_{k\geq 1} M_k\left(\frac{\lambda_k \left|\Delta^m x_k\right|}{\rho'}\right) \leq \sum_{k\geq 1} M_k\left(\frac{\left|\Delta^m x_k\right|}{\lambda_k \rho}\right) < \infty$$

for $x = \{x_k\}$. Hence $\ell_{\lambda}^{\mathcal{M}}(\Delta^m) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta^m)$. We now show that the containment $\ell_{\lambda}^{\mathcal{M}}(\Delta^m) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta^m)$ is proper. From the unboundedness of the sequence $\{\lambda_k^{-1}\}$, choose a sequence $\{k_n\}$ of positive integers such that $\lambda_{k_n}^{-1} \geq n$. Define $\Delta^m x = \{\Delta^m x_k\}$ as follows:

$$\Delta^m x_k = \begin{cases} 1/n, & k = k_n, & n = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Then $x \in \ell^{\lambda}_{\mathcal{M}}(\Delta^m)$; but $x \notin \ell^{\mathcal{M}}_{\lambda}(\Delta^m)$.

To prove the continuity of the inclusion map T, let us first consider the case obtained for a = 1. For $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta^m)$, we write

$$A_{\lambda}^{\mathcal{M}}\left(\Delta^{m}x\right) = \left\{\rho > 0: \sum_{k \ge 1} M_{k}\left(\frac{|\Delta^{m}x_{k}|}{\lambda_{k}\rho}\right) \le 1\right\}$$

and

$$B_{\mathcal{M}}^{\lambda}\left(\Delta^{m}x\right) = \left\{\rho > 0: \sum_{k \ge 1} M_{k}\left(\frac{\lambda_{k}\left|\Delta^{m}x_{k}\right|}{\rho}\right) \le 1\right\}$$

Since M_k are increasing and a = 1, we get $A^{\mathcal{M}}_{\lambda}(\Delta^m x) \subset B^{\lambda}_{\mathcal{M}}(\Delta^m x)$. Hence

$$\|x\|_{\mathcal{M}}^{\lambda} = \inf B_{\mathcal{M}}^{\lambda} \left(\Delta^{m} x\right) \le \inf A_{\lambda}^{\mathcal{M}} \left(\Delta^{m} x\right) = \|x\|_{\lambda}^{\mathcal{M}}$$
(2)

i.e, $||T(x)||_{\mathcal{M}}^{\lambda} \leq ||x||_{\lambda}^{\mathcal{M}}$. Thus *T* is continuous with $||T|| \leq 1 = a^2$. If $a \neq 1$, define $\beta_k = \frac{\lambda_k}{a}, k \in \mathbb{N}$. Then $\beta_k \leq 1$ and from (2), it follows that

$$\|x\|_{\mathcal{M}}^{\beta} \le \|x\|_{\beta}^{\mathcal{M}} \text{ for } x \in \ell_{\lambda}^{\mathcal{M}}(\Delta^{m}).$$
(3)

Hence from (3)

$$\|T(x)\|_{\mathcal{M}}^{\lambda} = \|x\|_{\mathcal{M}}^{\lambda} \le a^2 \, \|x\|_{\lambda}^{\mathcal{M}},$$

i.e., T is continuous with $||T|| \leq a^2$. This completes the proof.

Theorem 3.3. If $\{\lambda_k\}$ is unbounded with $\sup_{k\geq 1} \lambda_k^{-1} = d \geq 1$, $\lambda_k > 0$ for all k, then $\ell^{\lambda}_{\mathcal{M}}(\Delta^m)$ is properly contained in $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ and the inclusion map $U : \ell^{\lambda}_{\mathcal{M}}(\Delta^m) \to \ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ is continuous with $\|U\| \leq d^2$.

Proof: The proof of the theorem is similar to that of Theorem 3.2 and so is omitted. П

4. Dual Spaces of $h(\mathcal{M}), \ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N}, \lambda)$

In this section we give the α -, β - and γ - duals of the sequence space $h(\mathcal{M})$ and α - duals of $\ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N}, \lambda)$.

Theorem 4.1. Let the functions M_k and N_k , for each k be mutually complementary Orlicz functions. Then $[h(\mathfrak{M})]^{\beta} = \ell(\mathfrak{N})$ where

$$\ell(\mathfrak{N}) = \{a = (a_k) : \sum_{k=1}^{\infty} N_k\left(\frac{|a_k|}{\rho'}\right) < \infty, \text{ for some } \rho > 0 \text{ and } \rho' = \frac{1}{\rho}\}.$$

Proof:

Let $a = (a_k) \in \ell(\mathbb{N})$ and hence $\sum_{k=1}^{\infty} N_k \left(\frac{|a_k|}{\rho'}\right) < \infty$ for some $\rho' > 0$. Take any $x = (x_k)$ in $h(\mathcal{M})$. Then we have

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho}\right) + \sum_{k=1}^{\infty} N_k \left(\frac{|a_k|}{\rho'}\right) < \infty.$$

62

Hence $\sum_{k=1}^{\infty} a_k x_k$ converges and $a \in [h(\mathfrak{M})]^{\beta}$. On the other hand, suppose $a \in [h(\mathfrak{M})]^{\beta}$. Using (1), we find $[h(\mathfrak{M})]^{\beta} \subset \ell(\mathfrak{N})$. Thus $[h(\mathfrak{M})]^{\beta} = \ell(\mathfrak{N})$.

Proposition 4.2. The sequence space $h(\mathcal{M})$ is normal for any sequence $\mathcal{M} = (M_k)$ of Orlicz functions.

Proof: Let $x \in h(\mathcal{M})$ and $|y_k| \leq |x_k|$ for each $k \in \mathbb{N}$. Since M_k are non-decreasing, we have

$$\sum_{k=1}^{\infty} M_k\left(\frac{|y_k|}{\rho}\right) \le \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) < \infty.$$

Hence $y \in h(\mathcal{M})$. Thus $h(\mathcal{M})$ is normal.

Theorem 4.3. Let M_k and N_k , for each k be mutually complementary functions. Then

$$\left[h\left(\mathcal{M}
ight)
ight]^{eta}=\left[h\left(\mathcal{M}
ight)
ight]^{lpha}=\left[h\left(\mathcal{M}
ight)
ight]^{\gamma}=\ell\left(\mathcal{N}
ight).$$

Proof is seen from Proposition 1.2, Proposition 1.3 and Proposition 4.2.

For m = 0, we write $\ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N}, \lambda)$ instead of $\ell^{\mathcal{M}}_{\lambda}(\Delta^m)$ ve $\ell^{\lambda}_{\mathcal{N}}(\Delta^m)$, respectively which we define

$$\ell(\mathfrak{M},\lambda) = \{x = (x_k) : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\lambda_k\rho}\right) < \infty, \text{ for some } \rho > 0\},\$$

$$\ell(\mathfrak{N},\lambda) = \{y = (y_k) : \sum_{k=1}^{\infty} N_k\left(\frac{\lambda_k |y_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0\}.$$

Theorem 4.4. (i) If the sequence (M_k) satisfies uniform Δ_2 -condition, then $[\ell(\mathfrak{M}, \lambda)]^{\alpha} = \ell(\mathfrak{N}, \lambda).$

(ii) If the sequence (N_k) satisfies uniform Δ_2 -condition, then $[\ell(\mathcal{N},\lambda)]^{\alpha} = \ell(\mathcal{M},\lambda)$.

Proof: Let the sequence (M_k) satisfies uniform Δ_2 -condition. Then for any $x \in \ell(\mathcal{M}, \lambda)$ and $a \in \ell(\mathcal{N}, \lambda)$, we have

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\lambda_k \rho} \right) + \sum_{k=1}^{\infty} N_k \left(\frac{\lambda_k |a_k|}{\rho'} \right) < \infty$$

where $\rho' = 1/\rho$ and $\rho > 0$. Thus $a \in [\ell(\mathcal{M}, \lambda)]^{\alpha}$. Hence $\ell(\mathcal{N}, \lambda) \subset [\ell(\mathcal{M}, \lambda)]^{\alpha}$.

To prove the inclusion $[\ell(\mathcal{M},\lambda)]^{\alpha} \subset \ell(\mathcal{N},\lambda)$, let $a \in [\ell(\mathcal{M},\lambda)]^{\alpha}$. Then for all $\{x_k\}$ with $\left(\frac{x_k}{\lambda_k}\right) \in \ell(\mathcal{M})$ we have

$$\sum_{k=1}^{\infty} |a_k x_k| < \infty.$$

Since the sequence (M_k) satisfies uniform Δ_2 -condition, then $\ell(\mathfrak{M}) = h(\mathfrak{M})$ and so for $(y_k) \in h(\mathfrak{M})$, we get $\sum_{k=1}^{\infty} |\lambda_k y_k a_k| < \infty$ by (4). Thus $(\lambda_k a_k) \in [h(\mathfrak{M})]^{\alpha} = \ell(\mathfrak{N})$ and hence $(a_k) \in \ell(\mathfrak{N}, \lambda)$. This gives that $[\ell(\mathfrak{M}, \lambda)]^{\alpha} = \ell(\mathfrak{N}, \lambda)$.

(ii) Similarly, one can prove that $[\ell(N, \lambda)]^{\alpha} = \ell(M, \lambda)$ if the sequence (N_k) satisfies uniform Δ_2 -condition.

Theorem 4.5. If the sequences (N_k) and (M_k) satisfy uniform Δ_2 -condition, then the sequence spaces $\ell(\mathcal{M}, \lambda)$ and $\ell(\mathcal{N}, \lambda)$ are perfect.

Proof: It is immediate from Theorem 4.4.

References

- 1. Bektaş, Ç. A., 2004. Absolute and Ordinary Köthe-Toeplitz duals of some generalized sets of difference sequences. Hokkaido Math. J., 33, 207-214.
- Et, M. and Çolak, R., 1995. On generalized difference sequence spaces, Soochow J. Math., 21, 377-386.
- 3. Et, M. and Esi, A., 2000. On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sc. Soc., 23, 25-32.
- Gupta, M. and Pradhan, S., 2008. On Certain Type of Modular Sequence Spaces, Turk J Math., 32, 293 – 303.
- 5. Kamthan, P. K. and Gupta, M., 1981. Sequence Spaces and Series, Marcel Dekker, Inc. New York.
- 6. Kızmaz, H., 1981. On certain sequence spaces, Canad. Math. Bull., 24, 169-176.
- 7. Lindenstrauss, J. and Tzafriri, L., 1965. On Orlicz sequence spaces, Israel J. Math., 10, 379-390.
- 8. Nakano, H., 1955. Modulared Sequence Spaces, Proc. Jap. Acad. 27 reprinted in semi ordered Linear Spaces, Tokyo.
- 9. Woo, J. Y. T., 1973. On Modular Sequence spaces, Studia Math., 48, 271–289.

On Some New Modular Sequence Spaces

Çiğdem A. Bektaş Department of Mathematics, Firat University, Elazig, 23119, Turkey E-mail address: cigdemas78@hotmail.com

and

Gülcan Atıci Department of Mathematics, Muş Alparslan University, Muş, 49100, Turkey E-mail address: gatici23@hotmail.com