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On Some New Modular Sequence Spaces

Çiğdem A. Bektaş and Gülcan Atıci

abstract: Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to
define the sequence space ℓM which is called an Orlicz sequence space. Another
generalization of Orlicz sequence spaces is due to Woo [9]. An important subspace
of ℓ (M), which is an AK-space, is the space h (M) . We define the sequence spaces
ℓM

λ
(∆m) and ℓλ

N
(∆m), where M = (Mk) and N = (Nk) are sequences of Orlicz

functions such that Mk and Nk be mutually complementary for each k. We also
examine some topological properties of these spaces. We give the α−, β− and γ−

duals of the sequence space h (M) and α− duals of the squence spaces ℓ (M, λ) and
ℓ (N, λ) .

Key Words:Difference sequence spaces, Orlicz function, α−, β− and γ−
duals.
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1. Introduction

The difference sequence spaces was introduced by Kızmaz [6] and the concept
was generalized by Et and Çolak [2]. After, Et and Esi [3] extended the difference
sequence spaces to the sequence spaces

X (∆m
v ) = {x = (xk) : (∆m

v xk) ∈ X}

for X = ℓ∞, c or c0, where v = (vk) be any fixed sequence of non-zero complex

numbers and (∆m
v xk) =

(

∆m−1
v xk − ∆m−1

v xk+1

)

, ∆m
v xk =

m
∑

i=0

(−1)
i (m

i

)

vk+ixk+i

for all k ∈ N.
The sequence spaces ∆m

v (ℓ∞), ∆m
v (c) and ∆m

v (c0) are Banach spaces normed
by

‖x‖∆ =
m
∑

i=1

|vixi| + ‖∆m
v x‖∞ .
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An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as
x → ∞.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the
Orlicz sequence space

ℓM =

{

x = (xk) :
∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

which is a Banach space with the norm

‖x‖ = inf

{

ρ > 0 :
∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

.

It is well known that if M is a convex function and M (0) = 0, then M (λx) ≤
λM (x) for all λ with 0 ≤ λ ≤ 1.

Let λ be a sequence space and defined

λα = {a = (ak) :
∞
∑

k=1

|akxk| < ∞, for all x ∈ λ},

λβ = {a = (ak) :
∞
∑

k=1

akxk converges, for all x ∈ λ},

λγ = {a = (ak) : sup
n

∣

∣

∣

∣

n
∑

k=1

akxk

∣

∣

∣

∣

< ∞, for all x ∈ λ} [5].

Then λα, λβ , λγ are called α−, β−, γ−dual spaces of λ, respectively. It is easy to
show that ∅ ⊂ λα ⊂ λβ ⊂ λγ . If λ ⊂ µ, then µη ⊂ λη for η = α, β, γ. We shall
write λαα = (λα)

α
[5].

Definition 1.1. Let λ be a sequence space. Then λ is called
(i) Solid (or normal), if (αkxk) ∈ λ whenever (xk) ∈ λ for all sequences (αk)

of scalars with |αk| ≤ 1.
(ii) Monotone, if provided λ contains the canonical preimages of all its stepspaces.
(iii) Perfect, if λ = λαα [5].

Proposition 1.2. λ is perfect ⇒ λ is normal ⇒ λ is monotone [5].

Proposition 1.3. Let λ be a sequence space. If λ is monotone, then λα = λβ, and
if λ is normal, then λα = λγ .

A Banach sequence space (λ, S) is called a BK−space if the topology S of λ is
finer than the co-ordinatewise convergence topology, or equivalently, the projection
maps Pi : λ → K, Pi(x) = xi, i ≥ 1 are continuous, where K is the scalar field R

(the set of all reals) or C (the complex plane). For x = (x1, ..., xn, ...) and n ∈ N (the
set of natural numbers), we write the nth section of x as x(n) = (x1, ..., xn, 0, 0, ...).
If {x(n)} tends to x in (λ, S) for each x ∈ λ, we say that (λ, S) is an AK−space.
The norm ‖.‖λ generating the topology S of λ is said to be monotone if ‖x‖λ ≤ ‖y‖λ

for x = {xi}, y = {yi} ∈ λ with |xi| ≤ |yi|, for all i ≥ 1 [4].
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Any Orlicz function Mk always has the integral representation

Mk(x) =
x
∫

0

pk(t)dt,

where pk, known as the kernel of Mk, is non-decreasing, is right continuous for
t > 0, pk(0) = 0, pk(t) > 0 for t > 0 and pk(t) → ∞ as t → ∞.

Given an Orlicz function Mk with kernel pk(t), define

qk(s) = sup {t : pk(t) ≤ s, s ≥ 0} .

Then qk(s) possesses the same properties as pk(t) and the function Nk defined as

Nk(x) =
x
∫

0

qk(s)ds

is an Orlicz function. The functions Mk and Nk are called mutually complementary
Orlicz functions.

For a sequence M = (Mk) of Orlicz functions, the modular sequence class ℓ̃ (M)
is defined by

ℓ̃ (M) = {x = (xk) :
∞
∑

k=1

Mk (|xk|) < ∞}.

Using the sequence N = (Nk) of Orlicz functions, similarly we define ℓ̃ (N). The
class ℓ (M) is defined by

ℓ (M) = {x = (xk) :
∞
∑

k=1

xkyk converges, for all y ∈ ℓ̃ (N)}. (1)

For a sequence M = (Mk) of Orlicz functions, the modular sequence space ℓ (M)
is also defined as

ℓ (M) = {x = (xk) :
∞
∑

k=1

Mk

(

|xk|

ρ

)

< ∞, for some ρ > 0}.

The space ℓ (M) is a Banach space with respect to the norm ‖x‖
M

defined as

‖x‖
M

= inf{ρ > 0 :
∞
∑

k=1

Mk

(

|xk|

ρ

)

≤ 1}.

These spaces were introduced by Woo [9] around the year 1973, and generalizes
the Orlicz sequence space ℓM and the modulared sequence spaces considered earlier
by Nakano in [8].

Proposition 1.4. Let Mk and Nk be mutually complementary functions for each
k. Then

(i) For x, y ≥ 0, xy ≤ Mk(x) + Nk(y).
(ii) For x ≥ 0, xpk(x) = Mk(x) + Nk(pk(x)).
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An important subspace of ℓ (M), which is an AK-space, is the space h (M)
defined as

h (M) = {x ∈ ℓ (M) :
∞
∑

k=1

Mk

(

|xk|

ρ

)

< ∞, for some ρ > 0}.

A sequence (Mk) of Orlicz functions is said to satisfy uniform ∆2− condition at
′0′ if there exist p > 1 and k0 ∈ N such that for all x ∈ (0, 1) and k > k0, we have
xM ′

k
(x)

Mk(x) ≤ p, or equivalently, there exist a constant K > 1 and k0 ∈ N such that
Mk(2x)
Mk(x) ≤ K for all k > k0 and x ∈

(

0, 1
2

]

. If the sequence (Mk) satisfies uniform

∆2−condition, then h (M) = ℓ (M) and vice-versa [9].

2. Main Results

Definition 2.1. Let Mk and Nk be mutually complementary functions for each k
and let λ = {λk} be a sequence of strictly positive real numbers. Then we define
the following sequence spaces:

ℓM

λ (∆m) = {x = (xk) :
∑

k≥1

Mk

(

|∆mxk|

λkρ

)

< ∞, for some ρ > 0}

and

ℓλ
N(∆m) = {x = (xk) :

∑

k≥1

Nk

(

λk |∆
mxk|

ρ

)

< ∞, for some ρ > 0}.

The spaces ℓM
λ (∆m) and ℓλ

N
(∆m) also can be written as

ℓM

λ (∆m) = {x = (xk) : {
∆mxk

λk
} ∈ ℓ (M)}

and
ℓλ
N(∆m) = {x = (xk) : {λk∆mxk} ∈ ℓ (N)}.

Throughout the paper we write Mk(1) = 1 and Nk(1) = 1 for all k ∈ N.

Theorem 2.2. Let M = (Mk) and N = (Nk) be two sequences of Orlicz functions.
Then ℓM

λ (∆m) and ℓλ
N

(∆m) are linear spaces over the field of complex numbers.

Proof:
Let x, y ∈ ℓM

λ (∆m) and a, b ∈ C. Then there exist positive numbers ρ1 and ρ2

such that
∑

k≥1

Mk

(

|∆mxk|

λkρ1

)

< ∞

and
∑

k≥1

Mk

(

|∆myk|

λkρ2

)

< ∞.
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Define ρ3 = max (2 |a| ρ1, 2 |b| ρ2). Since Mk are non-decreasing and convex func-
tions and ∆m is linear, we have

∑

k≥1

Mk

(

|∆m (axk + byk)|

λkρ3

)

≤
∑

k≥1

Mk

(

|∆mxk|

λkρ1

)

+
∑

k≥1

Mk

(

|∆myk|

λkρ2

)

< ∞.

This proves that ℓM
λ (∆m) is a linear space. The proof for ℓλ

N
(∆m) is similar.

2

The proofs of the following theorems are easy and thus omitted.

Theorem 2.3. The sequence space ℓM
λ (∆m) is a normed space with norm

‖x‖
M

λ =

m
∑

i=1

|xi| + inf{ρ > 0 :
∑

k≥1

Mk

(

|∆mxk|

λkρ

)

≤ 1}.

Theorem 2.4. The sequence space ℓλ
N

(∆m) is a normed space with norm

‖x‖
λ
N

=
m
∑

i=1

|xi| + inf{ρ > 0 :
∑

k≥1

Nk

(

λk |∆
mxk|

ρ

)

≤ 1}.

Theorem 2.5. The spaces
(

ℓM
λ (∆m), ‖.‖

M

λ

)

and
(

ℓλ
N

(∆m), ‖.‖
λ
N

)

are Banach
spaces.

Theorem 2.6. The sequence spaces ℓM
λ (∆m) equipped with the norm ‖.‖

M

λ and

ℓλ
N

(∆m) equipped with the norm ‖.‖
λ
N

are BK-spaces.

Proof:
The space

(

ℓM
λ (∆m), ‖.‖

M

λ

)

is a Banach space by Theorem 2.5. Now let

‖xn − x‖
M

λ → 0

as n → ∞. Then
|xn

k − xk| → 0

as n → ∞ for each k ≤ m and

inf{ρ > 0 :
∑

k≥1

Mk

(

|∆mxn
k − ∆mxk|

λkρ

)

≤ 1} → 0

as n → ∞ for all k ∈ N. If Mk

(

|∆mxn

k
−∆mxk|

λk‖x‖M

λ

)

≤ 1 then
|∆mxn

k
−∆mxk|

λk‖x‖M

λ

≤ 1 for all

k. Therefore we also obtain

|∆mxn
k − ∆mxk| ≤ λk ‖x

n − x‖
M

λ .
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Since ‖xn − x‖
M

λ → 0, then |∆mxn
k − ∆mxk| → 0 and

∣

∣

∣

∣

m
∑

v=0
(−1)

v

(

m

v

)

(

xn
k+v − xk+v

)

∣

∣

∣

∣

→ 0

as n → ∞ for all k ∈ N. On the other hand, since we may write

∣

∣xn
k+m − xk+m

∣

∣ ≤

∣

∣

∣

∣

m
∑

v=0
(−1)

v

(

m

v

)

(

xn
k+v − xk+v

)

∣

∣

∣

∣

+

∣

∣

∣

∣

(

m

0

)

(xn
k − xk)

∣

∣

∣

∣

+ ... +

∣

∣

∣

∣

(

m

m − 1

)

(

xn
k+m−1 − xk+m−1

)

∣

∣

∣

∣

then |xn
k − xk| → 0 as n → ∞ for all k ∈ N. Hence

(

ℓM
λ (∆m), ‖.‖

M

λ

)

is a BK-
space.

The proof is similar for ℓλ
N

(∆m). 2

Theorem 2.7. If µ is a normal sequence space containing λ, then ℓM
λ (∆m) is

a proper subspace of µ. In addition, if µ is equipped with the monotone norm
(quasi-norm) ‖.‖µ, the inclusion map I : ℓM

λ (∆m) → µ(∆m) is continuous with
‖I‖ ≤ ‖{λk}‖µ.

Proof:
Let x ∈ ℓM

λ (∆m). Since
∑

k≥1

Mk

(

|∆mxk|
λkρ

)

< ∞ for some ρ > 0, then there

exists a constant K > 0 such that |∆mxk|
λkρ ≤ K for all k ∈ N. Since µ is a normal

sequence space containing λ, we have (∆mxk) ∈ µ and so that x ∈ µ(∆m). Hence
ℓM
λ (∆m) ⊂ µ(∆m).

Further, since Mk(1) = 1 for all k ∈ N, then

∑

k≥1

Mk

(

|∆mxk|

λk ‖x‖
M

λ

)

≤ 1

and so that

|∆mxk| ≤ λk ‖x‖
M

λ , for all k ∈ N.

As ‖.‖µ is monotone, ‖Ix‖µ = ‖(∆mxk)‖µ ≤ ‖{λk}‖µ ‖x‖
M

λ and hence ‖I‖ ≤
‖{λk}‖µ.

2

Theorem 2.8. If η is a normal sequence space containing { 1
λk

} ≡ λ−1, then

ℓλ
N

(∆m) is a proper subspace of η. If the norm (quasi-norm) ‖.‖η on η is monotone,

then the inclusion map J : ℓλ
N

(∆m) → η(∆m) is continuous with ‖J‖ ≤
∥

∥{λ−1
k }
∥

∥

η
.

The proof is similar to Theorem 2.7 and therefore we omitted.



On Some New Modular Sequence Spaces 61

3. Interrelationship Between the Spaces ℓM
λ (∆m) and ℓλ

M
(∆m)

If λk = 1 for all k ∈ N, then the sequence space ℓλ
M

(∆m) reduces to the sequence
space

ℓM(∆m) = {x = (xk) :
∑

k≥1

Mk

(

|∆mxk|

ρ

)

< ∞, for some ρ > 0}.

Theorem 3.1. If λ = {λk} is a bounded sequence such that inf λk > 0, then
ℓλ
M

(∆m) = ℓM
λ (∆m) = ℓM(∆m).

Proof:
Let x ∈ ℓM(∆m). Then

∑

k≥1

Mk

(

|∆mxk|
ρ

)

< ∞ for some ρ > 0. Since λ = {λk}

is bounded, we can write a ≤ λk ≤ b for some b > a ≥ 0. Define ρ1 = ρb. Since Mk

is increasing, it follows that
∑

k≥1

Mk

(

λk|∆
mxk|

ρ
1

)

≤
∑

k≥1

Mk

(

|∆mxk|
ρ

)

< ∞. Hence

ℓM(∆m) ⊂ ℓλ
M

(∆m). The other inclusion ℓλ
M

(∆m) ⊂ ℓM(∆m) follows from the

inequality
∑

k≥1

Mk

(

|∆mxk|
ρ/a

)

≤
∑

k≥1

Mk

(

λk|∆
mxk|
ρ

)

< ∞. Therefore ℓλ
M

(∆m) =

ℓM(∆m). Similarly, one can prove ℓM
λ (∆m) = ℓM(∆m).

2

Theorem 3.2. If {λk} ∈ ℓ∞ with a = supk≥1 λk ≥ 1 and {λ−1
k } is unbounded, then

ℓM
λ (∆m) is properly contained in ℓλ

M
(∆m) and the inclusion map T : ℓM

λ (∆m) →
ℓλ
M

(∆m) is continuous with ‖T‖ ≤ a2.

Proof:
For any ρ > 0 and ρ′ = ρa2, we have

∑

k≥1

Mk

(

λk |∆
mxk|

ρ′

)

≤
∑

k≥1

Mk

(

|∆mxk|

λkρ

)

< ∞

for x = {xk}. Hence ℓM
λ (∆m) ⊂ ℓλ

M
(∆m).

We now show that the containment ℓM
λ (∆m) ⊂ ℓλ

M
(∆m) is proper. From the

unboundedness of the sequence {λ−1
k }, choose a sequence {kn} of positive integers

such that λ−1
kn

≥ n. Define ∆mx = {∆mxk} as follows:

∆mxk =

{

1/n, k = kn, n = 1, 2, ...
0, otherwise

Then x ∈ ℓλ
M

(∆m); but x /∈ ℓM
λ (∆m).

To prove the continuity of the inclusion map T , let us first consider the case
obtained for a = 1. For x ∈ ℓM

λ (∆m), we write

AM

λ (∆mx) =







ρ > 0 :
∑

k≥1

Mk

(

|∆mxk|

λkρ

)

≤ 1
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and

Bλ
M (∆mx) =







ρ > 0 :
∑

k≥1

Mk

(

λk |∆
mxk|

ρ

)

≤ 1







.

Since Mk are increasing and a = 1, we get AM
λ (∆mx) ⊂ Bλ

M
(∆mx).

Hence

‖x‖
λ
M

= inf Bλ
M (∆mx) ≤ inf AM

λ (∆mx) = ‖x‖
M

λ (2)

i.e, ‖T (x)‖
λ
M

≤ ‖x‖
M

λ . Thus T is continuous with ‖T‖ ≤ 1 = a2.

If a 6= 1, define βk = λk

a , k ∈ N. Then βk ≤ 1 and from (2), it follows that

‖x‖
β
M

≤ ‖x‖
M

β for x ∈ ℓM

λ (∆m). (3)

Hence from (3)

‖T (x)‖
λ
M

= ‖x‖
λ
M

≤ a2 ‖x‖
M

λ ,

i.e., T is continuous with ‖T‖ ≤ a2. This completes the proof.
2

Theorem 3.3. If {λk} is unbounded with supk≥1 λ−1
k = d ≥ 1, λk > 0 for all

k, then ℓλ
M

(∆m) is properly contained in ℓM
λ (∆m) and the inclusion map U :

ℓλ
M

(∆m) → ℓM
λ (∆m) is continuous with ‖U‖ ≤ d2.

Proof: The proof of the theorem is similar to that of Theorem 3.2 and so is
omitted. 2

4. Dual Spaces of h (M) , ℓ (M, λ) and ℓ (N, λ)

In this section we give the α−, β− and γ− duals of the sequence space h (M)
and α− duals of ℓ (M, λ) and ℓ (N, λ).

Theorem 4.1. Let the functions Mk and Nk, for each k be mutually complemen-
tary Orlicz functions. Then [h (M)]

β
= ℓ (N) where

ℓ (N) = {a = (ak) :

∞
∑

k=1

Nk

(

|ak|

ρ′

)

< ∞, for some ρ > 0 and ρ′ =
1

ρ
}.

Proof:

Let a = (ak) ∈ ℓ (N) and hence

∞
∑

k=1

Nk

(

|ak|
ρ′

)

< ∞ for some ρ′ > 0. Take any

x = (xk) in h (M). Then we have

∞
∑

k=1

|akxk| ≤

∞
∑

k=1

Mk

(

|xk|

ρ

)

+

∞
∑

k=1

Nk

(

|ak|

ρ′

)

< ∞.
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Hence

∞
∑

k=1

akxk converges and a ∈ [h (M)]
β
.

On the other hand, suppose a ∈ [h (M)]
β
. Using (1), we find [h (M)]

β
⊂ ℓ (N).

Thus [h (M)]
β

= ℓ (N) .
2

Proposition 4.2. The sequence space h (M) is normal for any sequence M = (Mk)
of Orlicz functions.

Proof: Let x ∈ h (M) and |yk| ≤ |xk| for each k ∈ N. Since Mk are non-decreasing,
we have

∞
∑

k=1

Mk

(

|yk|

ρ

)

≤
∞
∑

k=1

Mk

(

|xk|

ρ

)

< ∞.

Hence y ∈ h (M). Thus h (M) is normal.
2

Theorem 4.3. Let Mk and Nk, for each k be mutually complementary functions.
Then

[h (M)]
β

= [h (M)]
α

= [h (M)]
γ

= ℓ (N) .

Proof is seen from Proposition 1.2, Proposition 1.3 and Proposition 4.2.

For m = 0, we write ℓ (M, λ) and ℓ (N, λ) instead of ℓM
λ (∆m) ve ℓλ

N
(∆m), re-

spectively which we define

ℓ (M, λ) = {x = (xk) :

∞
∑

k=1

Mk

(

|xk|

λkρ

)

< ∞, for some ρ > 0},

ℓ (N, λ) = {y = (yk) :

∞
∑

k=1

Nk

(

λk |yk|

ρ

)

< ∞, for some ρ > 0}.

Theorem 4.4. (i)If the sequence (Mk) satisfies uniform ∆2−condition, then
[ℓ (M, λ)]

α
= ℓ (N, λ).

(ii) If the sequence (Nk) satisfies uniform ∆2−condition, then [ℓ (N, λ)]
α

=
ℓ (M, λ).

Proof: Let the sequence (Mk) satisfies uniform ∆2−condition. Then for any x ∈
ℓ (M, λ) and a ∈ ℓ (N, λ), we have

∞
∑

k=1

|akxk| ≤

∞
∑

k=1

Mk

(

|xk|

λkρ

)

+

∞
∑

k=1

Nk

(

λk |ak|

ρ′

)

< ∞

where ρ′ = 1/ρ and ρ > 0. Thus a ∈ [ℓ (M, λ)]
α
. Hence ℓ (N, λ) ⊂ [ℓ (M, λ)]

α
.
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To prove the inclusion [ℓ (M, λ)]
α
⊂ ℓ (N, λ), let a ∈ [ℓ (M, λ)]

α
. Then for all

{xk} with
(

xk

λk

)

∈ ℓ (M) we have

∞
∑

k=1

|akxk| < ∞.

Since the sequence (Mk) satisfies uniform ∆2−condition, then ℓ (M) = h (M)

and so for (yk) ∈ h (M), we get

∞
∑

k=1

|λkykak| < ∞ by (4). Thus (λkak) ∈ [h (M)]
α

=

ℓ (N) and hence (ak) ∈ ℓ (N, λ). This gives that [ℓ (M, λ)]
α

= ℓ (N, λ).

(ii) Similarly, one can prove that [ℓ (N, λ)]
α

= ℓ (M, λ) if the sequence (Nk)
satisfies uniform ∆2−condition.

2

Theorem 4.5. If the sequences (Nk) and (Mk) satisfy uniform ∆2−condition,
then the sequence spaces ℓ (M, λ) and ℓ (N, λ) are perfect.

Proof: It is immediate from Theorem 4.4. 2
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