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Characterization Of Inextensible Flows Of Spacelike Curves With

Sabban Frame In S
2

1

Mahmut Ergüt, Essin Turhan and Talat Körpınar

abstract: In this paper, we study inextensible flows of spacelike curves on S2

1
.

We obtain partial differential equations in terms of inextensible flows of spacelike
curves according to Sabban frame on S2

1
.
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1. Introduction

Physically, inextensible curve and surface flows give rise to motions in which no
strain energy is induced. The swinging motion of a cord of fixed length, for example,
or of a piece of paper carried by the wind, can be described by inextensible curve
and surface flows. Such motions arise quite naturally in a wide range of physical
applications.

This study is organised as follows: Firstly, we study inextensible flows of space-
like curves on S

2

1
. Secondly, we obtain partial differential equations in terms of

inextensible flows of spacelike curves according to Sabban frame on S
2

1
.

2. Preliminaries

The Minkowski 3-space E
3 provided with the standard flat metric given by

〈, 〉 = −dx2

1
+ dx2

2
+ dx2

3
,

where (x1, x2, x3) is a rectangular coordinate system of E
3

1
. Recall that, the norm

of an arbitrary vector a ∈ E
3

1
is given by ‖a‖ =

√

〈a, a〉. γ is called a unit speed
curve if velocity vector v of γ satisfies ‖a‖ = 1.

Denote by {T,N,B} the moving Frenet–Serret frame along the spacelike curve
γ in the space E

3

1
. For an arbitrary spacelike curve γ with first and second curvature,
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κ and τ in the space E
3

1
, the following Frenet–Serret formulae is given

T
′ = κN

N
′ = −κT + τB (2.1)

B
′ = τN,

where

〈T,T〉 = 1, 〈N,N〉 = 1, 〈B,B〉 = −1,

〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.

Here, curvature functions are defined by κ = κ(s) = ‖T′(s)‖ and τ(s) =
−

〈

N,B′
〉

.
Torsion of the spacelike curve γ is given by the aid of the mixed product

τ =
[γ′, γ′′, γ′′′]

κ2
.

Now we give a new frame different from Frenet frame. Let α : I −→ S
2

1
be

unit speed spherical curve. We denote σ as the arc-length parameter of α . Let us
denote t (σ) = α′ (σ) , and we call t (σ) a unit tangent vector of α. We now set a
vector s (σ) = α (σ)× t (σ) along α. This frame is called the Sabban frame of α on
S

2

1
. Then we have the following spherical Frenet-Serret formulae of α :

α′ = t,

t
′ = −α− κgs, (2.2)

s
′ = −κgt,

where κg is the geodesic curvature of the spacelike curve α on the S
2

1
and

g (t, t) = 1, g (α, α) = 1, g (s, s) = −1,

g (t, α) = g (t, s) = g (α, s) = 0.

3. Inextensible Flows of Curves According to Sabban Frame in S
2

1

Let α (u, t) is a one parameter family of smooth spacelike curves in S
2

1
.

The arclength of α is given by

σ(u) =

u
∫

0

∣

∣

∣

∣

∂α

∂u

∣

∣

∣

∣

du, (3.1)

where
∣

∣

∣

∣

∂α

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

∂α

∂u
,
∂α

∂u

〉∣

∣

∣

∣

1

2
. (3.2)
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The operator
∂

∂σ
is given in terms of u by

∂

∂σ
=

1

ν

∂

∂u
,

where v =

∣

∣

∣

∣

∂α

∂u

∣

∣

∣

∣

and the arclength parameter is dσ = vdu.

Any flow of α can be represented as

∂α

∂t
= fS

1
α+ fS

2
t + fS

3
s. (3.3)

Letting the arclength variation be

σ(u, t) =

u
∫

0

vdu.

In the S
2

1
the requirement that the curve not be subject to any elongation or

compression can be expressed by the condition

∂

∂t
σ(u, t) =

u
∫

0

∂v

∂t
du = 0, (3.4)

for all u ∈ [0, l] .

Definition 3.1. The flow
∂α

∂t
in S

2

1
are said to be inextensible if

∂

∂t

∣

∣

∣

∣

∂α

∂u

∣

∣

∣

∣

= 0.

Lemma 3.2. Let
∂α

∂t
= fS

1
α+ fS

2
t + fS

3
s be a smooth flow of the spacelike curve α.

The flow is inextensible if and only if

∂v

∂t
−
∂fS

2

∂u
= fS

1
v − fS

3
vkg. (3.5)

Proof: Suppose that
∂α

∂t
be a smooth flow of the spacelike curve α.

From (3.3), we obtain

v
∂v

∂t
=

〈

∂α

∂u
,
∂

∂u

(

fS
1
α+ fS

2
t + fS

3
s
)

〉

.

By the formula of the Sabban, we have

∂v

∂t
=

〈

t,

(

∂fS
1

∂u
− fS

2
v

)

α+

(

fS
1
v +

∂fS
2

∂u
− fS

3
vκg

)

t +

(

∂fS
3

∂u
− fS

2
vκg

)

s

〉

.
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Making necessary calculations from above equation, we have (3.5), which proves
the lemma.

2

Theorem 3.3. Let
∂α

∂t
= fS

1
α + fS

2
t + fS

3
s be a smooth flow of the spacelike curve

α. The flow is inextensible if and only if

∂fS
2

∂u
= fS

3
vκg − fS

1
v. (3.7)

Proof: From (3.4), we have

∂

∂t
σ(u, t) =

u
∫

0

∂v

∂t
du =

u
∫

0

(

fS
1
v +

∂fS
2

∂u
− fS

3
vκg

)

du = 0. (3.8)

Substituting (3.5) in (3.8) complete the proof of the theorem.
2

We now restrict ourselves to arc length parametrized curves. That is, v = 1
and the local coordinate u corresponds to the curve arc length σ. We require the
following lemma.

Lemma 3.4. Let
∂α

∂t
= fS

1
α+ fS

2
t + fS

3
s be a smooth flow of the spacelike curve α.

Then,

∂t

∂t
=

(

∂fS
1

∂σ
− fS

2

)

α+

(

∂fS
3

∂σ
− fS

2
κg

)

s, (3.9)

∂α

∂t
= −

(

∂fS
1

∂σ
− fS

2

)

t + ψs, (3.10)

∂s

∂t
=

(

∂fS
3

∂σ
− fS

2
κg

)

t − ψα, (3.11)

where ψ =

〈

∂α

∂t
, s

〉

.

Proof: Using definition of α, we have

∂t

∂t
=

∂

∂t

∂α

∂σ
=

∂

∂σ
(fS

1
α+ fS

2
t + fS

3
s).

Using the Sabban equations, we have

∂t

∂t
=

(

∂fS
1

∂σ
− fS

2

)

α+

(

fS
1

+
∂fS

2

∂σ
− fS

3
κg

)

t +

(

∂fS
3

∂σ
− fS

2
κg

)

s. (3.12)



Characterization Of Inextensible Flows 51

On the other hand, substituting (3.7) in (3.12), we get

∂t

∂t
=

(

∂fS
1

∂σ
− fS

2

)

α+

(

∂fS
3

∂σ
− fS

2
κg

)

s.

Since, we express :

∂fS
1

∂σ
− fS

2
+

〈

t,
∂α

∂t

〉

= 0,

−
∂fS

3

∂σ
+ fS

2
κg +

〈

t,
∂s

∂t

〉

= 0,

ψ +

〈

α,
∂s

∂t

〉

= 0.

Then, a straight forward computation using above system gives

∂α

∂t
= −

(

∂fS
1

∂σ
− fS

2

)

t + ψs,

∂s

∂t
=

(

∂fS
3

∂σ
− fS

2
κg

)

t − ψα,

where ψ =

〈

∂α

∂t
, s

〉

. Thus, we obtain the theorem.

2

The following theorem states the conditions on the curvature and torsion for
the flow to be inextensible.

Theorem 3.5. Let
∂α

∂t
is inextensible. Then, the following system of partial dif-

ferential equations holds:

∂κg

∂σ
− ψ =

∂

∂σ
(fS

2
κg) −

∂2fS
3

∂σ2
,

κgψ =
∂2fS

1

∂σ2
−
∂fS

2

∂σ
.

Proof:

Using (3.9), we have

∂

∂σ

∂t

∂t
=

∂

∂σ

[(

∂fS
1

∂σ
− fS

2

)

α+

(

∂fS
3

∂σ
− fS

2
κg

)

s

]

=

(

∂2fS
1

∂σ2
−
∂fS

2

∂σ

)

α+ [

(

∂fS
1

∂σ
− fS

2

)

−κg

(

∂fS
3

∂σ
+ fS

2
κg

)

]t

+

(

∂2fS
3

∂σ2
−

∂

∂σ
(fS

2
κg)

)

s.
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On the other hand, from Sabban frame we have

∂

∂t

∂t

∂σ
=

∂

∂t
(−α−κgs)

= (ψ −
∂κg

∂σ
)s + [

(

∂fS
1

∂σ
− fS

2

)

+ κg

(

∂fS
3

∂σ
− fS

2
κg

)

]t + κgψα.

Hence we see that
∂κg

∂σ
− ψ =

∂

∂σ
(fS

2
κg) −

∂2fS
3

∂σ2
.

and

κgψ =
∂2fS

1

∂σ2
−
∂fS

2

∂σ
.

Thus, we obtain the theorem. 2

Theorem 3.6. Let
∂α

∂t
= fS

1
α + fS

2
t + fS

3
s be a smooth flow of the spacelike curve

α. Then,

κg

(

∂fS
1

∂σ
− fS

2

)

=

(

∂fS
3

∂σ
+ fS

2
κg

)

+
∂ψ

∂σ
.

Proof:

Similarly, we have

∂

∂σ

∂s

∂t
=

∂

∂σ

[(

∂fS
3

∂σ
− fS

2
κg

)

t − ψα

]

= [

(

∂2fS
3

∂σ
−

∂

∂σ

(

fS
2
κg

)

− ψ

)

t−κg

(

∂fS
3

∂σ
− fS

2
κg

)

s

+[−

(

∂fS
3

∂σ
+ fS

2
κg

)

−
∂ψ

∂σ
]α].

On the other hand, a straightforward computation gives

∂

∂t

∂s

∂σ
=

∂

∂t
(−κgt)

= −
∂κg

∂t
t − κg

[(

∂fS
1

∂σ
− fS

2

)

α+

(

∂fS
3

∂σ
− fS

2
κg

)

s

]

.

Combining these we obtain the corollary. 2

In the light of Theorem 3.6, we express the following corollary without proof:

Corollary 3.7.

ψ =
∂2fS

3

∂σ
−

∂

∂σ

(

fS
2
κg

)

+
∂κg

∂t
.
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