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Biharmonic B−Slant Helices According To Bishop Frame In The

˜SL2 (R)

Talat Körpınar and Essin Turhan

abstract: In this paper, we study biharmonic B−slant helices in the S̃L2 (R).
We characterize the biharmonic B−slant helices in terms of their curvature and
torsion. Finally, we find out their explicit parametric equations.
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1. Introduction

Harmonic maps f : (M, g) −→ (N,h) between manifolds are the critical points
of the energy

E (f) =
1

2

∫

M

e (f) vg, (1.1)

where vg is the volume form on (M, g) and

e (f) (x) :=
1

2
‖df (x)‖

2
T∗M⊗f−1TN

is the energy density of f at the point x ∈ M .
Critical points of the energy functional are called harmonic maps.
The first variational formula of the energy gives the following characterization of

harmonic maps: the map f is harmonic if and only if its tension field τ (f) vanishes
identically, where the tension field is given by

τ (f) = trace∇df. (1.2)

As suggested by Eells and Sampson in [6], we can define the bienergy of a map
f by

E2 (f) =
1

2

∫

M

‖τ (f)‖
2
vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.
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Jiang derived the first and the second variation formula for the bienergy in [7,8],
showing that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −Jf (τ (f)) = −∆τ (f) − traceRN (df, τ (f)) df (1.4)

= 0,

where Jf is the Jacobi operator of f . The equation τ2 (f) = 0 is called the bihar-
monic equation. Since Jf is linear, any harmonic map is biharmonic. Therefore, we
are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

This study is organised as follows: Firstly, we study biharmonic B−slant he-

lices in the ˜SL2 (R). Secondly, we characterize the biharmonic B−slant helices in
terms of their curvature and torsion. Finally, we find out their explicit parametric
equations.

2. Riemannian Structure of ˜SL2 (R)

We identify ˜SL2 (R) with

R3
+ =

{
(x, y, z) ∈ R3 : z > 0

}

endowed with the metric

g
S̃L2(R)

= ds2 = (dx +
dy

z
)2 +

dy2 + dz2

z2
.

The following set of left-invariant vector fields forms an orthonormal basis for
˜SL2 (R)

e1 =
∂

∂x
, e2 = z

∂

∂y
−

∂

∂x
, e3 = z

∂

∂z
. (2.1)

The characterising properties of g
S̃L2(R)

defined by

g
S̃L2(R)

(e1, e1) = g
S̃L2(R)

(e2, e2) = g
S̃L2(R)

(e3, e3) = 1,

g
S̃L2(R)

(e1, e2) = g
S̃L2(R)

(e2, e3) = g
S̃L2(R)

(e1, e3) = 0.

The Riemannian connection ∇ of the metric g
S̃L2(R)

is given by

2g
S̃L2(R)

(∇XY,Z) = Xg
S̃L2(R)

(Y,Z) + Y g
S̃L2(R)

(Z,X) − Zg
S̃L2(R)

(X,Y )

−g
S̃L2(R)

(X, [Y,Z]) − g
S̃L2(R)

(Y, [X,Z]) + g
S̃L2(R)

(Z, [X,Y ]) ,

which is known as Koszul’s formula.
Using the Koszul’s formula, we obtain

∇e1
e1 = 0, ∇e1

e2 =
1

2
e3, ∇e1

e3 = −
1

2
e2,

∇e2
e1 =

1

2
e3, ∇e2

e2 = e3, ∇e2
e3 = −

1

2
e1 − e2, (2.2)

∇e3
e1 = −

1

2
e2, ∇e3

e2 =
1

2
e1, ∇e3

e3 = 0.
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Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3

R1212 = R1313 =
1

4
, R2323 = −

7

4
. (2.3)

3. Biharmonic B−Slant Helices in ˜SL2 (R)

Assume that {T,N,B} be the Frenet frame field along γ. Then, the Frenet
frame satisfies the following Frenet–Serret equations:

∇TT = κN,

∇TN = −κT + τB, (3.1)

∇TB = −τN,

where κ is the curvature of γ and τ its torsion and

g
S̃L2(R)

(T,T) = 1, g
S̃L2(R)

(N,N) = 1, g
S̃L2(R)

(B,B) = 1, (3.2)

g
S̃L2(R)

(T,N) = g
S̃L2(R)

(T,B) = g
S̃L2(R)

(N,B) = 0.

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well defined even when the curve has vanishing
second derivative. The Bishop frame is expressed as

∇TT = k1M1 + k2M2,

∇TM1 = −k1T, (3.3)

∇TM2 = −k2T,

where

g
S̃L2(R)

(T,T) = 1, g
S̃L2(R)

(M1,M1) = 1, g
S̃L2(R)

(M2,M2) = 1,

g
S̃L2(R)

(T,M1) = g
S̃L2(R)

(T,M2) = g
S̃L2(R)

(M1,M2) = 0. (3.4)

Here, we shall call the set {T,M1,M2} as Bishop trihedra, k1 and k2 as Bishop
curvatures and Y (s) = arctan k2

k1

, τ(s) = Y′ (s) and κ(s) =
√

k2
1 + k2

2.

Bishop curvatures are defined by

k1 = κ(s) cos Y (s) ,

k2 = κ(s) sin Y (s) .

The relation matrix may be expressed as

T = T,

N = cos Y (s)M1 + sin Y (s)M2,

B = − sin Y (s)M1 + cos Y (s)M2.
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On the other hand, using above equation we have

T = T,

M1 = cos Y (s)N − sin Y (s)B

M2 = sin Y (s)N + cos Y (s)B.

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T 1
e1 + T 2

e2 + T 3
e3,

M1 = M1
1 e1 + M2

1 e2 + M3
1 e3, (3.5)

M2 = M1
2 e1 + M2

2 e2 + M3
2 e3.

Theorem 3.1. γ : I −→ ˜SL2 (R) is a biharmonic curve according to Bishop frame
if and only if

k2
1 + k2

2 = constant 6= 0,

k′′
1 −

[
k2
1 + k2

2

]
k1 = −k1

[
15

4
M1

2 −
1

4

]
− 2k2M

1
1 M1

2 , (3.6)

k′′
2 −

[
k2
1 + k2

2

]
k2 = 2k1M

1
1 M1

2 − k2

[
15

4
M1

1 −
1

4

]
.

Definition 3.2. A regular curve γ : I −→ ˜SL2 (R) is called a slant helix provided
the unit vector M1 of the curve γ has constant angle W with some fixed unit vector
u, that is

g
S̃L2(R)

(M1 (s) , u) = cos W for all s ∈ I. (3.7)

The condition is not altered by reparametrization, so without loss of generality
we may assume that slant helices have unit speed. The slant helices can be identified
by a simple condition on natural curvatures.

To separate a slant helix according to Bishop frame from that of Frenet- Serret
frame, in the rest of the paper, we shall use notation for the curve defined above
as B-slant helix.

We shall also use the following lemma.

Lemma 3.3. Let γ : I −→ ˜SL2 (R) be a unit speed biharmonic curve. Then γ is a
biharmonic B-slant helix if and only if

k1 = −k2 tan W. (3.8)

Theorem 3.4. Let γ : I −→ ˜SL2 (R) be a unit speed non-geodesic biharmonic
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B−slant helix. Then, the parametric equations of γ are

x (s) =
1

Q1
cos W sin [Q1s + Q2] +

1

Q1
cos W cos [Q1s + Q2] + Q4,

y (s) = −
Q3

Q2
1 + sin2 W

cos We− sin Ws(Q1 cos [Q1s + Q2] (3.9)

+sin W sin [Q1s + Q2]) + Q5,

z (s) = Q3e
− sin Ws,

where Q1,Q2,Q3,Q4,Q5 are constants of integration.

Proof: We suppose that γ is a unit speed non-geodesic biharmonic B−slant helix.
Since γ is biharmonic B−slant helix without loss of generality, we take

g
S̃L2(R)

(M1, e3) = M3
1 = cos W, (3.10)

where W is constant angle.

On the other hand, the vector M1 is a unit vector, we have the following
equation

M1 = sinW cos [Q1s + Q2] e1 + sinW sin [Q1s + Q2] e2 + cos We3, (3.11)

where Q1,Q2 are constants of integration.

On the other hand, using Bishop formulas (3.3) and (2.1), we have

M2 = sin [Q1s + Q2] e1 − cos [Q1s + Q2] e2. (3.12)

Using above equation and (3.11), we get

T = cos W cos [Q1s + Q2] e1 + cos W sin [Q1s + Q2] e2 − sin We3. (3.13)

Using (2.1) in (3.13), we obtain

T = (cos W cos [Q1s + Q2] − cos W sin [Q1s + Q2] , z cos W sin [Q1s + Q2] ,−z sin W).
(3.14)

By direct calculations we have (3.9), which proves our assertion. 2

In the light of above theorem, we express the following result without proof:

Corollary 3.5. Let γ : I −→ ˜SL2 (R) be a unit speed non-geodesic biharmonic
B−slant helix. Then, the parametric equations of γ in terms of Bishop curvatures



44 Talat Körpınar and Essin Turhan

are

x (s) = −
k2

k1Q1
sinW sin [Q1s + Q2] −

k2

k1Q1
sin W cos [Q1s + Q2] + Q4,

y (s) =
k3
2Q3

k1k
2
2Q

2
1 + k3

1 cos2 W
sinWe

k1

k2
cos Ws(Q1 cos [Q1s + Q2]

−
k1

k2
cos W sin [Q1s + Q2]) + Q5,

z (s) = Q3e
k1

k2
cos Ws

,

where Q1,Q2,Q3,Q4,Q5 are constants of integration.

We can use Mathematica in above theorem, yields
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