

(3s.) **v. 31** 2 (2013): 279–281. ISSN-00378712 IN PRESS doi:10.5269/bspm.v31i2.16758

Isospectral Flat Connexions

S Srinivas Rau and G Sudhaamsh Mohan Reddy

ABSTRACT: Isospectral flat connexions are constructed for higher rank bundles over compact Riemann surfaces

Key Words: Flat connexions ; Spectrum; compact Riemann surfaces.

Contents

1 Isospectral Flat Connexions

 $\mathbf{279}$

1. Isospectral Flat Connexions

We use R.Kuwabara's construction [3] of isospectral flat line bundles over certain compact Riemann surfaces to show similar examples in rank n. This gives distinct unitary representations of a Fuchsian group with the same Selberg Zeta function (since the spectrum determines the Zeta function via the length spectrum ([1], [2], [5])).

Let X be a compact Riemann surface of genus g > 1. X is a quotient of the upper half plane $H = \{x+iy|y>0\}$ by a subgroup Γ of $SL_2(R)$ under the Moebius action. Γ is isomorphic to the fundamental group of X, $\pi_1(X)$. Let $Pic_n(X)$ be the set of equivalence classes of irreducible unitary representations

$$\chi:\pi_1(X)\to U(n)$$

. Using the values of χ for (locally constant)transition functions, one has an indecomposable flat holomorphic vector bundle $E_{\chi} \rightarrow X([4, \text{Sec4}]).$

 Δ_H denotes the Laplace - Beltrami operator in the upper half plane.

$$\Delta_H = -y^2 \left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2}\right)$$

Let $C^{\infty}(\Gamma, \chi)$ be the space of C^{∞} functions f with values in C^n and equivariant for (Γ, χ)

i.e. $f(\gamma \chi) = \chi(\gamma) f(x)$ for $x \in H, \gamma \in \Gamma$.

 Δ_H acts on $C^{\infty}(\Gamma, \chi)$ by the natural diagonal extension. Δ_H maps $C^{\infty}(\Gamma, \chi)$ to itself and the restriction map is denoted by Δ_{χ} . Elements of $C^{\infty}(\Gamma, \chi)$) correspond

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 11M38

naturally to smooth sections of E_{χ} . Under this correspondence Δ_{χ} is identified with the Laplacian of the flat connexion on E_{χ} .

The determinant map gives for each unitary representation χ , a unitary character $det\chi$. Now the determinant bundle of E_{χ} , $detE_{\chi}$ is the same as $E_{det\chi}$ since the transition functions of the two bundles are the same. Also there is a natural map $f \to \tilde{f}$ from $C^{\infty}(\Gamma, \chi)$ to $C^{\infty}(\Gamma, det\chi)$ given by multiplying the coordinate functions of $f = (f_1, f_2, ..., f_n)$. If f is an eigenfunction of Δ_{χ} for eigenvalue λ $\lambda \geq 0$, then \tilde{f} is an eigenfunction of $\Delta_{det\chi}$ for eigenvalue λ^n . Thus the assignment $\lambda \mapsto \lambda^n$ gives an injection from Spectrum Δ_{χ} into Spectrum $\Delta_{det\chi}$. Equivalent representations have identical determinants.

Proposition 1.1. There exist inequivalent irreducible representations χ_1, χ_2 : $\pi_1(X) \to U(n)$ with spectrum $\Delta_{\chi_1} = spectrum \Delta_{\chi_2}$ (for suitable X).

Proof: Let $\rho_1, \rho_2 : \pi_1(X) \to S^1 = U(1)$ denote Kuwabara's examples [3, p 472]. Observe that the range of ρ_1, ρ_2 is $\{+1, -1, i, -i\}$. Recall that $\pi_1(X)$ has a presentation $\{a_1, b_1, ..., a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1\}$. Now in Kuwabara's construction $b_i \mapsto 1$ for each i = 1, 2, ..., g. Using 2 x 2 blocks of rotation matrices one constructs irreducible sets of n x n unitary matrices $\{A_1, ..., A_g\}$ and $\{A'_1, ..., A'_g\}$ such that

$$det A_i = \rho_1(a_i), \quad det A_i = \rho_2(a_i) \qquad (i = 1, 2, ..., g)$$

Set $\chi_1(a_i) = A_i, \ \chi_2(a_i) = A'_i, \ \chi_2(b_i) = \chi_1(b_i) = \text{identity}$ (i=1,2,...,g). Since spectrum $\Delta_{\rho_1} = \text{spectrum } \Delta_{\rho_2}$, one has spectrum $\Delta_{\chi_1} = \text{spectrum } \Delta_{\chi_2}$. Now $\rho_1 = det_{\chi_1}, \rho_2 = det_{\chi_2}$ and ρ_1 is not equivalent to ρ_2 .

Hence χ_1 is not equivalent to χ_2 , and χ_1, χ_2 give distinct points of $Pic_n(X)$. \Box

References

- 1. P Berard, Seminaire Bourbaki, No 705, Astersque 177-178.
- P Buser and S Srinivas Rau, On an Isospectrality Question over Compact Riemann Surfaces II, Journal of the Indian Math.Soc. 59(1993) 131-133.
- 3. R Kuwabara, Isospectral Connections on Line Bundles, Math Zeitschrift (1990) 465-473.
- 4. M S Narasimhan and C.S.Seshadri, *Holomorphic Vector Bundle on a Compact Riemann Surface*, Math Annalen 155(1964)69-80.
- S Srinivas Rau, On an Isospectrality Question over Compact Riemann Surfaces, J.Indian Math.Soc.58(1992) 117-122.

S Srinivas Rau FST, IFHE University, Dontanapalli,Shankarpalli Road, Hyderabad-501504,INDIA E-mail address: rauindia@yahoo.co.in

and

G Sudhaamsh Mohan Reddy FST, IFHE University, Dontanapalli,Shankarpalli Road, Hyderabad-501504,INDIA E-mail address: dr.sudhamshreddy@gmail.com