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On Construction of D−Focal Curves in Euclidean 3-Space M
3
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abstract: In this paper, we study D−focal curves in the Euclidean 3-space M
3.

We characterize D−focal curves in terms of their focal curvatures.
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1. Background on curves and surfaces

In the following discussion, all curves and surfaces are considered to be regular
and “sufficiently smooth.” A curve is regular if it admits a tangent line at each
point, while a surface is regular if it admits a tangent plane at each point. All
surfaces are considered to be oriented. A surface is said to be oriented if its unit
normal vector is continuous on each closed regular curve on the surface, [8].

The inner product of two vectors u, v in R
3 is denoted by 〈u,v〉. Similarly, the

plane through a point p in R
3 spanned by two linearly-independent vectors u,v is

denoted by [p,u,v].

For linearly-independent unit vectors u,v and a unit vector n such that n ⊥ u

and n ⊥ v, we denote by (u,v)n the oriented angle between u and v in the sense
of n. Precisely, the angle A = (u,v)

n
is defined (see Fig. 1) by

sinA = det (u,v,n), cosA = 〈u,v〉 . (1.1)

The variable s is employed to denote arc length along a space curve. Note
that the arc-length parameterization r : s → r(s) of a curve satisfies ‖r′(s)‖ = 1
and r′(s) ⊥ r′′(s) for all s. However, in this paper, a general parameterization
r : t → r(t) is often used in the surface construction problem. The parameters of
functions may sometimes be omitted when no confusion can arise.

· With each point r(s) of a curve satisfying r′′(s) 6= 0, we associate the Serret–
Frenet frame (T(s),N(s),b(s)) where T(s) = r′(s),N(s) = r′′(s)/ ‖r′′(s)‖ , and
b(s) = T(s) × N(s) are, respectively, the unit tangent, principal normal, and
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binormal vectors of the curve at the point r(s). The arc-length derivative of the
Serret–Frenet frame is governed by the relations

d

ds





T(s)
N(s)
b(s)



 =





0 κ(s) 0
−κ(s) 0 τ (s)

0 −τ(s) 0









T(s)
N(s)
b(s)



 , (1.2)

where the curvature κ(s) and torsion τ (s) of the curve r(s) are defined by

κ(s) = ‖r′′(s)‖ and τ(s) =
det(r′(s), r′′(s), r′′′(s))

‖r′′(s)‖
2

. (1.3)

The osculating plane at each curve point r(s) is spanned by the two vectors
T(s),N(s) and does not depend on the curve parameterization. If κ(s) = 0 for some
s, then r′′(s) = 0 and the normal vector n(s) and osculating plane are undefined
at that point. This condition identifies an inflection of the curve, [8].

· On a regular oriented surface (u, v) → R(u, v), the unit normal is defined at
each point in terms of the partial derivatives Ru = ∂R/∂u,Rv = ∂R/∂v by

n(u, v) =
Ru(u, v)×Rv(u, v)

‖Ru(u, v)×Rv(u, v)‖
. (1.4)

· Consider a curve r(s) = R((u(s), v(s)) on a surface R(u, v), where s denotes
arc length for the space curve r(s), but not necessarily for the plane curve de-
fined by s → ((u(s), v(s)). With each point r(s) we associate the Darboux frame
(T(s),P(s),n(s))− where T(s) is the unit tangent vector of the curve. n(s) is
the unit normal vector of the surface at the point R((u(s), v(s)) = r(s), and
P(s) = n(s) × T(s). The arc-length derivative of the Darboux frame is given by
the relations

d

ds





T(s)
P(s)
n(s)



 =





0 κg(s) κn(s)
−κg(s) 0 τg(s)
−κn(s) −τ(s) 0









T(s)
P(s)
n(s)



 , (1.5)

which define the normal curvature κn(s), the geodesic curvature κg(s), and the
geodesic torsion τ g(s) at each point of the curve r(s) as

κn =

〈

dT

ds
,n

〉

, κg =

〈

dT

ds
,P

〉

, τ g =

〈

dT

ds
,n

〉

. (1.6)

A regular curve t → r(t) is a geodesic on the surface R(u, v) if and only if
(D1) the geodesic curvature of r(t) is identically zero;
(D2) the principal normal at each non-inflection point of r(t) is orthogonal to

the surface tangent plane at the point R((u(t), v(t)) = r(t);
(D3) the osculating plane at each non-inflection point of r(t) is orthogonal to

the surface tangent plane at the point R((u(t), v(t)) = r(t).
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2. D−Focal Curves According To Darboux Frame In M
3

Denoting the focal curve by Dγ , we can write

Dγ(s) = (γ + fD
1
P+ fD

2
n)(s), (2.1)

where the coefficients fD
1
, fD

2
are smooth functions of the parameter of the curve γ,

called the first and second focal curvatures of γ, respectively.

To separate a focal curve according to Darboux frame from that of Frenet-
Serret frame, in the rest of the paper, we shall use notation for the focal curve
defined above as D-focal curve.

Theorem 2.1. Let γ : I −→ M
3 be a unit speed curve and Dγ its focal curve on

M
3. Then,

DD

γ (s) = γ(s) + e−
∫ τgκg

κn
ds[C+

∫

τ g
κn

e
∫ τgκg

κn
dsds]P (2.2)

+[
1

κn

−
κg

κn

e−
∫ τgκg

κn
ds[C+

∫

τ g
κn

e
∫ τgκg

κn
dsds]]n,

where C is a constant of integration.

Proof: Assume that γ is a unit speed curve and Dγ its focal curve on M
3.

By differentiating of the formula (2.1), we get

DD

γ (s)′ = (1− fD
1
κg − fD

2
κn)T+ (

(

fD
1

)′
− fD

2
τ g)P+ (fD

1
τg +

(

fD
2

)′
)n, (2.3)

where the coefficients fD
1
, fD

2
are smooth functions of the parameter of the curve γ.

Using above equation, the first 2 components vanish, we get

fD
1
κg + fD

2
κn = 1,

(

fD
1

)′
− fD

2
τ g = 0.

Considering second equation above system, we have

fD
1

=
1− fD

2
κn

κg

and fD
2

=
1− fD

1
κg

κn

Since, we immediately arrive at

(

fD
1

)′
− τ g

(

1− fD
1
κg

κn

)

= 0,

(

fD
1

)′
+ fD

1

(

τgκg

κn

)

=
τ g
κn

.

By means of obtained equations, we express (2.2). This completes the proof. ✷
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Corollary 2.2. Let γ : I −→ M
3 be a unit speed curve and Dγ its focal curve on

M
3. Then, the focal curvatures of Fγ are

fD
1

= e−
∫ τgκg

κn
ds[C+

∫

τg
κn

e
∫ τgκg

κn
dsds],

fD
2

= [
1

κn

−
κg

κn

e−
∫ τgκg

κn
ds[C+

∫

τ g
κn

e
∫ τgκg

κn
dsds]],

where C is a constant of integration.

In the light of Theorem 2.1, we express the following corollary without proof:

Lemma 2.3. Let γ : I −→ M
3 be a unit speed curve and Fγ its focal curve on M

3.
If κn and κg are constant then, the focal curvatures of Fγ are

fD
1

= −
1

κg

+Qe
τgκg

κn
s

fD
2

=
1

κn

−
κg

κn

[−
1

κg

+Qe
τgκg

κn
s],

where Q is a constant of integration.

Theorem 2.4. Let γ : I −→ M
3 be a unit speed curve and Fγ its focal curve on

M
3. If κn and κg are constant then,

DD

γ (s) = γ(s) + [−
1

κg

+Qe
τgκg

κn
s]P+ [

1

κn

−
κg

κn

[−
1

κg

+Qe
τgκg

κn
s]]n,

where Q is a constant of integration.

Corollary 2.5. Let γ : I −→ M
3 be a unit speed curve and Fγ its focal curve on

M
3. If γ is a principal line then,

DD

γ (s) = γ(s) + AP+ [
1− Aκg

κn

]n,

where A is a constant of integration.
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