b–Smarandache \(tm_2 \) Curves of Biharmonic New Type b–Slant Helices according to Bishop Frame in the Sol Space \(Sol^3 \)

Talat Körpınar and Essin Turhan

ABSTRACT: In this paper, we study b–Smarandache \(tm_2 \) curves of biharmonic new type b–slant helix in the \(Sol^3 \). We characterize the b–Smarandache \(tm_2 \) curves in terms of their Bishop curvatures. Finally, we find out their explicit parametric equations in the \(Sol^3 \).

Key Words: new type b–slant helix, Sol space, curvatures

Contents

1 Introduction 265
2 Riemannian Structure of Sol Space \(Sol^3 \) 265
3 Biharmonic New Type b–Slant Helices in Sol Space \(Sol^3 \) 266
4 b–Smarandache \(tm_2 \) Curves of Biharmonic New Type b–Slant Helices in \(Sol^3 \) 268

1. Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The theory of polyharmonic functions was developed later on, for example, by E. Almansi, T. Levi-Civita and M. Nicolescu.

This study is organised as follows: Firstly, we study b–Smarandache \(tm_2 \) curves of biharmonic new type b–slant helix in the \(Sol^3 \). Secondly, we characterize the b–Smarandache \(tm_2 \) curves in terms of their Bishop curvatures. Finally, we find explicit equations of b–Smarandache \(tm_2 \) curves in the \(Sol^3 \).

2. Riemannian Structure of Sol Space \(Sol^3 \)

Sol space, one of Thurston’s eight 3-dimensional geometries, can be viewed as \(R^3 \) provided with Riemannian metric

\[
g_{Sol^3} = e^{2z}dx^2 + e^{-2z}dy^2 + dz^2,
\]

where \((x, y, z)\) are the standard coordinates in \(R^3 \) [11,12].

2000 Mathematics Subject Classification: 53A04, 53A10

Typeset by B₅₃₉₉ style.
Note that the Sol metric can also be written as:

\[g_{\text{Sol}^3} = \sum_{i=1}^{3} \omega^i \otimes \omega^i, \]

where \(\omega^1 = e^z dx, \quad \omega^2 = e^{-z} dy, \quad \omega^3 = dz, \)

and the orthonormal basis dual to the 1-forms is

\[e_1 = e^{-z} \frac{\partial}{\partial x}, \quad e_2 = e^z \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z}. \quad (2.1) \]

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric \(g_{\text{Sol}^3} \), defined above the following is true:

\[\nabla = \begin{pmatrix} -e_3 & 0 & e_1 \\ 0 & e_3 & -e_2 \\ 0 & 0 & 0 \end{pmatrix}, \quad (2.2) \]

where the \((i, j)\)-element in the table above equals \(\nabla_{e_i} e_j \) for our basis \(\{ e_k, k = 1, 2, 3 \} = \{ e_1, e_2, e_3 \} \).

Lie brackets can be easily computed as:

\[[e_1, e_2] = 0, \quad [e_2, e_3] = -e_2, \quad [e_1, e_3] = e_1. \]

The isometry group of \(\text{Sol}^3 \) has dimension 3. The connected component of the identity is generated by the following three families of isometries:

\[(x, y, z) \rightarrow (x + c, y, z), \]
\[(x, y, z) \rightarrow (x, y + c, z), \]
\[(x, y, z) \rightarrow (e^{-c} x, e^c y, z + c). \]

3. Biharmonic New Type \(b \)-Slant Helices in Sol Space \(\text{Sol}^3 \)

Assume that \(\{ t, n, b \} \) be the Frenet frame field along \(\gamma \). Then, the Frenet frame satisfies the following Frenet–Serret equations:

\[\nabla_t t = \kappa n, \]
\[\nabla_t n = -\kappa t + \tau b, \]
\[\nabla_t b = -\tau n, \quad (3.1) \]

where \(\kappa \) is the curvature of \(\gamma \) and \(\tau \) its torsion \([14,15]\) and

\[g_{\text{Sol}^3} (t, t) = 1, \quad g_{\text{Sol}^3} (n, n) = 1, \quad g_{\text{Sol}^3} (b, b) = 1, \quad (3.2) \]
\[g_{\text{Sol}^3} (t, n) = g_{\text{Sol}^3} (t, b) = g_{\text{Sol}^3} (n, b) = 0. \]
The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. [1]. The Bishop frame is expressed as

\[\nabla_t t = k_1 m_1 + k_2 m_2, \]
\[\nabla_t m_1 = -k_1 t, \]
\[\nabla_t m_2 = -k_2 t, \]

where

\[g_{Sa2} (t, t) = 1, \quad g_{Sa2} (m_1, m_1) = 1, \quad g_{Sa2} (m_2, m_2) = 1, \]
\[g_{Sa2} (t, m_1) = g_{Sa2} (t, m_2) = g_{Sa2} (m_1, m_2) = 0. \]

Here, we shall call the set \{t, m_1, m_2\} as Bishop trihedra, \(k_1\) and \(k_2\) as Bishop curvatures and \(\delta(s) = \arctan \frac{\kappa}{\tau}\), \(\tau(s) = \delta'(s)\) and \(\kappa(s) = \sqrt{k_1^2 + k_2^2}\).

With respect to the orthonormal basis \{e_1, e_2, e_3\} we can write

\[t = t^1 e_1 + t^2 e_2 + t^3 e_3, \]
\[m_1 = m_1^1 e_1 + m_1^2 e_2 + m_1^3 e_3, \]
\[m_2 = m_2^1 e_1 + m_2^2 e_2 + m_2^3 e_3. \]

Theorem 3.1. \(\gamma : I \rightarrow \text{Sol}^3\) is a biharmonic curve according to Bishop frame if and only if

\[k_1'' - [k_1^2 + k_2^2] k_1 = -k_1 [2m_2^2 - 1] - 2k_2 m_1^3 m_2^3, \]
\[k_2'' - [k_1^2 + k_2^2] k_2 = 2k_1 m_1^3 m_2^3 - k_2 [2m_1^2 - 1]. \]

The condition is not altered by reparametrization, so without loss of generality we may assume that new type slant helices have unit speed. The new type slant helices can be identified by a simple condition on natural curvatures.

To separate a new type slant helix according to Bishop frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the curve defined above as new type \(b-\)slant helix.

Theorem 3.2. Let \(\gamma : I \rightarrow \text{Sol}^3\) be a unit speed non-geodesic biharmonic new type \(b-\)slant helix with constant slope. Then, the position vector of \(\gamma\) is

\[
\gamma(s) = \left[\begin{array}{c}
\cos M \\
\sin M \end{array} \right] \left[-S_1 \cos \left[S_1 s + S_2 \right] + \sin M \sin \left[S_1 s + S_2 \right] \right] e_1 + \left[\begin{array}{c}
\sin M \\
\cos M \end{array} \right] \left[-\sin M \cos \left[S_1 s + S_2 \right] + S_1 \sin \left[S_1 s + S_2 \right] \right] e_2 + \left[\begin{array}{c}
S_3 \\
S_1 \sin \left[S_1 s + S_2 \right] \end{array} \right] e_3,
\]

where \(S_1, S_2, S_3, S_4, S_5\) are constants of integration, [8].

We can use Mathematica in Theorem 3.2, yields
To separate a Smarandache tm_2 curve according to Bishop frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the curve defined above as $b-$Smarandache tm_2 curve.

Definition 4.1. Let $\gamma : I \rightarrow \text{Sol}^3$ be a unit speed non-geodesic biharmonic new type $b-$slant helix and $\{t, m_1, m_2\}$ be its moving Bishop frame. $b-$Smarandache tm_2 curves are defined by

$$\gamma_{\text{tm}_2} = \frac{1}{\sqrt{k_1^2 + 2k_2^2}}(t + m_2).$$

(4.1)

Theorem 4.2. Let $\gamma : I \rightarrow \text{Sol}^3$ be a unit speed non-geodesic biharmonic new type $b-$slant helix. Then, the equation of $b-$Smarandache tm_2 curves of biharmonic new type $b-$slant helix is given by

$$\gamma_{\text{tm}_2}(s) = \frac{1}{\sqrt{k_1^2 + 2k_2^2}}[\cos M \sin [S_1 s + S_2] + \sin M \sin [S_1 s + S_2]]e_1$$

$$+ \frac{1}{\sqrt{k_1^2 + 2k_2^2}}[\cos M \cos [S_1 s + S_2] + \sin M \cos [S_1 s + S_2]]e_2 (4.2)$$

$$+ \frac{1}{\sqrt{k_1^2 + 2k_2^2}}[\cos M - \sin M]e_3,$$

where C_1, C_2 are constants of integration.
Proof: Assume that γ is a non geodesic biharmonic new type b–slant helix according to Bishop frame.

From Theorem 3.2, we obtain

$$m_2 = \sin M \sin [S_1 s + S_2] e_1 + \sin M \cos [S_1 s + S_2] e_2 + \cos Me_3,$$

(4.3)

where $S_1, S_2 \in \mathbb{R}$.

Using Bishop frame, we have

$$t = \cos M \sin [S_1 s + S_2] e_1 + \cos M \cos [S_1 s + S_2] e_2 - \sin Me_3.$$

(4.4)

Substituting (4.3) and (4.4) in (4.1) we have (4.2), which completes the proof.

\[\Box\]

In terms of Eqs. (2.1) and (4.2), we may give:

Corollary 4.3. Let $\gamma : I \rightarrow \text{Sol}^3$ be a unit speed non-geodesic biharmonic new type b–slant helix. Then, the parametric equations of b–Smarandache tm_2 curves of biharmonic new type b–slant helix are given by

$$x_{tm_2} (s) = e^{-\frac{1}{\sqrt{k_1^2 + 2k_2^2}}} \frac{[\cos M - \sin M]}{\sqrt{k_1^2 + 2k_2^2}} [\cos M \sin [S_1 s + S_2] + \sin M \sin [S_1 s + S_2]],$$

$$y_{tm_2} (s) = e^{-\frac{1}{\sqrt{k_1^2 + 2k_2^2}}} \frac{[\cos M - \sin M]}{\sqrt{k_1^2 + 2k_2^2}} [\cos M \cos [S_1 s + S_2] + \sin M \cos [S_1 s + S_2]],$$

$$z_{tm_2} (s) = \frac{1}{\sqrt{k_1^2 + 2k_2^2}} [\cos M - \sin M],$$

where S_1, S_2 are constants of integration.

Proof: Substituting (2.1) to (4.2), we have (4.5) as desired. \[\Box\]

We may use Mathematica in Corollary 4.3, yields
References

8. T. Köpınar and E. Turhan: Biharmonic new type b-slant helices according to Bishop frame in the sol space, (submitted).

Talat Körpinar
Fırat University,
Department of Mathematics,
23119 Elazığ, Turkey
E-mail address: talatkorpinar@gmail.com

and

Essin Turhan
Fırat University,
Department of Mathematics,
23119 Elazığ, Turkey
E-mail address: essin.turhan@gmail.com