

(3s.) **v. 31** 2 (2013): **255–264**. ISSN-00378712 in press doi:10.5269/bspm.v31i2.15754

$C{\rm -sets}$ and decomposition of continuity in generalized topological spaces

R. Jamunarani, P. Jeyanthi and M. Velrajan

ABSTRACT: In generalized topological spaces, we define μC -sets and establish some decomposition of continuity between generalized topological spaces. Moreover, we prove that some of the results established in [3] are already established results in topological spaces [10]. Some generalizations of these results are also given.

Key Words: generalized topology; μ -open and μ -closed sets; quasi-topology; $\mu\alpha$ -open, $\mu\sigma$ -open, $\mu\pi$ -open, μb -open and $\mu\beta$ -open sets.

Contents

1	Introduction	255
2	$\mu C-\mathbf{sets}$	256
3	b_{μ} -locally closed sets, $b - t$ -sets and $b - B$ -sets	259
4	Decomposition of (μ, μ') -continuity	263

1. Introduction

A nonempty family μ of subsets of a set X is said to be a generalized topology [5] if $\emptyset \in \mu$ and arbitrary union of elements of μ is again in μ . The pair (X,μ) is called a generalized topological space or simply, a space and elements of μ are called μ -open sets. $A \subset X$ is a μ -closed set if X - A is a μ -open set. If $X \in \mu$, then (X,μ) is called a strong [7] space. In a space (X,μ) , if μ is closed under finite intersection, then (X,μ) is called a quasi-topological space [9]. Clearly, every strong, quasi-topological space is a topological space. For $A \subset X$, $c_{\mu}(A)$ is the intersection of all μ -closed sets containing A and $i_{\mu}(A)$ is the union of all μ -open sets contained in A. Moreover, $X - c_{\mu}(A) = i_{\mu}(X - A)$, for every subset A of X. Clearly, (X,μ) is strong if and only if \emptyset is μ -closed if and only if $c_{\mu}(\{\emptyset\}) = \emptyset$.

A subset A of a space (X, μ) is said to be a $\mu\alpha$ -open set [8] (resp. $\mu\sigma$ -open set [8], $\mu\pi$ -open set [8], $\mu\mu$ -open set [15], $\mu\beta$ -open set [8]) if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ (resp. $A \subset c_{\mu}i_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)$, $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$). A subset A of a space (X, μ) is said to be a $\mu\alpha$ -closed set (resp. $\mu\sigma$ -closed set, $\mu\pi$ -closed set, $\mu\beta$ -closed set) if X - A is a $\mu\alpha$ -open set (resp. $\mu\sigma$ -open set, $\mu\sigma$ -open set, $\mu\sigma$ -open set, $\mu\beta$ -open set). We will denote the family of all $\mu\alpha$ -open sets (resp. $\mu\sigma$ -open sets, $\mu\beta$ -open sets, $\mu\beta$ -open sets, $\mu\beta$ -open sets)

Typeset by $\mathcal{B}^{\mathcal{S}}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54C08

by $\alpha(\mu)$ (resp. $\sigma(\mu)$, $\pi(\mu)$, $b(\mu)$, $\beta(\mu)$).

A subset A of a topological space (X, τ) is said to be α -open [14](resp. semiopen [12], preopen [13], b-open [1], β -open [2]) if $A \subset ici(A)$ (resp. $A \subset ci(A)$, $A \subset ic(A)$, $A \subset ic(A) \cup ci(A)$, $A \subset cic(A)$) where c and i are respectively, the closure and interior operators of the topological space (X, τ) .

If μ is a monotonic function defined on $\wp(X)$ of a nonempty set X, then a subset A of X is said to be μ -regular [4] if $A = \mu(A)$. More generally, A is said to be $\mu\pi$ -regular if $A = i_{\mu}c_{\mu}(A)$. A subset A of a space (X, μ) is said to be b_{μ} -locally closed set if $A = U \cap S$ where U is a μ -open set and S is a μ b-closed set. A subset S of X is said to be a μ t-set [11] if $i_{\mu}c_{\mu}(S) = i_{\mu}(S)$. A subset S of X is said to be a μ B-set [11] if there is a μ -open set U and a μ t-set A such that $S = U \cap A$. The family of all μ B- sets in a space is denoted by $B(X, \mu)$. The following lemmas will be useful in the sequel.

Lemma 1.1. If (X, μ) is a quasi-topological space, then the following hold. (a) If A and B are μ -open sets, then $A \cap B$ is a μ -open set [15, Theorem 2.1]. (b) $i_{\mu}(A \cap B) = i_{\mu}(A) \cap i_{\mu}(B)$ for every subsets A and B of X [9, Theorem 2.2]. (c) $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B)$ for every subsets A and B of X [15, Theorem 2.3(b)].

Lemma 1.2. [11] Let (X, μ) be a quasi-topological space and $A \subset X$. A is a μ -open set if and only if it is both a $\mu\pi$ -open set and a μ B-set.

Lemma 1.3. [11] Let (X, μ) be a space and $A \subset X$. A is a μB -set if and only if there exists a μ -open set U such that $H = U \cap c_{\sigma}(H)$.

2. μC -sets

Let (X, μ) be a space and $S \subset X$. S is said to be a μt^* -set if $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}(S)$. The family of all μt^* -sets of a space (X, μ) is denoted by $t^*(X, \mu)$. The following Theorem 2.1 gives characterizations of μt^* -sets. If $M_{\mu} = \bigcup \{M \mid M \in \mu\}$, then M_{μ} is the largest μ -open set contained in X. Since $i_{\mu}c_{\mu}i_{\mu}(X) = i_{\mu}(X)$, X is a μt^* -set.

Theorem 2.1. Let (X, μ) be a space and $S \subset X$. Then the following are equivalent. (a) $S \in t^*(X, \mu)$.

(b) S is a $\mu\beta$ -closed set.

(c) $i_{\mu}(S)$ is a $\mu\pi$ -regular set.

Proof: (a) \Rightarrow (b). Let $S \in t^{*}(X,\mu)$. Then $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}(S) \subset S$ and so S is a $\mu\beta$ -closed set.

(b) \Rightarrow (c). Suppose that S is a $\mu\beta$ -closed set. Then $i_{\mu}c_{\mu}i_{\mu}(S) \subset S$ which implies that $i_{\mu}c_{\mu}i_{\mu}(S) \subset i_{\mu}(S)$. Clearly, $i_{\mu}(S) \subset i_{\mu}c_{\mu}i_{\mu}(S)$. Therefore, $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}(S)$ which implies that $i_{\mu}(S)$ is a $\mu\pi$ -regular set.

(c) \Rightarrow (a). Since $i_{\mu}(S)$ is a $\mu\pi$ -regular set, $i_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}(S)$. Therefore, $S \in t^{*}(X,\mu)$.

The following Theorem 2.2 gives some properties of μt^* -sets.

Theorem 2.2. Let (X, μ) be a space and $S \subset X$. Then the following hold. (a) If S is a μt -set, then S is a μt^* -set. (b) If S is a $\mu \sigma$ -open set, then S is a μt -set if and only if S is a μt^* -set.

(c) $S \in \alpha \cap t^*(X, \mu)$ if and only if S is a $\mu\pi$ -regular set.

Proof: (a) If S is a μt -set, then $i_{\mu}(S) = i_{\mu}c_{\mu}(S)$ and so $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}c_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}c_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}c_{\mu}(S)$. Therefore, S is a μt^{*} -set.

(b) If S is a μt^* -set, then $i_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}(S)$. Since S is a $\mu\sigma$ -open set, $c_{\mu}i_{\mu}(S) = c_{\mu}(S)$ and so $i_{\mu}c_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}(S)$. Therefore, S is a μt -set. Converse follows from (a).

(c) If S is a μt^* -set, then $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}(S) \subset S$. Since S is a $\mu\alpha$ -open set, $S = i_{\mu}c_{\mu}i_{\mu}(S)$ and so $i_{\mu}c_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}(S) = S$. Therefore, S is a $\mu\pi$ -regular set. Conversely, suppose S is a $\mu\pi$ -regular set. Then S is a μ -open set and so S is a $\mu\alpha$ -open set. Since $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}c_{\mu}(S) = S = i_{\mu}(S)$, it follows that $S \in \alpha \cap t^*(X, \mu)$.

The following Example 2.3 shows that the converse of 2.2(a) is false. Example 2.4 below shows that the concepts $\mu\alpha$ -open set and μt^* -set are independent. Also, it shows that a μ -open set need not be a μt^* -set. Example 2.5 below shows that the union of two μt^* -sets need not be a μt^* -set.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{d\}, \{b, c\}, \{b, c, d\}\}$. The family of all μ -closed sets are $\{X, \{a, b, c\}, \{a, d\}, \{a\}\}$. Let $A = \{a, b\}$. Then $i_{\mu}(A) = \emptyset$ and $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(\{\emptyset\}) = i_{\mu}(\{a\}) = \emptyset$. Therefore, $i_{\mu}(A) = i_{\mu}c_{\mu}i_{\mu}(A)$ and so A is a μt^* -set. Now $i_{\mu}c_{\mu}(A) = i_{\mu}(\{a, b, c\}) = \{b, c\} \neq i_{\mu}(A)$. Therefore, A is not a μt -set.

Example 2.4. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\}$. The family of all μ -closed sets are $\{X, \{a, b, d\}, \{a, b, c\}, \{a, b\}, \{b\}\}$. Let $A = \{c, d\}$. Then $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(\{c, d\}) = i_{\mu}(X) = \{a, c, d\}$. Therefore, A is a $\mu\alpha$ -open set. But $i_{\mu}c_{\mu}i_{\mu}(A) \neq i_{\mu}(A)$. Therefore, A is not a μ t^{*}-set. Let $B = \{a, b\}$. Then $i_{\mu}c_{\mu}i_{\mu}(B) = i_{\mu}c_{\mu}(\{\emptyset\}) = i_{\mu}(\{b\}) = i_{\mu}(B)$. Therefore, B is a μ t^{*}-set. But B is not a μ a⁻open set. This also shows that a μ -open set need not be a μ t^{*}-set.

Example 2.5. Consider the space in Example 2.4. If $A = \{c\}$ and $B = \{d\}$, then $A \cup B = \{c, d\}$, $i_{\mu}(A) = A$, $i_{\mu}(B) = B$. Here, $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(\{c\}) = i_{\mu}(\{a, b, c\}) = \{c\} = A = i_{\mu}(A)$. Therefore, A is a μt^* -set. Now $i_{\mu}c_{\mu}i_{\mu}(B) = i_{\mu}c_{\mu}(\{d\}) = i_{\mu}(\{a, b, d\}) = \{d\} = B = i_{\mu}(B)$. Therefore, B is a μt^* -set. Also, $i_{\mu}c_{\mu}i_{\mu}(\{c, d\}) = i_{\mu}c_{\mu}(\{c, d\}) = i_{\mu}(X) = \{a, c, d\} \neq i_{\mu}(\{c, d\})$. Therefore, $A \cup B$ is not a μt^* -set.

Let (X, μ) be a space and $S \subset X$. S is said to be a μC -set if there exist a μ -open set U and $A \in t^*(X, \mu)$ such that $S = U \cap A$. The family of all μC - sets in a space (X, μ) is denoted by $C(X, \mu)$. Since X is a μt^* -set, every μ -open set is a μC - set. If (X, μ) is strong, then every μt^* -set is a μC -set. The following Example 2.6 shows that the condition strong on the space (X, μ) cannot be dropped. Example 2.7 below shows that a μC - set need not be a μt^* -set and Example 2.8 below shows that a μC - set need not be a μ -open set.

Example 2.6. Consider the space in Example 2.4 which is not strong. If $A = \{a, b\}$, then $i_{\mu}(A) = \emptyset$. $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(\emptyset) = i_{\mu}(\{b\}) = \emptyset = i_{\mu}(A)$. Therefore, $A \in t^{*}(X, \mu)$. But $\{a, b\} \notin C(X, \mu)$, since there is no open set containing $\{a, b\}$.

Example 2.7. Consider the space in Example 2.4. If $A = \{c, d\}$, then $i_{\mu}(A) = A$ and $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(A) = i_{\mu}(X) = \{a, c, d\} \neq i_{\mu}(A)$. Therefore, A is not a μt^* -set. Also, $\{c, d\} = \{c, d\} \cap \{a, c, d\}$ where $\{c, d\}$ is a μ -open set and $i_{\mu}c_{\mu}i_{\mu}(\{a, c, d\}) = i_{\mu}c_{\mu}(\{a, c, d\}) = i_{\mu}(X) = \{a, c, d\} = i_{\mu}(\{a, c, d\})$. Therefore, $A = \{c, d\}$ is a μ C-set.

Example 2.8. Consider the space in Example 2.4. $\{a\}$ is not a μ -open set. Here $\{a\} = \{a\} \cap \{a, c, d\}$ where $\{a, c, d\}$ is a μ -open set and since $i_{\mu}c_{\mu}i_{\mu}(\{a\}) = i_{\mu}c_{\mu}(\{\emptyset\}) = i_{\mu}(\{b\}) = \emptyset = i_{\mu}(\{a\}), \{a\}$ is a μt^{\star} -set. Therefore, $\{a\}$ is a μC -set.

The proof of the following Lemma 2.9 is similar to Theorem 3.8 of [16].

Lemma 2.9. [16, Theorem 3.8]Let (X, μ) be a quasi-topological space and $A, B \subset X$. If either A or B is a $\mu\sigma$ -open set, then $i_{\mu}c_{\mu}(A \cap B) = i_{\mu}c_{\mu}(A) \cap i_{\mu}c_{\mu}(B)$.

Let (X, μ) be a space. For $\kappa, \nu \in \{\mu, \alpha, \pi, \sigma, b, \beta\}$ and $\kappa \neq \nu$, define $D(\kappa, \nu) = \{B \subset X \mid i_{\kappa}(B) = i_{\nu}(B)\}$. The following Theorem 2.10 gives a property of μC -sets. Example 2.11 below shows that the inclusions in Theorem 2.10 are proper.

Theorem 2.10. Let (X, μ) be a quasi-topological space. Then $B(X, \mu) \subset C(X, \mu) \subset D(\mu, \alpha)$.

Proof: Since every μt -set is a μt^* -set, $B(X,\mu) \subset C(X,\mu)$. Let $S \in C(X,\mu)$. Then $S = U \cap A$ where U is a μ -open set and A is a μt^* -set . Now $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}c_{\mu}i_{\mu}(U)\cap i_{\mu}(A) = i_{\mu}c_{\mu}(i_{\mu}(U)\cap i_{\mu}(A)) = i_{\mu}c_{\mu}i_{\mu}(U)\cap i_{\mu}c_{\mu}i_{\mu}(A)$, by Lemma 2.9 and so $i_{\mu}c_{\mu}i_{\mu}(S) = i_{\mu}c_{\mu}(U)\cap i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(U)\cap i_{\mu}(A)$. Also, $i_{\alpha}(S) = S \cap i_{\mu}c_{\mu}i_{\mu}(S) = S \cap i_{\mu}c_{\mu}(U)\cap i_{\mu}(A) = U \cap A \cap i_{\mu}c_{\mu}(U)\cap i_{\mu}(A) = U \cap i_{\mu}(A) = i_{\mu}(S)$. Therefore, $S \in D(\mu, \alpha)$.

Example 2.11. Consider the space in Example 2.3. Now $\{b\} = \{b, c\} \cap \{b\}$ where $\{b, c\}$ is a μ -open set and, since $i_{\mu}c_{\mu}i_{\mu}(\{b\}) = i_{\mu}c_{\mu}(\emptyset) = i_{\mu}(\{a\}) = \emptyset =$ $i_{\mu}(\{b\}), \{b\}$ is a μt^* -set. Therefore, $\{b\}$ is a μC -set. Again, $\{b\}$ is not a μt -set, since $i_{\mu}c_{\mu}(\{b\}) = i_{\mu}(\{a, b, c\}) = \{b, c\} \neq \emptyset = i_{\mu}(\{b\})$. If $S = \{a, b\}$, then $i_{\mu}(S) = \emptyset$ and so $i_{\mu}c_{\mu}i_{\mu}(\{a, b\}) = i_{\mu}c_{\mu}(\emptyset) = i_{\mu}(\{a\}) = \emptyset$. Also, $i_{\alpha}(S) = S \cap i_{\mu}c_{\mu}i_{\mu}(S) = \emptyset =$ $i_{\mu}(S)$ and so $S \in D(\mu, \alpha)$. Since there is no open set containing $\{a, b\}, \{a, b\}$ is not a μC -set.

The following Theorem 2.12 gives a decomposition of μ -open sets in a quasitopological space. Examples 2.13 shows that the concepts $\mu\alpha$ - open set and μC set are independent.

Theorem 2.12. Let (X, μ) be a quasi-topological space and $A \subset X$. Then the following are equivalent. (a) S is a μ -open set.

(b) S is both a $\mu\alpha$ -open set and a μ C-set.

Proof: (a) \Rightarrow (b). Suppose that S is a μ -open set. Clearly, S is both a $\mu\alpha$ -open set and a μ C-set.

(b) \Rightarrow (a). If S is both a $\mu\alpha$ -open set and a μ C-set, then $S \subset i_{\mu}c_{\mu}i_{\mu}(S)$ and $S = U \cap A, U$ is a μ -open set and A is a μt^{\star} -set. Therefore, $S \subset i_{\mu}c_{\mu}i_{\mu}(U \cap A) = i_{\mu}c_{\mu}(U \cap i_{\mu}(A)) = i_{\mu}c_{\mu}(U) \cap i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(U) \cap i_{\mu}(A)$. Since $S \subset U, S \subset U \cap i_{\mu}c_{\mu}(U) \cap i_{\mu}(A) = U \cap i_{\mu}(A) = i_{\mu}(U \cap A) = i_{\mu}(S)$. Hence S is a μ -open set. \Box

Example 2.13. (a) Consider the space in Example 2.3. If $A = \{b, d\}$, then $i_{\mu}c_{\mu}i_{\mu}(A) = i_{\mu}c_{\mu}(\{d\}) = i_{\mu}(\{a, d\}) = \{d\}$ and so A is not a $\mu\alpha$ -open set. Since A is a μt^{\star} -set and $\{b, d\} = \{b, d\} \cap \{b, c, d\}$, where $\{b, c, d\}$ is a μ -open set, we have $\{b, d\}$ is a μ C-set.

(b)Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{b, c, d\}, \{b\}\}$. The family of all μ -closed sets are $\{X, \{a\}, \{a, c, d\}\}$. Here, $i_{\mu}c_{\mu}i_{\mu}\{b, c\} = \{b, c, d\}$ and so $\{b, c\}$ is a $\mu\alpha$ -open set. Since $\{b, c, d\}$ is the only μ -open set such that $\{b, c\} = \{b, c, d\} \cap \{b, c\}$ and $\{b, c\}$ is not a μt^* -set, $\{b, c\}$ is not a μC -set.

3. b_{μ} -locally closed sets, b - t-sets and b - B-sets

The following Theorem 3.1 gives a decomposition of μ -open sets and Example 3.2 below shows that the concepts μb -open set and $D(\mu, b)$ -set are independent. Theorem 3.3 below gives a characterization of b_{μ} -locally closed set.

Theorem 3.1. Let (X, μ) be a space and $A \subset X$. Then the following are equivalent. (a) A is a μ -open set.

(b) A is both a μb -open set and a $D(\mu, b)$ -set.

Proof: (a) \Rightarrow (b). Suppose that A is a μ -open set. Then clearly (b) follows. (b) \Rightarrow (a). Suppose that A is both a μb -open set and a $D(\mu, b)$ -set. Then $i_{\mu}(A) = i_{b}(A) = A$. Therefore, A is a μ -open set. \Box

Example 3.2. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\}$. The family of all μ -closed sets are $\{X, \{a, b, d\}, \{a, b, c\}, \{a, b\}, \{a\}\}$. Here, $c_{\mu}i_{\mu}\{a, b, d\}$ $= \{a, b, d\}$ and $i_{\mu}c_{\mu}\{a, b, d\} = \{d\}$. $i_{\mu}c_{\mu}\{a, b, d\} \cup c_{\mu}i_{\mu}\{a, b, d\} = \{a, b, d\}$. Therefore, $\{a, b, d\}$ is a μ b-open set. Since $i_{\mu}(\{a, b, d\}) = \{d\}$, $\{a, b, d\} \notin D(\mu, b)$. Thus $\{a, b, d\}$ is a μ b-open set but $\{a, b, d\} \notin D(\mu, b)$.

(b) If $A = \{a\}$, then A is not a μb -open set and so $i_b(A) = \emptyset = i_\mu(A)$ which implies that $A \in D(\mu, b)$.

Theorem 3.3. Let (X, μ) be a space and $H \subset X$. Then H is a b_{μ} -locally closed set if and only if there exists a μ -open set U such that $H = U \cap c_b(H)$.

Proof: Let H be a b_{μ} -locally closed set. Then $H = U \cap F$ where U is a μ -open set and F is a μb -closed set. Since $H \subset U$ and $H \subset F$, we have $H \subset c_b(H) \subset c_b(F) = F$ and $H \subset U \cap c_b(H) \subset U \cap c_b(F) = U \cap F = H$. Hence $H = U \cap c_b(H)$. Conversely, suppose $H = U \cap c_b(H)$ for some μ -open set U. Since $c_b(H)$ is a μb -closed set, H is a b_{μ} -locally closed set. \Box

Theorem 3.4. Let (X, μ) be a space and $A \subset X$. Then the following hold. (a)A is a b_{μ} -locally closed set. (b) $c_b(A) - A$ is a μb -closed set. (c) $A \cup (X - c_b(A))$ is a μb -open set. (d) $A \subset i_b(A \cup (X - c_b(A)))$.

Proof: (a) \Rightarrow (b). Since A is a b_{μ} -locally closed set, by Theorem 3.3, there exists a μ -open set U such that $A = U \cap c_b(A)$. Now $c_b(A) - A = c_b(A) - (U \cap c_b(A)) = c_b(A) \cap (X - (U \cap c_b(A))) = c_b(A) \cap ((X - U) \cup (X - c_b(A))) = c_b(A) \cap (X - U)$ which is a μb -closed set.

(b) \Rightarrow (c). Since $c_b(A) - A$ is μb -closed, $X - (c_b(A) - A)$ is a μb -open set. Now $X - (c_b(A) - A) = X - ((c_b(A) \cap (X - A)) = A \cup (X - c_b(A))$. Therefore, $A \cup (X - c_b(A))$ is a μb -open set.

(c) \Rightarrow (d). Since $A \subset A \cup (X - c_b(A)), A \subset i_b(A \cup (X - c_b(A))).$

Let (X, μ) be a space. Subsets A and B of X are said to be μ -separated [6] if $A \cap c_{\mu}(B) = \emptyset$ and $B \cap c_{\mu}(A) = \emptyset$. We know that $b(\mu)$ is a generalized topology. Since X is a $\mu\sigma$ -open set, it follows that $X \in b(\mu)$ and so $(X, b(\mu))$ is a strong space. In addition, if $b(\mu)$ is closed under finite intersection, then $(X, b(\mu))$ is a topological space. The following Theorem uses this fact and discuss about the union of two b_{μ} -locally closed sets.

Theorem 3.5. Let (X, μ) be a quasi-topological space such that $(X, b(\mu))$ be a topological space and A and B be b_{μ} -locally closed sets. If A and B are μ -separated sets, then $A \cup B$ is a b_{μ} -locally closed set.

Proof: Since A and B are b_{μ} -locally closed sets, $A = G \cap c_b(A)$ and $B = H \cap c_b(B)$ where G and H are μ -open sets in X. Put $U = G \cap (X - c_{\mu}(B))$ and $V = H \cap (X - c_{\mu}(A))$. Then $U \cap c_b(A) = (G \cap (X - c_{\mu}(B))) \cap c_b(A) = (G \cap c_b(A)) \cap (X - c_{\mu}(B)) = A \cap (X - c_{\mu}(B)) = A$, since $A \subset X - c_{\mu}(B)$. Moreover, $U \cap c_b(B) \subset U \cap c_{\mu}(B) = \emptyset$. Similarly, we can prove that $V \cap c_b(B) = B$ and $V \cap c_b(A) = \emptyset$. Since U and V are μ -open sets, $(U \cup V) \cap c_b(A \cup B) = (U \cup V) \cap (c_b(A) \cup c_b(B)) = ((U \cap c_b(A)) \cup (V \cap c_b(A))) \cup ((V \cap c_b(B))) \cup (U \cap c_b(B))) = A \cup B$. Therefore, $A \cup B$ is a b_{μ} -locally closed set.

The following Lemma 3.6 is essential to prove Theorem 3.7 below which is in turn used to prove Theorem 3.8 below which gives a decomposition of μ -open sets. Example 3.9 below shows that the notions $\mu\alpha$ -open set and b_{μ} -locally closed set are independent.

Lemma 3.6. Let (X, μ) be a quasi-topological space. Then the following hold. $(a)c_{\pi}(V) = c_{\mu}(V)$ for every $\mu\sigma$ -open set V. $(b)i_{\pi}(F) = i_{\mu}(F)$ for every $\mu\sigma$ -closed set F.

Proof: (a) By Theorem 2.5(b) of [15], $c_{\pi}(V) = V \cup c_{\mu}i_{\mu}(V) = c_{\mu}i_{\mu}(V)$, since $V \in \sigma(\mu)$. Therefore, $c_{\pi}(V) = c_{\mu}(V)$. (b) The proof follows from (a).

Theorem 3.7. Let (X, μ) be a quasi-topological space and $A \subset X$. If A is both a b_{μ} -locally closed set and a $\mu\sigma$ -open set, then A is a μB -set.

Proof: Let A be both a b_{μ} -locally closed set and a σ -open set. Then by Theorem 3.3, there exists an μ -open set U such that $A = U \cap c_b(A)$ and so by Lemma 3.6, $A = U \cap (c_{\sigma}(A) \cap c_{\pi}(A)) = U \cap (c_{\sigma}(A) \cap c_{\mu}(A)) = U \cap c_{\sigma}(A)$. By Lemma 1.3, A is a μB -set.

Theorem 3.8. Let (X, μ) be a quasi-topological space. Then the following are equivalent.

(a) A is a μ -open set.

(b) A is both a $\mu\alpha$ -open set and a b_{μ} -locally closed set.

Proof: (a) \Rightarrow (b). Suppose that A is a μ -open set. Since $\mu \subset \alpha(\mu)$, A is a $\mu\alpha$ -open set. Since A is a μ -open set and $A = A \cap X$, where X is a μ b-closed set, A is a b_{μ} -locally closed set.

(b) \Rightarrow (a). Suppose that A is both a $\mu\alpha$ -open set and a b_{μ} -locally closed set. Since $\alpha(\mu) \subset \sigma(\mu)$, A is a $\mu\sigma$ -open set. Since A is a b_{μ} -locally closed set, A is a μB -set by Theorem 3.7. Since $\alpha(\mu) \subset \pi(\mu)$, A is a $\mu\pi$ -open set. Then by Lemma 1.2, A is a μ -open set.

Example 3.9. (a) Consider the space in Example 3.2. Here, $\{a, d\}$ is a b_{μ} -locally closed set, since $\{a, d\} = \{a, c, d\} \cap \{a, b, d\}$ and $\{a, d\}$ is not a $\mu\alpha$ -open set since $i_{\mu}c_{\mu}i_{\mu}\{a, d\} = \{d\}$. Thus, $\{a, d\}$ is a b_{μ} -locally closed set but not a $\mu\alpha$ -open set. (b)Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{b, c, d\}, \{b\}\}$. The family of all μ -closed sets are $\{X, \{a\}, \{a, c, d\}\}$. Here, $i_{\mu}c_{\mu}i_{\mu}\{b, c\} = \{b, c, d\}$ and so $\{b, c\}$ is a $\mu\alpha$ -open set. Since $\{b, c, d\}$ is the only μ -open set such that $\{b, c\} = \{b, c, d\} \cap \{b, c\}$ and $\{b, c\}$ is not a μ b-closed set, $\{b, c\}$ is not a b_{μ} -locally closed set.

A subset A of a space (X, μ) is said to be a b - t - set [3] if $i_{\mu}(A) = i_{\mu}(c_b(A))$. A is said to be a b - B - set [3] if $A = U \cap V$, where U is a μ -open set and V is a b - t-set. A is said to be a $b - \sigma$ -open [3](resp., $b - \pi$ -open [3]) set if $A \subset c_{\mu}(i_b(A))$ (resp., $A \subset i_{\mu}(c_b(A))$). The following Remark 3.10, shows that the above notions are already defined notions in topological spaces.

Remark 3.10. (a) By Theorem 3.8 (a) and (b) of [15], $i_{\mu}c_{b}(A) = c_{b}i_{\mu}(A) = i_{\mu}c_{\mu}i_{\mu}(A)$ and $c_{\mu}i_{b}(A) = i_{b}c_{\mu}(A) = c_{\mu}i_{\mu}c_{\mu}(A)$ for every subset A of X in a quasi-topological space. If (X, μ) is a quasi-topological space, then the family of all b - t-sets (resp., b - B-sets, b-semiopen sets, b-preopen sets) coincides with the family of all μ t^{*}-sets (resp., μ C-sets, $\mu\beta$ -open sets, $\mu\alpha$ -open sets).

(b) If (X, τ) is a topological space, then the family of all b-t-sets (resp., b-B-sets, b-semiopen sets, b-preopen sets) coincides with the family of all α^* -sets (resp., C-sets, β -open sets, α -open sets). Hence Theorem 3.11(a) below is nothing but Proposition 3.1 of [10]. Theorem 3.11(c) is stated in Remark 3.2 of [10].

Theorem 3.11. [3, Proposition 3.1] Let (X, τ) be a topological space and $A, B \subset X$. Then the following hold.

(a) A is a b-t-set if and only if it is a b-semiclosed set.

(b) If A is a b-closed set, then it is a b-t-set.

(c) If A and B are b-t-sets, then $A \cap B$ is a b-t-set.

The following Theorem 3.12 shows that the above Theorem 3.11 is valid, if *topology* is replaced by *generalized topology*.

Theorem 3.12. Let (X, μ) be a space and $A, B \subset X$. Then the following hold. (a) A is a b-t- set if and only if it is a $b-\sigma-$ closed set. (b) If A is a $\mu b-$ closed set, then it is a b-t-set.

Proof: (a) Suppose that A is a b-t-set. Then $i_{\mu}(A) = i_{\mu}c_b(A)$ and $i_{\mu}c_b(A) \subset A$. Therefore, A is a $b-\sigma$ -closed set. Conversely, if A is a $b-\sigma$ -closed set then $i_{\mu}c_b(A) \subset A$ and $i_{\mu}c_b(A) \subset i_{\mu}(A)$. Since $A \subset c_b(A)$, $i_{\mu}(A) \subset i_{\mu}c_b(A)$. Hence $i_{\mu}(A) = i_{\mu}c_b(A)$. Therefore, A is a b-t-set.

(b) Let A be a μb -closed set. Then A is a $b - \sigma$ - closed set. Therefore, A is a b - t-set.

By Remark 3.10(b), (a) of the following Theorem 3.13 is nothing but Proposition 3.2(a) of [10] and (b) is nothing but Proposition 3.4 of [10]. Moreover, this results hold for any generalized topological space as stated in Theorem 3.14 without proof.

Theorem 3.13. [3, Proposition 3.2] Let (X, τ) be a topological space and $A \subset X$. Then the following hold.

(a) A is a t-set then it is a b-t-set.
(b) If A is a B-set, then it is a b-B-set.

Theorem 3.14. Let (X, μ) be a space and $A \subset X$. Then the following hold. (a) If A is a μt -set, then it is a b-t-set. (b) If A is a μB -set then it is a b-B-set.

By Remark 3.10(b), the following Theorem 3.15 is nothing but Proposition 3.5 of [10]. The generalization of this theorem for quasi-topological spaces is established in Theorem 2.12 above.

Theorem 3.15. [3, Theorem 3.1] Let (X, τ) be a topological space and $A \subset X$. Then the following are equivalent.

(a)A is a open set.

(b)A is b-preopen and a b-B-set

By Remark 3.10(b), the following Theorem 3.16 is nothing but Proposition 3.2(c) of [10]. Moreover, this results hold for any generalized topological space as stated in Theorem 3.17 without proof.

Theorem 3.16. [3, Proposition 3.3] Let (X, τ) be a topological space and $A \subset X$. Then the following are equivalent. (a)A is regular open. (b)A is b-preopen and a b-t-set.

Theorem 3.17. Let (X, μ) be a space and $A \subset X$. Then the following are equivalent.

(a) A is a $\mu\pi$ -regular set. (b) A is both a $b - \pi$ -open set and a b - t-set.

4. Decomposition of (μ, μ') -continuity

Let (X,μ) and (Y,μ') be two spaces. A mapping $f : X \to Y$ is said to be (μ,μ') -continuous [5] (resp. $(\mu\alpha,\mu')$ -continuous, $(\mu B,\mu')$ -continuous, $(\mu C,\mu')$ -continuous, $(\mu b,\mu')$ -continuous, $(D(\mu,b),\mu')$ -continuous, $(\mu bLC,\mu')$ continuous) if for each μ' -open set V, $f^{-1}(V)$ is a μ -open set (resp. $\mu\alpha$ -open set, μB -set, μC - set, μb -open set, $D(\mu, b)$ -set, b_{μ} -locally closed set) in X. The following theorems give decompositions of (μ, μ') -continuity.

Theorem 4.1. Let (X, μ) and (Y, μ') be two spaces where (X, μ) is a quasitopological space and $f: X \to Y$ be a function. Then the following are equivalent. (a) f is (μ, μ') -continuous. (b) f is $(\mu \alpha, \mu')$ -continuous and $(\mu C, \mu')$ -continuous.

Proof: The proof follows from Theorem 2.12.

Theorem 4.2. Let (X, μ) and (Y, μ') be two spaces and $f : X \to Y$ be a function. Then the following are equivalent. (a) f is (μ, μ') -continuous. (b) f is $(\mu b, \mu')$ -continuous and $(D(\mu, b), \mu')$ -continuous.

Proof: The proof follows from Theorem 3.1.

Theorem 4.3. Let (X, μ) and (Y, μ') be two spaces where (X, μ) is a quasitopological space and $f: X \to Y$ be a function. Then the following are equivalent. (a) f is (μ, μ') -continuous. (b) f is $(\mu \alpha, \mu')$ -continuous and $(\mu bLC, \mu')$ -continuous.

Proof: The proof follows from Theorem 3.8.

References

- 1. D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1)(1986), 24 32.
- 2. M.E.Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, $\beta-$ open sets and $\beta-$ continuous functions, Bull. Fac. Assiut Univ., 12(1983), 77 90.
- A. Al-Omari and M.S.M. Noorani, A decomposition of continuity via b-open set, Bol. Soc. Paran. Mat., (3s.) v. 26 1-2(2008): 53-64.
- 4. Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65 87.
- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351

 357.
- 6. Á. Császár, γ-connected sets, Acta Math. Hungar., 100(4)(2003), 273 -279.

- Á. Császár, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47(2004), 91 - 96.
- Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 351 - 357.
- 9. Á. Császár, Further remarks on the formula for $\gamma-{\rm interior},$ Acta Math. Hungar., 113(4)(2006), 325 332.
- E. Hatir, T. Noiri and S, Yüksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996),145 150.
- 11. R. Jamunarani, P. Jeyanthi and M. Velrajan, Some sets and decomposition of continuity in generalized topological spaces, (submitted)
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36 - 41.
- A.S. Mashhour, M.E.Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47 - 53.
- 14. O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(3)(1965), 961 970.
- 15. P. Sivagami, Remarks on γ-interior, Acta Math. Hungar., 119(2008), 81 94.
- 16. V. Renukadevi and D. Sivaraj. On δ -open sets in γ -spaces, Filomat, 2008, 22(1): 97 106.

R. Jamunarani and P. Jeyanthi Department of Mathematics Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India E-mail address: jamunarani1977@gmail.com, jeyajeyanthi@rediffmail.com

and

M. Velrajan Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur - 628 216, Tamil Nadu, India