

(3s.) **v. 31** 2 (2013): **19–29**. ISSN-00378712 in press doi:10.5269/bspm.v31i2.13551

Weak forms of G- α -open sets and decompositions of continuity via grills

Ahmad Al-Omari and Takashi Noiri

ABSTRACT: In this paper, we introduce and investigate the notions of weakly \mathcal{G} -semi-open sets and weakly \mathcal{G} -preopen sets in grill topological spaces. Furthermore, by using these sets we obtain new decompositions of continuity.

Key Words: grill topological space, \mathcal{G} - α -open set, weakly \mathcal{G} -semi-open set, weakly \mathcal{G} -preopen set, decomposition of continuity

Contents

1	Introduction	19
2	Preliminaries	20
3	Weakly 9-semi-open sets	21
4	Weakly G-preopen sets	24
5	$A_{ m G} ext{-sets}$ and $N_{ m G} ext{-sets}$	26
6	Decompositions of continuity	28

1. Introduction

The idea of grills on a topological space was first introduced by Choquet [6]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [4], [5], [13] for details). In [12], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [7] have defined new classes of sets in a grill topological space and obtained a new decomposition of continuity in terms of grills. In [2], the present authors defined and investigated the notions of \mathcal{G} - α -open sets, \mathcal{G} -semiopen sets and \mathcal{G} - β -open sets in topological space with a grill. By using these sets, we obtained decompositions of continuity. In this paper, we introduce and investigate the notions of weakly \mathcal{G} -semi-open sets and weakly \mathcal{G} -preopen sets in grill topological spaces. We introduce weakly \mathcal{G} -precontinuous functions and weakly \mathcal{G} -semi-continuous functions to obtain decompositions of continuity.

Typeset by ℬ^S𝔅 style. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54C10

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The power set of X will be denoted by $\mathcal{P}(X)$. A subcollection \mathcal{G} of $\mathcal{P}(X)$ is called a grill [6] on X if \mathcal{G} satisfies the following conditions:

- 1. $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$,
- 2. $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For any point x of a topological space $(X, \tau), \tau(x)$ denotes the collection of all open neighborhoods of x.

Definition 2.1. [12] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\}$ for each $A \in \mathcal{P}(X)$. The mapping Φ is called the operator associated with the grill \mathcal{G} and the topology τ .

Proposition 2.2. [12] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then for all $A, B \subseteq X$ the following properties hold:

- 1. $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,
- 2. $\Phi(A \cup B) = \Phi(A) \cup \Phi(B),$
- 3. $\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A),$
- 4. If $U \in \tau$, then $U \cap \Phi(A) \subseteq \Phi(U \cap A)$.

Let \mathcal{G} be a grill on a space X. Then we define a map $\Psi : \mathcal{P}(X) \to \mathcal{P}(X)$ by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$. The map Ψ is a Kuratowski closure axiom. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}} \cdot Cl(A)$. For any grill \mathcal{G} on a topological space (X, τ) , then we call it a grill topological space and denote it by (X, τ, \mathcal{G}) .

Definition 2.3. A subset A of a topological space X is said to be:

- 1. α -open [10] if $A \subseteq Int(Cl(Int(A)))$,
- 2. semi-open [8] if $A \subseteq Cl(Int(A))$,
- 3. preopen [9] if $A \subseteq Int(Cl(A))$,
- 4. β -open [1] or semi-preopen [3] if $A \subseteq Cl(Int(Cl(A)))$.

Definition 2.4. Let (X, τ, \mathfrak{G}) be a grill topological space. A subset A in X is said to be

- 1. Φ -open [7] if $A \subseteq Int(\Phi(A))$,
- 2. \mathcal{G} - α -open [2] if $A \subseteq Int(\Psi(Int(A)))$,
- 3. G-preopen [7] if $A \subseteq Int(\Psi(A))$,
- 4. G-semi-open [2] if $A \subseteq \Psi(Int(A))$,
- 5. \mathfrak{G} - β -open [2] if $A \subseteq Cl(Int(\Psi(A)))$.

The family of all \mathcal{G} -open (resp. \mathcal{G} -preopen, \mathcal{G} -semi-open, \mathcal{G} - β -open) sets in a grill topological space (X, τ, \mathcal{G}) is denoted by $\mathcal{G}\alpha O(X)$ (resp. $\mathcal{G}PO(X)$, $\mathcal{G}SO(X)$, $\mathcal{G}\beta O(X)$).

The following lemma is well-known.

Lemma 2.5. For a subset A of a topological space (X, τ) , the following properties hold:

- 1. $sCl(A) = A \cup Int(Cl(A)),$
- 2. sCl(A) = Int(Cl(A)) if A is open.

Lemma 2.6. For subsets A and B of a grill topological space (X, τ, \mathcal{G}) , the following properties hold:

- 1. $U \cap \Psi(A) \subseteq \Psi(U \cap A)$ if $U \in \tau$,
- 2. $Int(Cl(A)) \cap Int(Cl(B)) = Int(Cl(A \cap B))$ if either A or B is semi-open.

Proof: (1) This follows from Proposition 2.2 (4).
(2) This follows from Lemma 3.5 of [11].

3. Weakly 9-semi-open sets

Definition 3.1. A subset A of a grill topological space (X, τ, \mathfrak{G}) is said to be weakly \mathfrak{G} -semi-open if $A \subseteq \Psi(Int(Cl(A)))$. The complement of a weakly \mathfrak{G} -semi-open set is said to be weakly \mathfrak{G} -semi-closed.

Remark 3.2. Every *G*-semi-open set is weakly *G*-semi-open but not conversely.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}$ and the grill $\mathcal{G} = \{\{b\}, \{a, b\}, \{b, c\}, X\}$. Then $A = \{a\}$ is weakly \mathcal{G} -semi-open, but it is not \mathcal{G} -semi-open (also it is not semi-open).

Proposition 3.4. Let (X, τ, \mathfrak{G}) be a grill topological space. Then every weakly \mathfrak{G} -semi-open set is β -open.

Proof: Let A be a weakly \mathcal{G} -semi-open set. Then $A \subseteq \Psi(Int(Cl(A))) = \Phi(Int(Cl(A))) \cup Int(Cl(A)) \subseteq Cl(Int(Cl(A)))$. Hence A is β -open. \Box

The converse of Proposition 3.4 need not be true in general as shown in the following example.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and the grill $\mathcal{G} = \{\{b\}, \{a, b\}, \{b, c\}, X\}$. Then $A = \{a, b\}$ is a semi-open set which is not weakly \mathcal{G} -semi-open.

Remark 3.6. The notions of weak G-semi-openness and semi-openness are independent as shown by the above examples.

Proposition 3.7. Let (X, τ, \mathfrak{G}) be a grill topological space. A subset A of (X, τ, \mathfrak{G}) is weakly \mathfrak{G} -semi-closed if and only if $Int_{\mathfrak{G}}(Cl(Int(A))) \subseteq A$.

Proof: Let A be a weakly \mathcal{G} -semi-closed set of (X, τ, \mathcal{G}) , then X - A is weakly \mathcal{G} -semi-open and hence $X - A \subseteq \Psi(Int(Cl(X - A))) = X - Int_{\mathcal{G}}(Cl(Int(A)))$. Therefore, we have $Int_{\mathcal{G}}(Cl(Int(A))) \subseteq A$.

Conversely, let $Int_{\mathcal{G}}(Cl(Int(A))) \subseteq A$. Then $X - A \subseteq \Psi(Int(Cl(X - A)))$ and hence X - A is weakly \mathcal{G} -semi-open. Therefore, A is weakly \mathcal{G} -semi-closed. \Box

Since $\tau_{\rm g}$ is finer than τ , by Proposition 3.7, we have the following corollary.

Corollary 3.8. Let (X, τ, \mathfrak{G}) be a grill topological space. If a subset A of (X, τ, \mathfrak{G}) is weakly \mathfrak{G} -semi-closed, then $Int(\Psi(Int(A))) \subseteq A$.

Theorem 3.9. Let (X, τ, \mathfrak{G}) be a grill topological space. Let A, U and A_{α} ($\alpha \in \Delta$) be subsets of X. Then the following properties hold:

- 1. If A_{α} is weakly \mathcal{G} -semi-open for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is weakly \mathcal{G} -semi-open,
- 2. If U is open and A is weakly \mathcal{G} -semi-open, then $U \cap A$ is weakly \mathcal{G} -semi-open.

Proof: (1) Since A_{α} is weakly \mathcal{G} -semi-open for each $\alpha \in \Delta$, we have

 $A_{\alpha} \subseteq \Psi(Int(Cl(A_{\alpha})))$ for each $\alpha \in \Delta$ and by using Lemma 2.2, we obtain

 $\bigcup_{\alpha \in \Delta} A_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} \Psi(Int(Cl(A_{\alpha}))) \\ \subseteq \bigcup_{\alpha \in \Delta} \left\{ \Phi(Int(Cl(A_{\alpha}))) \cup Int(Cl(A_{\alpha})) \right\} \\ \subseteq \Phi(\bigcup_{\alpha \in \Delta} Int(Cl(A_{\alpha}))) \cup Int(Cl(\bigcup_{\alpha \in \Delta} A_{\alpha})) \\ \subseteq \Phi(Int(Cl(\bigcup_{\alpha \in \Delta} A_{\alpha}))) \cup Int(Cl(\bigcup_{\alpha \in \Delta} A_{\alpha})) \\ \subseteq \Psi(Int(Cl(\bigcup_{\alpha \in \Delta} A_{\alpha}))).$

This shows that $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is weakly \mathcal{G} -semi-open. (2) Let A be weakly \mathcal{G} -semi-open and $U \in \tau$, then $A \subseteq \Psi(Int(Cl(A)))$ and by Lemma 2.2, we have

$$\begin{split} A \cap U &\subseteq \Psi(Int(Cl(A))) \cap U \\ &= [\Phi(Int(Cl(A))) \cup Int(Cl(A))] \cap U \\ &= [\Phi(Int(Cl(A))) \cap U] \cup [Int(Cl(A)) \cap U] \\ &\subseteq \Phi[Int(Cl(A)) \cap U] \cup [Int(Cl(A \cap U))] \\ &\subseteq \Phi(In(Cl(A \cap U))) \cup Int(Cl(A \cap U)) \\ &= \Psi(Int(Cl(A \cap U))). \end{split}$$

This shows that $A \cap U$ is weakly \mathcal{G} -semi-open.

Remark 3.10. A finite intersection of weakly \mathcal{G} -semi-open sets need not be weakly \mathcal{G} -semi-open in general as the following example shows.

Example 3.11. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}, \{a, b, c\}\}$ and the grill $\mathcal{G} = \{\{a, c\}, \{a, c, b\}, \{a, c, d\}, X\}$. Then $A = \{b, d\}$ and $B = \{a, d\}$ are weakly \mathcal{G} -semiopen sets but $A \cap B$ is not weakly \mathcal{G} -semiopen.

Definition 3.12. A subset A of a grill topological space (X, τ, \mathfrak{G}) is called a a $T_{\mathfrak{G}}$ -set if $A = U \cap V$, where $U \in \tau$ and $Int(V) = \Psi(Int(Cl(V)))$.

Theorem 3.13. Let (X, τ, \mathfrak{G}) be a grill topological space. For a subset A of X, the following conditions are equivalent:

1. A is open;

2. A is weakly G-semi-open and a T_G -set.

Proof: (1) \Rightarrow (2) Let A be any open set. Then we have $A = Int(A) \subseteq \Psi(Int(Cl(A)))$. Therefore A is weakly G-semi-open and because $Int(X) = \Psi(Int(Cl(X)))$, thus A is a T_{G} -set.

 $(2) \Rightarrow (1)$ If A is weakly G-semi-open and also a $T_{\mathcal{G}}$ -set, then $A \subseteq \Psi(Int(Cl(A))) = \Psi(Int(Cl(U \cap V)))$, where $U \in \tau$ and $Int(V) = \Psi(Int(Cl(V)))$. Hence

$$\begin{split} A &\subseteq U \cap A \subseteq U \cap \Psi(Int(Cl(U))) \cap \Psi(Int(Cl(V))) \\ &= U \cap Int(V) = Int(A). \end{split}$$

This shows that A is open.

4. Weakly 9-preopen sets

Definition 4.1. A subset A of a grill topological space (X, τ, \mathfrak{G}) is said to be weakly \mathfrak{G} -preopen if $A \subseteq sCl(Int(\Psi(A)))$. The complement of a weakly \mathfrak{G} -preopen set is said to be weakly \mathfrak{G} -preclosed.

Proposition 4.2. Let (X, τ, \mathfrak{G}) be a grill topological space. Then the following properties hold:

- 1. Every G-preopen set is weakly G-preopen,
- 2. Every weakly \mathfrak{G} -preopen set is \mathfrak{G} - β -open,
- 3. Every α -open set is weakly G-preopen,
- 4. Every weakly *G*-preopen set is preopen.

Proof: (1) Let A be a \mathcal{G} -preopen set. Then we have

 $A \subseteq Int(\Psi(A)) \subseteq sCl[Int(\Psi(A))].$

This shows that A is weakly G-preopen.

(2) Let A be a weakly \mathcal{G} -preopen set. Then, since $sCl(B) \subseteq Cl(B)$ for any subset $B \subseteq X$, we have

$$A \subseteq sCl[Int(\Psi(A))] \subseteq Cl[Int(\Psi(A))].$$

This shows that A is \mathcal{G} -open.

(3) Let A be an α -open set. Then by Lemma 2.5, we have

$$A \subseteq Int(Cl(Int(A)))$$

$$\subseteq IntCl(Int(A \cup \Phi(A))))$$

$$= Int(Cl(Int(\Psi(A))))$$

$$= sCl(Int(\Psi(A))).$$

This shows that A is a weakly \mathcal{G} -preopen set.

(4) Let A be a weakly G-preopen set. Then by Lemma 2.5, we have

$$A \subseteq sCl(Int(\Psi(A)))$$
$$\subseteq sCl(Int(Cl(A)))$$
$$=Int(Cl(Int(Cl(A))))$$
$$=Int(Cl(A)).$$

This shows that A is a preopen set.

By Remark 2.5 of [2] and the results obtained above, the following diagram holds for a subset A of a space X.

Example 4.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, c\}, \{a, b, d\}\}$ and the grill $\mathcal{G} = \{\{a, c\}, \{a, c, b\}, \{a, c, d\}, X\}$. Then $A = \{a, b\}$ is a weakly \mathcal{G} -preopen set which is not \mathcal{G} -preopen because $\Psi(A) = A \cup \Phi(A) = A$, $sCl(Int(\Psi(A))) = X$. But $A \notin Int(\Psi(A)) = \{a\}$.

Example 4.4. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{a, c\}, \{a, b, c\}\}$ and the grill $\mathcal{G} = \{\{c\}, \{a, c\}, \{b, c\}, \{d, c\}, \{a, c, b\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{c\}$ is a weakly \mathcal{G} -preopen set which is not α -open because $\Psi(A) = X$ and $Int(A) = \phi$.

Example 4.5. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}, \{c, d\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{a, c\}, \{a, b\}, \{a, d\}, \{a, c, b\}, \{a, c, d\}, \{a, b, d\}, X\}$. Then $A = \{b, c\}$ is a preopen set which is not weakly \mathcal{G} -preopen because $sCl(Int(\Psi(A))) = \phi$ and Cl(A) = X.

Example 4.6. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, X, \{a\}, \{b, e\}, \{a, b, e\}\}$ and the grill $\mathcal{G} = \{\{b, e\}, \{b, e, a\}, \{b, e, c\}, \{b, e, d\}, X\}$. Then $A = \{a, c\}$ is a \mathcal{G} - \mathcal{G} -open set which is not weakly \mathcal{G} -preopen because $A \subseteq Cl(Int(\Psi(A))) = \{a, c, d\}$ and $A \notin sCl(Int(\Psi(A))) = \{a\}$.

Theorem 4.7. Let (X, τ, \mathfrak{G}) be a grill topological space. Let A, U and A_{α} ($\alpha \in \Delta$) be subsets of X. Then the following properties hold:

- 1. If A_{α} is weakly \mathfrak{G} -preopen for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is weakly \mathfrak{G} -preopen.
- 2. If U is α -open and A is weakly \mathcal{G} -preopen, then $U \cap A$ is weakly \mathcal{G} -preopen.

Proof: (1) Since A_{α} is weakly \mathcal{G} -preopen for each $\alpha \in \Delta$, we have

 $A_{\alpha} \subseteq sCl(Int(\Psi(A_{\alpha}))) \subseteq sCl(Int(\Psi(\cup_{\alpha \in \Delta} A_{\alpha})))$

for each $\alpha \in \Delta$ and hence

$$\bigcup_{\alpha \in \Delta} A_{\alpha} \subseteq sCl\left(Int\left(\Psi\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)\right)\right).$$

This shows that $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is weakly \mathcal{G} -preopen. (2) By Lemmas 2.5 and 2.6, we have

$$\begin{split} A \cap U &\subseteq sCl(Int(\Psi(A))) \cap Int(Cl(Int(U))) \\ &= Int(Cl(Int(\Psi(A)))) \cap Int(Cl(Int(U))) \\ &= Int(Cl[Int(\Psi(A)) \cap Int(U)]) \\ &= sCl(Int[\Psi(A) \cap Int(U)]) \\ &\subseteq sCl(Int(\Psi[A \cap Int(U)])) \\ &\subseteq sCl(Int(\Psi(A \cap U))). \end{split}$$

This shows that $U \cap A$ is weakly \mathcal{G} -preopen.

Remark 4.8. The finite intersection of weakly *G*-preopen sets need not be weakly *G*-preopen in general as the following example shows.

Example 4.9. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}, \{a, b, c\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then $A = \{b, d\}$ and $B = \{a, d\}$ are weakly \mathcal{G} -preopen sets but $A \cap B$ is not weakly \mathcal{G} -preopen since $\Psi(A) = \Psi(B) = X$ and $sCl(Int(\Psi(A \cap B))) = \phi$.

Theorem 4.10. A subset A of a grill topological space (X, τ, \mathfrak{G}) is weakly \mathfrak{G} -preclosed if and only if $sInt(Cl(Int_{\mathfrak{G}}(A))) \subseteq A$, where $Int_{\mathfrak{G}}(A)$ denotes the interior of A with respect to $\tau_{\mathfrak{G}}$.

Proof: Let A be a weakly \mathcal{G} -preclosed set of (X, τ, \mathcal{G}) . Then X - A is weakly \mathcal{G} -preopen and hence

$$X - A \subseteq sCl(Int(\Psi(X - A))) = X - sInt(Cl(Int_{\mathcal{G}}(A))).$$

Therefore, we have $sInt(Cl(Int_{\mathfrak{G}}(A))) \subseteq A$. Conversely, let $sInt(Cl(Int_{\mathfrak{G}}(A))) \subseteq A$. Then

$$X - A \subseteq sCl(Int(\Psi(X - A)))$$

and hence X - A is weakly 9-preopen. Therefore, A is weakly 9-preclosed.

5. A_{g} -sets and N_{g} -sets

Definition 5.1. A subset A of a grill topological space (X, τ, \mathfrak{G}) is called a \mathfrak{G} -set [7] (resp. an $A_{\mathfrak{G}}$ -set, an $N_{\mathfrak{G}}$ -set) if $A = U \cap V$, where $U \in \tau$ and $Int(V) = Int(\Psi(V))$ (resp. $Int(V) = sCl(Int(\Psi(V)))$, $Int(V) = Cl(Int(\Psi(V)))$).

26

П

Proposition 5.2. Let (X, τ, \mathcal{G}) be a grill topological space. For a subset A of X, the following properties hold:

- 1. Every $N_{\mathcal{G}}$ -set is an $A_{\mathcal{G}}$ -set.
- 2. Every $A_{\mathfrak{G}}$ -set is a \mathfrak{G} -set.

Proof: (1) Let A be an $N_{\mathcal{G}}$ -set. Then $A = U \cap V$, where $U \in \tau$ and $Int(V) = Cl(Int(\Psi(V)))$. Since $Int(V) = Cl(Int(\Psi(V))) \supseteq sCl(Int(\Psi(V)))$ and $Int(V) \subseteq Int(\Psi(V)) \subseteq sCl(Int(\Psi(V)))$, we have $Int(V) = sCl(Int(\Psi(V)))$ and hence $A = U \cap V$, where $U \in \tau$ and $Int(V) = sCl(Int(\Psi(V)))$. This shows that A is an $A_{\mathcal{G}}$ -set.

(2) Let A be an A_G-set. Then $A = U \cap V$, where $U \in \tau$ and $Int(V) = sCl(Int(\Psi(V)))$. Since $Int(\Psi(V)) \subseteq sCl(Int(\Psi(V))) = Int(V) \subseteq Int(\Psi(V))$, we obtain $Int(V) = Int(\Psi(V))$ and hence $A = U \cap V$, where $U \in \tau$ and $Int(V) = Int(\Psi(V))$. This shows that A is a G-set.

The converses of the statements of Proposition 5.2 are not true as the following examples show.

Example 5.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}\}$ and the grill $\mathcal{G} = \{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, d, b\}, \{b, d, c\}, \{c, d, a\}, X\}$. Then $A = \{a, b\}$ is an $A_{\mathcal{G}}$ -set but which is not an $N_{\mathcal{G}}$ -set. Since the only open set containing A is X, hence $A = X \cap V = V$ and $sCl(Int(\Psi(A))) = \{a\} = Int(A)$, but $Cl(Int(\Psi(A))) = \{a, b, c\} \neq Int(A)$.

Example 5.4. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, X, \{a\}, \{b, e\}, \{a, b, e\}, \{a, c, d\}\}$ and the grill $\mathcal{G} = \{\{b, c\}, \{b, c, a\}, \{b, c, d\}, \{b, c, e\}, \{b, c, a, d\}, \{b, c, a, e\}, \{b, c, d, e\}, X\}$. Then $A = \{a, d\}$ is a \mathcal{G} -set but which is not an $A_{\mathcal{G}}$ -set. Since the open set Ucontaining A is X or $\{a, c, d\}$, hence $A = U \cap V$ and $Int(V) = Int(\Psi(V)) = \{a\}$ where V is any require subset of X. On the other hand, we have $sCl(Int(\Psi(V))) = \{a, c, d\} \neq Int(V)$.

Theorem 5.5. Let (X, τ, \mathfrak{G}) be a grill topological space. For a subset A of X, the following conditions are equivalent:

- 1. A is open;
- 2. A is weakly \mathcal{G} -preopen and an $A_{\mathcal{G}}$ -set;
- 3. A is \mathfrak{G} - β -open and an $N_{\mathfrak{G}}$ -set.

Proof: (1) \Rightarrow (2) Let A be any open set. Then we have $A = Int(A) \subseteq sCl(Int(\Psi(A)))$. Therefore A is weakly G-preopen and because $Int(X) = sCl(Int(\Psi(X)))$, thus A is an A_{g} -set. $(2) \Rightarrow (1)$ Let A be weakly \mathcal{G} -preopen and an $A_{\mathcal{G}}$ -set. Let $A = U \cap C$, where U is open and $sCl(Int(\Psi(C))) = Int(C)$. Since A is a weakly \mathcal{G} -preopen set, we have

$$A \subseteq sCl(Int(\Psi(A))) = sCl(Int(\Psi(U \cap C))).$$

Hence

$$A \subseteq U \cap A \subseteq U \cap [sCl(Int(\Psi(U))) \cap sCl(Int(\Psi(C)))]$$

= U \circ Int(C) = Int(A).

This shows that A is open.

 $(1) \Rightarrow (3)$ Let A be any open set. Then we have $A = Int(A) \subseteq Cl(Int(\Psi(A)))$. Therefore A is \mathcal{G} - β -open and because $Int(X) = Cl(Int(\Psi(X)))$, thus A is an $N_{\mathcal{G}}$ -set.

 $(3) \Rightarrow (1)$ Let A be \mathcal{G} - β -open and an $N_{\mathcal{G}}$ -set. Let $A = U \cap C$, where U is open and $Cl(Int(\Psi(C))) = Int(C)$. Since A is a \mathcal{G} - β -open set, we have

$$A \subseteq Cl(Int(\Psi(A))) = Cl(Int(\Psi(U \cap C))).$$

Hence

$$A \subseteq U \cap A \subseteq U \cap [Cl(Int(\Psi(U))) \cap Cl(Int(\Psi(C)))]$$

= U \cap Int(C) = Int(A).

This shows that A is open.

Remark 5.6. The notion of weak \mathcal{G} -preopenness (resp. \mathcal{G} - β -openness) is independent of the notion of $A_{\mathcal{G}}$ -sets (resp. $N_{\mathcal{G}}$ -sets) as shown by the following examples.

Example 5.7. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b, d\}, \{a, b, d\}\}$ and the grill $\mathcal{G} = \{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, d, b\}, \{b, d, c\}, \{c, d, a\}, X\}$. Then $A = \{a, c\}$ is an $A_{\mathcal{G}}$ -set which is not weakly \mathcal{G} -preopen since $sCl(Int(\Psi(A))) = \{a\}$. If we take $\mathcal{G} = \mathcal{P}(X) - \{\phi\}$ in the same topology, then $B = \{a, d\}$ is a weakly \mathcal{G} -preopen set which is not an $A_{\mathcal{G}}$ -set since $sCl(Int(\Psi(B))) = X$.

Example 5.8. (1) In Example 5.3, $A = \{a, b\}$ is \mathcal{G} - β -open, but it is not an $N_{\mathcal{G}}$ -set.

(2) In Example 5.7, if we take $\mathfrak{G} = \{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, d, b\}, \{b, d, c\}, \{c, d, a\}, X\}$, then $A = \{c\}$ is an $N_{\mathfrak{G}}$ -set but it is not \mathfrak{G} - β -open since $Cl(Int(\Psi(A))) = \phi$.

6. Decompositions of continuity

Definition 6.1. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is said to be $A_{\mathfrak{G}}$ -continuous (resp. $N_{\mathfrak{G}}$ -continuous, weakly \mathfrak{G} -precontinuous, \mathfrak{G} - β -continuous, weakly \mathfrak{G} -semicontinuous, $T_{\mathfrak{G}}$ -continuous) if the inverse image of each open set of (Y, σ) is an $A_{\mathfrak{G}}$ -set (resp. an $N_{\mathfrak{G}}$ -set, weakly \mathfrak{G} -preopen, \mathfrak{G} - β -open, weakly \mathfrak{G} -semi-open, a $T_{\mathfrak{G}}$ -set) in (X, τ, \mathfrak{G}) .

28

Theorem 6.2. Let (X, τ, \mathfrak{G}) be a grill topological space. For a function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$, the following conditions are equivalent:

- 1. f is continuous;
- 2. f is weakly G-precontinuous and A_G-continuous;
- 3. f is \mathfrak{G} - β -continuous and $N_{\mathfrak{G}}$ -continuous;
- 4. f is weakly G-semi-continuous and T_G -continuous.

Proof: This is an immediate consequence of Theorems 3.13 and 5.5.

References

- 1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- A. Al-Omari and T. Noiri, Decompositions of continuity via grills, Jordan J. Math. Stat., 4 (1) (2011), 33-46.
- 3. D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986), 24-32.
- K. C. Chattopadhyay, O. Njåstad and W. J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 35 (4) (1983), 613-629.
- K. C. Chattopadhyay and W. J. Thron, Extensions of closure spaces, Can. J. Math., 29 (6) (1977), 1277-1286.
- G. Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171-173.
- 7. E. Hatir and S. Jafari, On some new calsses of sets and a new decomposition of continuity via grills, J. Adv. Math. Stud., 3 (1) (2010), 33-40.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70 (1963), 36-41.
- 9. A. S. Mashhour , M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- 10. O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- 11. T. Noiri, On α-continuous functions, Časopis Pěst Mat., 109 (1984), 118-126.
- B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33 (4) (2007), 771-786.
- 13. W. J. Thron, Proximity structure and grills, Math. Ann., 206 (1973), 35-62.

Ahmad Al-Omari Al al-Bayt University, Department of Mathematics, Jordan E-mail address: omarimutah1@yahoo.com

and

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan E-mail address: t.noiri@nifty.com