(3s.) v. 312 (2013): 183-189.

Warfield p-Invariants in Abelian Group Rings of Characteristic p

Peter Danchev

ABSTRACT: We calculate Warfield p-invariants $W_{\alpha, p}(V(R G))$ of the group of normalized units $V(R G)$ in a commutative group ring $R G$ of prime $\operatorname{char}(R G)=p$ in each of the following cases:
(1) G_{0} / G_{p} is finite and R is an arbitrary direct product of indecomposable rings;
(2) G_{0} / G_{p} is bounded and R is a finite direct product of fields;
(3) $i d(R)$ is finite (in particular, R is finitely generated).

Moreover, we give a general strategy for the computation of the above Warfield p-invariants under some restrictions on R and G. We also point out an essential incorrectness in a recent paper due to Mollov and Nachev in Commun. Algebra (2011).

Key Words: Abelian groups, commutative rings, indecomposable rings, units, Warfield p-invariants.

Contents

1 Introduction

1. Introduction

Everywhere in the text, let R be a commutative unital ring of prime characteristic p and G an Abelian group written multiplicatively as is customary when discussing group rings. For such R and G, suppose $R G$ is the group ring of G over R with unit group $U(R G)$ and its normalized component $V(R G)$; note that the decomposition $U(R G)=V(R G) \times U(R)$ holds, where $U(R)$ is the unit group (that is, the multiplicative group of units of R). As usual, $i d(R)=\left\{e \in R \mid e^{2}=e\right\}$ is the set of all idempotents of R.

Imitating [11], for any multiplicative group A we define the following ordinal-to-cardinal functions, called in the existing literature Warfield p-invariants

$$
W_{\alpha, p}(A)=r\left(A^{p^{\alpha}} /\left(A^{p^{\alpha+1}} A_{p}^{p^{\alpha}}\right)\right)
$$

where $\alpha \geq 0$ is an ordinal.
These invariants were the object of a series of explorations [1]- [6]. They were calculated for both $U(R G)$ and $V(R G)$ under some limitations on R and G only in their terms and divisions. The most important achievements are these:
(i) $G_{0}=G_{p}$ (i.e., G is p-mixed) and R is arbitrary;
(ii) G_{0} / G_{p} is bounded and R is perfect;
(iii) G_{0} / G_{p} is bounded and R is a field;

[^0](iv) G_{0} / G_{p} is finite and R is indecomposable;
(v) G is arbitrary and R is perfect indecomposable.

Actually, the last result is proved in [1] for a perfect integral domain and in [2] for a perfect field, but according to the main theorem of [7] the same idea also works for an indecomposable ring.

Some other useful estimations of $W_{\alpha, p}(U(R G))$ and $W_{\alpha, p}(V(R G))$ are also obtained there.

Mollov and Nachev [10] have duplicated the results of ours from [1], [2], [3] and [4]. Even more, they have partly plagiarized results (i) and (v) as well as the ideas for their proofs without any concrete correct citation of the articles [2], [3] and [4].

Moreover, they wrongly cited in ([10], p.2300, the last sentence before Section $2)$ that [1] is the unique article of the current author which treated the problem for calculation of $W_{\alpha, p}(V(R G))$, but seeing the cited bibliography listed below this is apparently false.

The main purpose here is to add two more points to the list (i)-(v) given above, that are:
(vi) G_{0} / G_{p} is finite and R is an arbitrary direct product of indecomposable rings - thus extending (iv).
(vii) G_{0} / G_{p} is bounded and R is a finite direct product of fields - thus extending (iii).

We also give a general strategy for the computation of $W_{\alpha, p}(U(R G))$ over some special rings R.

2. Main Results

We first begin with a crucial technicality (see also [2]).
Lemma 2.1. Let $A=\coprod_{i \in I} A_{i}$ be an abelian group. Then, for any ordinal α,

$$
W_{\alpha, p}(A)=\sum_{i \in I} W_{\alpha, p}\left(A_{i}\right)
$$

Proof: Observe that for any ordinal β we have $A^{p^{\beta}}=\coprod_{i \in I} A_{i}^{p^{\beta}}$, and hence $A_{p}^{p^{\beta}}=$ $\coprod_{i \in I}\left(A_{i}^{p^{\beta}}\right)_{p}=\coprod_{i \in I}\left(A_{i}\right)_{p}^{p^{\beta}}$. Therefore, $A^{p^{\alpha}} /\left(A^{p^{\alpha+1}} A_{p}^{p^{\alpha}}\right)=\coprod_{i \in I}\left[A_{i}^{p^{\alpha}} /\left(A_{i}^{p^{\alpha+1}}\left(A_{i}\right)_{p}^{p^{\alpha}}\right)\right]$, whence by a simple appeal to the additive property of the rank of an abelian group we derive that $r\left(A^{p^{\alpha}} /\left(A^{p^{\alpha+1}} A_{p}^{p^{\alpha}}\right)\right)=\sum_{i \in I} r\left(A_{i}^{p^{\alpha}} /\left(A_{i}^{p^{\alpha+1}}\left(A_{i}\right)_{p}^{p^{\alpha}}\right)\right)$. The last is just equivalent to the desired equality.

If $\left\{R_{i}\right\}_{i \in I}$ is a system of commutative unital rings for some finite or infinite index set I, then by $\prod_{i \in I} R_{i}$ we will denote the arbitrary direct product of rings in the following sense: Any element $r \in \prod_{i \in I} R_{i}$ is of the form of a vector (finite or infinite) $r=\left(\cdots, r_{i}, \cdots\right)$ equipped with the operations for an other element $f=\left(\cdots, f_{i}, \cdots\right)$ given by $r+f=\left(\cdots, r_{i}+f_{i}, \cdots\right)$ and $r f=\left(\cdots, r_{i} f_{i}, \cdots\right)$. Clearly the zero element is $0=\left(\cdots, 0_{i}, \cdots\right)$ where 0_{i} is the corresponding zero element
in R_{i}, and the identity element is $1=\left(\cdots, 1_{i}, \cdots\right)$ where 1_{i} is the corresponding identity element in R_{i}.

Under these circumstances, it is not difficult to check that $U\left(\prod_{i \in I} R_{i}\right)=$ $\coprod_{i \in I} U\left(R_{i}\right)$ which fact will be used in the sequel without a concrete referring.

Note that in some existing literature such a product is also called a coproduct of these rings R_{i}.

The next statement is well known but we will prove it for completeness and for the reader's convenience.

Proposition 2.2. Let A be a finite group and let $K=\times_{j \in J} K_{j}$ be a finite direct product of rings. Then the following isomorphisms hold:

$$
\text { (a) }\left(\prod_{i \in I} R_{i}\right) A \cong \prod_{i \in I}\left(R_{i} A\right)
$$

where I is an arbitrary index set.

$$
\text { (b) } K G \cong \times_{j \in J}\left(K_{j} G\right)
$$

Proof: (a) For any $v=\sum_{a \in A_{v}} r_{a} a$ where $r_{a}=\left(\cdots, r_{v a}, \cdots\right) \in \prod_{i \in I} R_{i}$ and A_{v} is a finite subset of A depending on the element v, define the map $\phi:\left(\prod_{i \in I} R_{i}\right) A \rightarrow$ $\prod_{i \in I}\left(R_{i} A\right)$ via the equality $\phi(v)=\left(\cdots, \sum_{v \in A_{v}} r_{a i} a, \cdots\right)$. Furthermore, it is only a routine technical exercise to verify that ϕ is an isomorphism of R-algebras, as required.
(b) Follows in the same manner.

Remark 2.1. We will further identify with no loss of generality $\left(\prod_{i \in I} R_{i}\right) A$ with $\prod_{i \in I}\left(R_{i} A\right)$, and $\left(\times_{j \in J} K_{j}\right) G$ with $\times_{j \in J}\left(K_{j} G\right)$, so that the two isomorphisms in points (a) and (b) will be formal equalities, indeed.

We are now ready to state and prove the following first main result.
Theorem 2.3. Suppose G is a group whose factor G_{0} / G_{p} is finite and $R=\prod_{i \in I} R_{i}$ where each R_{i} is indecomposable for $i \in I$. Then the following formula is valid:
$W_{\alpha, p}(U(R G))=\mu \cdot W_{\alpha, p}(G)+\sum_{i \in I} \sum_{d / \exp \left(G_{0} / G_{p}\right)}\left(l_{d} /\left(R_{i}\left(\zeta_{d}\right): R_{i}\right)\right) \cdot W_{\alpha, p}\left(U\left(R_{i}\left(\zeta_{d}\right)\right)\right)$,
where $l_{d}=\left|\left\{a \in G_{0} / G_{p}: o(a)=d\right\}\right|$.

Proof: Since $\coprod_{q \neq p} G_{q}$ is finite and pure in G, one may write $G=\left(\coprod_{q \neq p} G_{q}\right) \times M$ for some p-mixed group M. Consequently, Proposition 2.2 (a) leads to $R G=$ $\left[R\left(\coprod_{q \neq p} G_{q}\right)\right] M=\left[\left(\prod_{i \in I} R_{i}\right)\left(\coprod_{q \neq p} G_{q}\right)\right] M=\left[\prod_{i \in I} R_{i}\left(\coprod_{q \neq p} G_{q}\right)\right] M$. Furthermore, as in [6], $W_{\alpha, p}(U(R G))=\mu \cdot W_{\alpha, p}(G)+W_{\alpha, p}\left(U\left(\prod_{i \in I} R_{i}\left(\coprod_{q \neq p} G_{q}\right)\right)\right)$ where
μ is given there explicitly. However, for each index $i \in I$, we have the relation $R_{i}\left(\coprod_{q \neq p} G_{q}\right) \cong \sum_{d / \exp \left(\amalg_{q \neq p} G_{q}\right)}\left(l_{d} /\left(R_{i}\left(\zeta_{d}\right): R_{i}\right)\right) R_{i}\left(\zeta_{d}\right)$ (see, e.g., [9]). Thus, one may deduce that $U\left(\prod_{i \in I} R_{i}\left(\coprod_{q \neq p} G_{q}\right)\right)=\coprod_{i \in I} U\left(R_{i}\left(\coprod_{q \neq p} G_{q}\right)\right) \cong$ $\coprod_{i \in I} \times_{d / \exp \left(\amalg_{q \neq p} G_{q}\right)}\left(l_{d} /\left(R_{i}\left(\zeta_{d}\right): R_{i}\right)\right) U\left(R_{i}\left(\zeta_{d}\right)\right)$ and henceforth Lemma 2.1 works. This gives the desired equalities.

We are now in a position to formulate and prove
Theorem 2.4. Let G be an abelian group for which G_{0} / G_{p} is infinite bounded and $R=F_{1} \times \cdots \times F_{n}$ where every F_{i} is a field; $i \in[1, n]$, where n is natural. Then

$$
\begin{aligned}
& \qquad W_{\alpha, p}(U(R G))=|i d(R)| \cdot\left|\coprod_{q \neq p} G_{q}\right| \cdot W_{\alpha, p}(G)+\sum_{i=1}^{n} \coprod_{m=0}^{\infty} \coprod_{a_{i}(m)} W_{\alpha, p}\left(F_{i}\left(\zeta_{m}\right)\right) \\
& \text { with } a_{i}(m)=\left|\left\{g \in \coprod_{q \neq p} G_{q}: o(g)=d\right\}\right| /\left(F_{i}\left(\zeta_{m}\right): F_{i}\right) \text {. }
\end{aligned}
$$

Proof: Since $R G=F_{1} G \times \cdots \times F_{n} G$, we derive $U(R G)=U\left(F_{1} G\right) \times \cdots \times U\left(F_{n} G\right)$. Therefore, using Lemma 2.1, we deduce that $W_{\alpha, p}(U(R G))=\sum_{i=1}^{n} W_{\alpha, p}\left(U\left(F_{i} G\right)\right)$. Utilizing ([6], Theorem $2.2(1)), W_{\alpha, p}\left(U\left(F_{i} G\right)\right)$ are completely computed, so that the wanted equality follows.

Remark 2.2. When G_{0} / G_{p} is finite bounded, things are settled in Theorem 2.3 listed above.

The next statement somewhat supersedes Theorem 3.9 from [10].
Theorem 2.5. Suppose R is a perfect ring with a finite number of idempotents (in particular, R is perfect finitely generated). Then the following formula holds:

$$
W_{\alpha, p}(U(R G))=\left(\sum_{k=1}^{n} \sum_{d / k} l(d) / \lambda(d)\right) \cdot W_{\alpha, p}(G)
$$

provided $W_{\alpha, p}(G) \neq 0$ and $\coprod_{q \neq p} G_{q}$ is finite of exponent k where $l_{d}=\mid\{g \in$ $\left.\coprod_{q \neq p} G_{q}: o(g)=d\right\} \mid, \lambda(d)$ is the boundary defined as in ([10], (3.8)) and $n=\log _{2}|i d(R)|$,
or

$$
W_{\alpha, p}(U(R G))=\max \left(\left|\coprod_{q \neq p} G_{q}\right|, W_{\alpha, p}(G)\right)
$$

provided $W_{\alpha, p}(G) \neq 0$ and $\coprod_{q \neq p} G_{q}$ is infinite,
or

$$
W_{\alpha, p}(U(R G))=0
$$

provided $W_{\alpha, p}(G)=0$.

Proof: Since $i d(R)$ is finite, R possesses 2^{n} idempotents where n is the number of primitive idempotents of R, say $\left\{e_{1}, \cdots, e_{n}\right\}$ is such a system. Furthermore, owing to a folklore ring-theoretic fact, one may decompose R like this:

$$
R=\left(R e_{1}\right) \oplus \cdots \oplus\left(R e_{n}\right)=\left(R e_{1}\right) \times \cdots \times\left(R e_{n}\right)
$$

where each $R e_{i}$ is an indecomposable subring of $R ; i \in[1, n]$. Thus, in view of Proposition $2.2(\mathrm{~b})$, one can write that $R G=\left(R e_{1}\right) G \times \cdots \times\left(R e_{n}\right) G$, whence $U(R G)=U\left(\left(R e_{1}\right) G\right) \times \cdots \times U\left(\left(R e_{n}\right) G\right)$. Applying Lemma 2.1, $W_{\alpha, p}(U(R G))=$ $W_{\alpha, p}\left(U\left(\left(R e_{1}\right) G\right)\right)+\cdots+W_{\alpha, p}\left(U\left(\left(R e_{n}\right) G\right)\right)$. It is readily seen that every $R e_{i}$ is a perfect ring of characteristic p as well; $1 \leq i \leq n$. Moreover, ([2], Theorem 6 - see also [10], Theorem 3.9) applies to calculate all functions $W_{\alpha, p}\left(U\left(\left(R e_{i}\right) G\right)\right)$ where $i \in[1, n]$. Thus we obtain the explicit form of $W_{\alpha, p}(U(R G))$ stated above.

Remark 2.3. Unfortunately, there is no result of that type for infinite decompositions of R. For example, take $R=\prod_{n=1}^{\infty} F_{n} / \oplus_{n=1}^{\infty} F_{n}$ where all F_{n} are fields. Therefore, the set of idempotents in R is a quotient of boolean algebras: $i d(R)=B / J$ where B is the boolean algebra of subsets of the set \mathbb{N} of natural numbers and J is the ideal of finite subsets. Since $|B|=2^{\aleph_{0}}$ and $|J|=\aleph_{0}$, we get that $|i d(R)|=2^{\aleph_{0}}$. However, id (R) has no atoms (= primitive idempotents), so no ring direct summand of R is indecomposable.

One source of the problem is that cardinality information is much stronger in the finite case: in fact, any finite boolean algebra is generated by its atoms, so if $|i d(R)|=2^{n}$, then $i d(R)$ is set-theoretically isomorphic to the boolean algebra of subsets of $\{1, \cdots, n\}$ and thus $i d(R)$ always possesses primitive idempotents. Consequently, a more promising hypothesis would be to assume that $i d(R)$ is isomorphic to the boolean algebra 2^{I} of subsets of an infinite set I. Nevertheless, it looks like even this is not completely sufficient. For instance, start with $S=\prod_{n=1}^{\infty} F_{n}$ where each F_{n} is a copy of some large field F (larger than its prime subfield), choose a nontrivial maximal ideal M in S (meaning one that contains $\oplus_{n=1}^{\infty} F_{n}$), and take $R=K \cdot 1+M$, where K is a proper subfield of F. Then R contains all the idempotents of S, so that $i d(R) \cong 2^{\mathbb{N}}$, but R is not an infinite direct product of indecomposable rings. E.g., since R is a commutative von Neumann regular ring, it could only be a direct product of indecomposable rings if it were a direct product of fields. That fact would imply R is self-injective, but it is not - in fact, its injective hull, equal to its maximal quotient ring, is S.

We now start the procedure for giving up of a useful algorithm calculating successfully $W_{\alpha, p}(U(R G))$ in a rather general situation for an arbitrary p-divisible group G and with a restriction only on the coefficient ring R. To this aim, suppose R is a ring in which every finitely generated (in particular, each indecomposable) subring is pure - we may also take R to be perfect finitely generated.

And so, let $x \in U(R G) / U^{p}(R G)=U(R G) / U\left(R^{p} G^{p}\right)=U(R G) / U\left(R^{p} G\right)$, where the last equality follows by taking into account that $G=G^{p}$. Thus $x \in$ $U(L G) U\left(R^{p} G\right) / U\left(R^{p} G\right) \cong U(L G) /\left(U(L G) \cap U\left(R^{p} G\right)\right)=U(L G) / U\left(\left(L \cap R^{p}\right) G\right)=$
$U(L G) / U\left(L^{p} G\right)$ for some finitely generated subring L of R containing the same identity as that of R. Furthermore, $L \cong R_{1} \times \cdots \times R_{n}$ where each R_{i} is indecomposable $(1 \leq i \leq n)$, and hence $L G \cong R_{1} G \times \cdots \times R_{n} G$ with $U(L G) \cong$ $U\left(R_{1} G\right) \times \cdots \times U\left(R_{n} G\right)$ and $U\left(L^{p} G\right) \cong U\left(R_{1}^{p} G\right) \times \cdots \times U\left(R_{n}^{p} G\right)$ under the same isomorphism. We consequently will have $U(L G) / U\left(L^{p} G\right) \cong\left[U\left(R_{1} G\right) / U\left(R_{1}^{p} G\right)\right] \times$ $\cdots \times\left[U\left(R_{n} G\right) / U\left(R_{n}^{p} G\right)\right]$, whence we may formally write $x \in\left[U\left(R_{1} G\right) / U\left(R_{1}^{p} G\right)\right] \times$ $\cdots \times\left[U\left(R_{n} G\right) / U\left(R_{n}^{p} G\right)\right]$. Finally, $U(R G) / U\left(R^{p} G\right)=\cup\left(\left[U\left(R_{1} G\right) / U\left(R_{1}^{p} G\right)\right] \times \cdots \times\right.$ $\left[U\left(R_{n} G\right) / U\left(R_{n}^{p} G\right)\right]$), where the union is taken over each finite family $\left\{R_{i}\right\}_{1 \leq i \leq n}$ of indecomposable subrings R_{i} of R.

On the other hand, if we calculate separately $W_{\alpha, p}\left(U\left(R_{i} G\right)\right)$ for each index i, then utilizing some set-theoretical gymnastic, there is a way to compute $W_{\alpha, p}(U(R G))$ as well. However, this will be the theme of some other research exploration.

Remark 2.4. Note also that if G_{0} / G_{p} is finite, then $G=M \times K$ where M is finite p-divisible and K is p-mixed. Therefore, $U(R G) \cong U(R M) \times V((R M) K)$ and $V(R G) \cong V(R M) \times V((R M) K)$. Thus, in accordance with Lemma 2.1, the Warfield p-invariants of $U(R G)$ and $V(R G)$ are respectively sums of the Warfield p-invariants of $U(R M)$ plus these of $V((R M) K)$, and of the Warfield p-invariants of $V(R M)$ plus these of $V((R M) K)$. But the Warfield p-invariants of $V((R M) K)$ are completely calculated in [4] because $\operatorname{char}(R M)=p$. So, what remains to compute are $W_{\alpha, p}(U(R M))$ or $W_{\alpha, p}(V(R M))$. In this aspect does it follow that $\left|V(R M) / V\left(R^{p} M\right)\right|=\left|R / R^{p}\right|$?

Finally, we assert that if K is a commutative indecomposable unital ring and G is a finite abelian group of exponent which inverts in K, then $K G \cong K H$ for some group H if, and only if, H is finite of the same exponent as that of G and $K G_{p} \cong K H_{p}$ for every prime p. The complete proof will be the theme of some other research exploration.

Correction: In [6], pp.7-8 there is a series of identical typos. In fact, in ([6], p. 8, Claim) the equality $\left|\cup_{i \in I} A_{i}\right|=\sum_{i \in I}\left|A_{i}\right|$ should be read and written as $\left|\cup_{i \in I} A_{i}\right| \leq \sum_{i \in I}\left|A_{i}\right|$. In general, an equality cannot be happen. The next two examples manifestly demonstrate this.

If $A_{i}=A_{j}$ for all indexes i and j, or $A_{i} \supseteq A_{i+1}$ for all indices $i \in I$, the equality is trivially false.

A less trivial construction is the following: There exist continuum $(=c)$ countable subsets $A_{i}(i \in c)$ of $\mathbb{Z} \oplus \mathbb{Z}$ such that $A_{i} \cap A_{j}$ is finite for all $i \neq j$, and $\cup_{i \in c} A_{i}=\mathbb{Z} \oplus \mathbb{Z}$. Therefore, $\left|\cup_{i \in c} A_{i}\right|=\aleph_{0}$ while $\sum_{i \in c}\left|A_{i}\right|=c$. The examples are shown.

However, if all sets A_{i} are disjoint (i.e., $A_{i} \cap A_{j}=\emptyset$ for all indices i and j), the desired equality holds, that is, $\left|\cup_{i \in I} A_{i}\right|=\sum_{i \in I}\left|A_{i}\right|-$ see, e.g., Dugundji, Topology, Allyn and Bacon, Boston, 1966, p.30.

So, the statement of Proposition 2.8 on p.7, the equality for $W_{\alpha, p}(U(R G))$ should be written as the inequality " \leq ". The same correction appears two more times on lines 4 and 8 after the Claim.

Acknowledgments

The author would like to express his deep thanks to Professors Ken Goodearl and Luigi Salce for the valuable correspondence.

References

1. P. V. Danchev, Warfield invariants in abelian group rings, Extracta Math. 20 (2005), 233-241.
2. P. V. Danchev, Warfield invariants in abelian group algebras, Collectanea Math. 59 (2008), 255-262.
3. P. V. Danchev, Warfield invariants in commutative group algebras, J. Algebra Appl. 7 (2008), 337-346.
4. P. V. Danchev, Warfield invariants in commutative group rings, J. Algebra Appl. 8 (2009), 829-836.
5. P. V. Danchev, Warfield invariants of $V(R G) / G$, Note Mat. 29 (2009), 213-218.
6. P. V. Danchev, Warfield invariants of normed unit groups in abelian group rings, Adv. Pure Appl. Math. 3 (2012), 1-10.
7. P. V. Danchev, Unts in abelian group algebras over indecomposable rings, Stud. Univ. BabesBolyai Math. 56 (2011), 3-6.
8. P. V. Danchev, Units in abelian group algebras over direct products of indecomposable rings, Cubo Math. J. 14 (2012), 49-54.
9. T. Z. Mollov and N. A. Nachev, Unit groups of commutative group rings, Commun. Algebra 34 (2006), 3835-3857.
10. T. Z. Mollov and N. A. Nachev, On the unit groups of commutative modular group algebras of KT-groups, Commun. Algebra 39 (2011), 2299-2312.
11. R. B. Warfield, Jr., Classification theorems for p-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88-92.

Peter Danchev
13, General Kutuzov Str.
block 7, floor 2, flat 4
4003 Plovdiv, Bulgaria
E-mail address: pvdanchev@yahoo.com; peter.danchev@yahoo.com

[^0]: 2000 Mathematics Subject Classification: 16S34, 16U60

