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Warfield p-Invariants in Abelian Group Rings of Characteristic p

Peter Danchev

abstract: We calculate Warfield p-invariants Wα,p(V (RG)) of the group of nor-
malized units V (RG) in a commutative group ring RG of prime char(RG) = p in
each of the following cases:
(1) G0/Gp is finite and R is an arbitrary direct product of indecomposable rings;
(2) G0/Gp is bounded and R is a finite direct product of fields;
(3) id(R) is finite (in particular, R is finitely generated).
Moreover, we give a general strategy for the computation of the above Warfield
p-invariants under some restrictions on R and G. We also point out an essential
incorrectness in a recent paper due to Mollov and Nachev in Commun. Algebra
(2011).
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1. Introduction

Everywhere in the text, let R be a commutative unital ring of prime charac-
teristic p and G an Abelian group written multiplicatively as is customary when
discussing group rings. For such R and G, suppose RG is the group ring of G over
R with unit group U(RG) and its normalized component V (RG); note that the
decomposition U(RG) = V (RG)×U(R) holds, where U(R) is the unit group (that
is, the multiplicative group of units of R). As usual, id(R) = {e ∈ R | e2 = e} is
the set of all idempotents of R.

Imitating [11], for any multiplicative group A we define the following ordinal-
to-cardinal functions, called in the existing literature Warfield p-invariants

Wα,p(A) = r(Apα

/(Apα+1

Apα

p )),

where α ≥ 0 is an ordinal.
These invariants were the object of a series of explorations [1]- [6]. They were

calculated for both U(RG) and V (RG) under some limitations on R and G only
in their terms and divisions. The most important achievements are these:

(i) G0 = Gp (i.e., G is p-mixed) and R is arbitrary;
(ii) G0/Gp is bounded and R is perfect;
(iii) G0/Gp is bounded and R is a field;
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(iv) G0/Gp is finite and R is indecomposable;
(v) G is arbitrary and R is perfect indecomposable.
Actually, the last result is proved in [1] for a perfect integral domain and in

[2] for a perfect field, but according to the main theorem of [7] the same idea also
works for an indecomposable ring.

Some other useful estimations of Wα,p(U(RG)) and Wα,p(V (RG)) are also ob-
tained there.

Mollov and Nachev [10] have duplicated the results of ours from [1], [2], [3]
and [4]. Even more, they have partly plagiarized results (i) and (v) as well as the
ideas for their proofs without any concrete correct citation of the articles [2], [3]
and [4].

Moreover, they wrongly cited in ( [10], p.2300, the last sentence before Section
2) that [1] is the unique article of the current author which treated the problem
for calculation of Wα,p(V (RG)), but seeing the cited bibliography listed below this
is apparently false.

The main purpose here is to add two more points to the list (i)-(v) given above,
that are:

(vi) G0/Gp is finite and R is an arbitrary direct product of indecomposable
rings - thus extending (iv).

(vii) G0/Gp is bounded and R is a finite direct product of fields - thus extending
(iii).

We also give a general strategy for the computation of Wα,p(U(RG)) over some
special rings R.

2. Main Results

We first begin with a crucial technicality (see also [2]).

Lemma 2.1. Let A =
∐

i∈I Ai be an abelian group. Then, for any ordinal α,

Wα,p(A) =
∑

i∈I

Wα,p(Ai).

Proof: Observe that for any ordinal β we have Apβ

=
∐

i∈I A
pβ

i , and hence Apβ

p =
∐

i∈I(A
pβ

i )p =
∐

i∈I(Ai)
pβ

p . Therefore,Apα/(Apα+1

Apα

p ) =
∐

i∈I
[Apα

i /(Apα+1

i (Ai)
pα

p )],

whence by a simple appeal to the additive property of the rank of an abelian group

we derive that r(Apα

/(Apα+1

Apα

p )) =
∑

i∈I r(A
pα

i /(Apα+1

i (Ai)
pα

p )). The last is just
equivalent to the desired equality. ✷

If {Ri}i∈I is a system of commutative unital rings for some finite or infinite
index set I, then by

∏
i∈I Ri we will denote the arbitrary direct product of rings

in the following sense: Any element r ∈
∏

i∈I Ri is of the form of a vector (finite
or infinite) r = (· · · , ri, · · · ) equipped with the operations for an other element
f = (· · · , fi, · · · ) given by r+f = (· · · , ri+fi, · · · ) and rf = (· · · , rifi, · · · ). Clearly
the zero element is 0 = (· · · , 0i, · · · ) where 0i is the corresponding zero element
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in Ri, and the identity element is 1 = (· · · , 1i, · · · ) where 1i is the corresponding
identity element in Ri.

Under these circumstances, it is not difficult to check that U(
∏

i∈I Ri) =∐
i∈I U(Ri) which fact will be used in the sequel without a concrete referring.
Note that in some existing literature such a product is also called a coproduct

of these rings Ri.
The next statement is well known but we will prove it for completeness and for

the reader’s convenience.

Proposition 2.2. Let A be a finite group and let K = ×j∈JKj be a finite direct
product of rings. Then the following isomorphisms hold:

(a) (
∏

i∈I

Ri)A ∼=
∏

i∈I

(RiA)

where I is an arbitrary index set.

(b) KG ∼= ×j∈J(KjG).

Proof: (a) For any v =
∑

a∈Av
raa where ra = (· · · , rva, · · · ) ∈

∏
i∈I Ri and Av is

a finite subset of A depending on the element v, define the map φ : (
∏

i∈I Ri)A →∏
i∈I(RiA) via the equality φ(v) = (· · · ,

∑
v∈Av

raia, · · · ). Furthermore, it is only
a routine technical exercise to verify that φ is an isomorphism of R-algebras, as
required.

(b) Follows in the same manner. ✷

Remark 2.1. We will further identify with no loss of generality (
∏

i∈I Ri)A with∏
i∈I(RiA), and (×j∈JKj)G with ×j∈J (KjG), so that the two isomorphisms in

points (a) and (b) will be formal equalities, indeed.

We are now ready to state and prove the following first main result.

Theorem 2.3. Suppose G is a group whose factor G0/Gp is finite and R =
∏

i∈I Ri

where each Ri is indecomposable for i ∈ I. Then the following formula is valid:

Wα,p(U(RG)) = µ ·Wα,p(G)+
∑

i∈I

∑

d/exp(G0/Gp)

(ld/(Ri(ζd) : Ri)) ·Wα,p(U(Ri(ζd))),

where ld = |{a ∈ G0/Gp : o(a) = d}|.

Proof: Since
∐

q 6=p Gq is finite and pure in G, one may write G = (
∐

q 6=p Gq)×M
for some p-mixed group M . Consequently, Proposition 2.2 (a) leads to RG =
[R(

∐
q 6=p Gq)]M = [(

∏
i∈I Ri)(

∐
q 6=p Gq)]M = [

∏
i∈I Ri(

∐
q 6=p Gq)]M . Further-

more, as in [6], Wα,p(U(RG)) = µ ·Wα,p(G) +Wα,p(U(
∏

i∈I Ri(
∐

q 6=p Gq))) where
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µ is given there explicitly. However, for each index i ∈ I, we have the re-
lation Ri(

∐
q 6=p Gq) ∼=

∑
d/exp(

∐
q 6=p Gq)

(ld/(Ri(ζd) : Ri))Ri(ζd) (see, e.g., [9]).

Thus, one may deduce that U(
∏

i∈I Ri(
∐

q 6=p Gq)) =
∐

i∈I U(Ri(
∐

q 6=p Gq)) ∼=∐
i∈I ×d/exp(

∐
q 6=p

Gq)(ld/(Ri(ζd) : Ri))U(Ri(ζd)) and henceforth Lemma 2.1 works.
This gives the desired equalities. ✷

We are now in a position to formulate and prove

Theorem 2.4. Let G be an abelian group for which G0/Gp is infinite bounded and
R = F1 × · · · × Fn where every Fi is a field; i ∈ [1, n], where n is natural. Then

Wα,p(U(RG)) = |id(R)| · |
∐

q 6=p

Gq| ·Wα,p(G) +

n∑

i=1

∞∐

m=0

∐

ai(m)

Wα,p(Fi(ζm))

with ai(m) = |{g ∈
∐

q 6=p Gq : o(g) = d}|/(Fi(ζm) : Fi).

Proof: Since RG = F1G×· · ·×FnG, we derive U(RG) = U(F1G)×· · ·×U(FnG).
Therefore, using Lemma 2.1, we deduce that Wα,p(U(RG)) =

∑n
i=1 Wα,p(U(FiG)).

Utilizing ( [6], Theorem 2.2 (1)), Wα,p(U(FiG)) are completely computed, so that
the wanted equality follows. ✷

Remark 2.2. When G0/Gp is finite bounded, things are settled in Theorem 2.3
listed above.

The next statement somewhat supersedes Theorem 3.9 from [10].

Theorem 2.5. Suppose R is a perfect ring with a finite number of idempotents (in
particular, R is perfect finitely generated). Then the following formula holds:

Wα,p(U(RG)) = (

n∑

k=1

∑

d/k

l(d)/λ(d)) ·Wα,p(G),

provided Wα,p(G) 6= 0 and
∐

q 6=p Gq is finite of exponent k where ld = |{g ∈∐
q 6=p Gq : o(g) = d}|, λ(d) is the boundary defined as in ( [10], (3.8)) and

n = log2|id(R)|,
or

Wα,p(U(RG)) = max(|
∐

q 6=p

Gq|,Wα,p(G)),

provided Wα,p(G) 6= 0 and
∐

q 6=p Gq is infinite,
or

Wα,p(U(RG)) = 0,

provided Wα,p(G) = 0.
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Proof: Since id(R) is finite, R possesses 2n idempotents where n is the number of
primitive idempotents of R, say {e1, · · · , en} is such a system. Furthermore, owing
to a folklore ring-theoretic fact, one may decompose R like this:

R = (Re1)⊕ · · · ⊕ (Ren) = (Re1)× · · · × (Ren)

where each Rei is an indecomposable subring of R; i ∈ [1, n]. Thus, in view of
Proposition 2.2 (b), one can write that RG = (Re1)G × · · · × (Ren)G, whence
U(RG) = U((Re1)G) × · · · × U((Ren)G). Applying Lemma 2.1, Wα,p(U(RG)) =
Wα,p(U((Re1)G)) + · · ·+Wα,p(U((Ren)G)). It is readily seen that every Rei is a
perfect ring of characteristic p as well; 1 ≤ i ≤ n. Moreover, ( [2], Theorem 6 - see
also [10], Theorem 3.9) applies to calculate all functions Wα,p(U((Rei)G)) where
i ∈ [1, n]. Thus we obtain the explicit form of Wα,p(U(RG)) stated above. ✷

Remark 2.3. Unfortunately, there is no result of that type for infinite decom-
positions of R. For example, take R =

∏∞
n=1 Fn/ ⊕∞

n=1 Fn where all Fn are
fields. Therefore, the set of idempotents in R is a quotient of boolean algebras:
id(R) = B/J where B is the boolean algebra of subsets of the set N of natural
numbers and J is the ideal of finite subsets. Since |B| = 2ℵ0 and |J | = ℵ0, we get
that |id(R)| = 2ℵ0 . However, id(R) has no atoms (= primitive idempotents), so no
ring direct summand of R is indecomposable.

One source of the problem is that cardinality information is much stronger in
the finite case: in fact, any finite boolean algebra is generated by its atoms, so if
|id(R)| = 2n, then id(R) is set-theoretically isomorphic to the boolean algebra of
subsets of {1, · · · , n} and thus id(R) always possesses primitive idempotents. Con-
sequently, a more promising hypothesis would be to assume that id(R) is isomorphic
to the boolean algebra 2I of subsets of an infinite set I. Nevertheless, it looks like
even this is not completely sufficient. For instance, start with S =

∏∞
n=1 Fn where

each Fn is a copy of some large field F (larger than its prime subfield), choose a
nontrivial maximal ideal M in S (meaning one that contains ⊕∞

n=1Fn), and take
R = K · 1 + M , where K is a proper subfield of F . Then R contains all the
idempotents of S, so that id(R) ∼= 2N, but R is not an infinite direct product of
indecomposable rings. E.g., since R is a commutative von Neumann regular ring,
it could only be a direct product of indecomposable rings if it were a direct product of
fields. That fact would imply R is self-injective, but it is not - in fact, its injective
hull, equal to its maximal quotient ring, is S.

We now start the procedure for giving up of a useful algorithm calculating
successfully Wα,p(U(RG)) in a rather general situation for an arbitrary p-divisible
group G and with a restriction only on the coefficient ring R. To this aim, suppose
R is a ring in which every finitely generated (in particular, each indecomposable)
subring is pure – we may also take R to be perfect finitely generated.

And so, let x ∈ U(RG)/Up(RG) = U(RG)/U(RpGp) = U(RG)/U(RpG),
where the last equality follows by taking into account that G = Gp. Thus x ∈
U(LG)U(RpG)/U(RpG) ∼= U(LG)/(U(LG)∩U(RpG)) = U(LG)/U((L∩Rp)G) =
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U(LG)/U(LpG) for some finitely generated subring L of R containing the same
identity as that of R. Furthermore, L ∼= R1 × · · · × Rn where each Ri is inde-
composable (1 ≤ i ≤ n), and hence LG ∼= R1G × · · · × RnG with U(LG) ∼=
U(R1G)× · · · × U(RnG) and U(LpG) ∼= U(Rp

1G)× · · · × U(Rp
nG) under the same

isomorphism. We consequently will have U(LG)/U(LpG) ∼= [U(R1G)/U(Rp
1G)] ×

· · · × [U(RnG)/U(Rp
nG)], whence we may formally write x ∈ [U(R1G)/U(Rp

1G)]×
· · ·× [U(RnG)/U(Rp

nG)]. Finally, U(RG)/U(RpG) = ∪([U(R1G)/U(Rp
1G)]×· · ·×

[U(RnG)/U(Rp
nG)]), where the union is taken over each finite family {Ri}1≤i≤n of

indecomposable subrings Ri of R.

On the other hand, if we calculate separately Wα,p(U(RiG)) for each index i,
then utilizing some set-theoretical gymnastic, there is a way to compute Wα,p(U(RG))

as well. However, this will be the theme of some other research exploration.

Remark 2.4. Note also that if G0/Gp is finite, then G = M × K where M is
finite p-divisible and K is p-mixed. Therefore, U(RG) ∼= U(RM) × V ((RM)K)
and V (RG) ∼= V (RM) × V ((RM)K). Thus, in accordance with Lemma 2.1, the
Warfield p-invariants of U(RG) and V (RG) are respectively sums of the Warfield
p-invariants of U(RM) plus these of V ((RM)K), and of the Warfield p-invariants
of V (RM) plus these of V ((RM)K). But the Warfield p-invariants of V ((RM)K)
are completely calculated in [4] because char(RM) = p. So, what remains to
compute are Wα,p(U(RM)) or Wα,p(V (RM)). In this aspect does it follow that
|V (RM)/V (RpM)| = |R/Rp|?

Finally, we assert that if K is a commutative indecomposable unital ring and
G is a finite abelian group of exponent which inverts in K, then KG ∼= KH for
some group H if, and only if, H is finite of the same exponent as that of G and
KGp

∼= KHp for every prime p. The complete proof will be the theme of some
other research exploration.

Correction: In [6], pp.7-8 there is a series of identical typos. In fact, in ( [6],
p. 8, Claim) the equality | ∪i∈I Ai| =

∑
i∈I |Ai| should be read and written as

| ∪i∈I Ai| ≤
∑

i∈I |Ai|. In general, an equality cannot be happen. The next two
examples manifestly demonstrate this.

If Ai = Aj for all indexes i and j, or Ai ⊇ Ai+1 for all indices i ∈ I, the equality
is trivially false.

A less trivial construction is the following: There exist continuum (= c) count-
able subsets Ai (i ∈ c) of Z ⊕ Z such that Ai ∩ Aj is finite for all i 6= j, and
∪i∈cAi = Z⊕Z. Therefore, | ∪i∈c Ai| = ℵ0 while

∑
i∈c |Ai| = c. The examples are

shown.

However, if all sets Ai are disjoint (i.e., Ai ∩ Aj = ∅ for all indices i and j),
the desired equality holds, that is, | ∪i∈I Ai| =

∑
i∈I |Ai| - see, e.g., Dugundji,

Topology, Allyn and Bacon, Boston, 1966, p.30.

So, the statement of Proposition 2.8 on p.7, the equality for Wα,p(U(RG))
should be written as the inequality "≤". The same correction appears two more
times on lines 4 and 8 after the Claim.
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