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abstract: We apply the averaging method to the optimal control problem for

system of difference equations in the standard Bogolyubov form. We construct the

ε -optimal control.
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1. Introduction

In this paper we consider optimal control problem for systems of difference
equations in the standard Bogolyubov form. The presence of small parameter
allow us to average such systems and reduce the initial nonautonomous problem to
more simple autonomous one.

The averaging method was studied by many authors. N. Bogolyubov [3] devel-
oped a general averaging approach for system of ordinary differential equations.
Further this method was applied to systems of functional-differential equations,
difference equations, stochastic systems [2,9].

Optimal control problems for systems of differential and difference equations
are particularly important for applied goals. Methods have been developed to
investigate them. For more details see [4,5,6,7,10,11]. Fundamental results in
application of averaging method to optimal control problems were obtained by V.
Plotnikov [11]. In work [10] authors propose a new scheme of averaging for optimal
control problem.

This work is devoted to the application of averaging method to optimal control
problems for systems of difference equations. We investigate relationship between
optimal controls of the averaged and the original systems and prove that the optimal
control for the averaged system is ε-optimal for the original problem.
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Statement of the problem.

Let us consider the optimal control problem for system of difference equations:

∆xn = xn+1 − xn = εfn(xn, un), (1)

with a given initial condition x0 ∈ D.

Here ε > 0 is a small parameter, xn ∈ D is a phase vector, D is a domain in
Rd, un ∈ U ⊂ Rm is a control vector, fn is a continuous vector-function on the
domain, n ∈ Z.
Controls un are called admissible if the following conditions are satisfied:

1) un ∈ U for all n ∈ Z.

2) for every un there exists a constant u0 ∈ D such that | un − u0 |≤ ϕn, where

ϕn does not depend on un and
∞
∑

n=1

ϕn <∞.

We introduce F to denote the set of all admissible controls. For every admissible
control un we denote the solution of system (1) by xn(un).

Our aim is to find an admissible control u = un which minimizes the func-
tional

Jε(u) = Φ(x[ Tε ]
(u)),

where Φ(x) is a given function, T > 0 is a certain constant, and [.] is an integer
part of a number.
Denote

Jε = inf
un∈F

Jε(un).

We associate the system (1) on
[

0, T
ε

]

with averaged system

∆yn = yn+1 − yn = εf0(yn, un), (2)

where y0 = x0,

f0(y, u) = lim
N→∞

1

N

N−1
∑

n=0

fn(y, u), (3)

and
J̄ε(u) = Φ(y[Tε ]

(u)). (4)

Let ū∗n(ε) be an optimal control for averaged problem (2).
In this work we prove that the control ū∗n(ε) is η−optimal for system (1), i.e.,

for any η > 0 there exists ε0 > 0 such that, for all 0 < ε < ε0 the inequality

| Jε(ū
∗
n(ε))− Jε |≤ η

is true.
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2. Preliminaries

To obtain the main result we need two lemmas. The first one is a discrete version
of the known Gronwall-Bellman inequality [1,8], the second one is a generalization
of averaging method for difference equations in the case where right sides depend
on functional parameters.

Lemma 2.1. (Discrete version of Gronwal -Bellman inequality). Let {yn} and

{an} be non-negative sequences and C > 0 is a constant. If yn ≤ C +
n
∑

k=0

akyk,

then

yn ≤ C exp(

n
∑

k=0

ak).

Lemma 2.2. Suppose that the following conditions are satisfied in the domain
Q =

{

x ∈ D ⊂ Rd, n ∈
Z, u ∈ U ⊂ Rm}:

1) fn(x, u) is bounded and satisfies the Lipschitz condition with respect to x and
u with a constant M ;

2) a solution y = yn(un), y0(u0) = x0 of the averaged system is defined for all
admissible un and belongs to the domain D together with a some ρ−neighborhood;

3) the limit (3) exists uniformly in x ∈ D and u ∈ U .

Then for any η > 0 and T > 0 there exists ε0(η, T ) > 0, such that for any 0 < ε <

ε0 and integer n ∈
[

0,
[

T
ε

]]

the estimate

| xn(un)− yn(un) |≤ η (5)

holds for every admissible control.

Proof: First we find a sequence {ψN} such that for all x ∈ D and admissible
control un the estimate

1

N
|

N−1
∑

n=1

[fn(x, un)− f0(x, u0)] |≤ ψN (6)

holds. Note that
lim

N→∞
ψN = 0.

Indeed, condition (3) implies the existence of sequence {aN}, that converges to 0,
such that for all x ∈ D, u ∈ U it follows

1

N
|
N−1
∑

n=1

[fn(x, un)− f0(x, u0)] |≤ aN . (7)
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Thus we have

1

N
|

N−1
∑

n=1

[fn(x, un)− f0(x, u0)] |=
1

N
|

N−1
∑

n=1

[fn(x, un)− fn(x, u0)

+fn(x, u0)− f0(x, u0)] |

≤
1

N
|
N−1
∑

n=1

[fn(x, un)− fn(x, u0)] | +
1

N
|
N−1
∑

n=1

[fn(x, u0)− f0(x, u0)] |

≤
M

N

N−1
∑

n=1

| un − u0 | +aN ≤
M

N

∞
∑

n=1

ϕn + aN .

It remains to denote

ψN =
M

N

∞
∑

n=1

ϕn + aN .

Hence for any admissible un in system (1), we can consider the next system

∆yn = εf0(yn, u0), y0 = x0 (8)

as the averaged one.

Now for solutions xn(un) and yn(u0) of systems (1) and (8) we apply the analog
of the first Bogolyubov theorem for difference equations.

From estimate (6) it follows that for any η > 0 and T > 0 there exists ε0 =
ε0(η, T ) > 0 such that for all 0 < ε < ε0 and n ∈

[

0,
[

T
ε

]]

the estimate

| xn(un)− yn(u0) |≤
η

2
(9)

holds. Here ε0 does not depend on un.

Next, we evaluate the norm of the difference between solutions of systems (8)
and (2) for n ∈

[

0,
[

T
ε

]]

. Represent systems (2) and (8) in the form

yn(un) = x0 + ε

n−1
∑

k=0

[f0(yk(uk), uk)] , (10)

yn(u0) = x0 + ε

n−1
∑

k=0

[f0(yk(u0), u0)] . (11)

Subtracting (11) from (10) and adding to and subtracting from the right side of
the equality the function f0(yk(u0), uk), we obtain:
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yn(un)− yn(u0) = ε

n−1
∑

k=0

[f0(yk(uk), uk)− f0(yk(u0), uk)]

+ε
n−1
∑

k=0

[f0(yk(u0), uk)− f0(yk(u0), u0)] .

Hence, using Lipschitz condition, we get

| yn(un)− yn(u0) |= εM

n−1
∑

k=0

| yk(uk)− yk(u0) | +εM
n−1
∑

k=0

| uk − u0 |

≤ εM

n−1
∑

k=0

| yk(uk)− yk(u0) | +εM
∞
∑

k=0

ϕk.

According to the Lemma 2.1, we observe that for all integers n ∈
[

0,
[

T
ε

]]

the
following estimate is true

| yn(un)− yn(u0) |≤ εM

∞
∑

k=0

ϕk exp(2M [T ]), (12)

Now, we choose ε1 ≤ ε0, such that for all ε ≤ ε1 as n ∈
[

0,
[

T
ε

]]

the inequality

| yn(un)− yn(u0) |≤
η

2
(13)

holds.
Finally from (9) and (13), we obtain estimate (5) in the lemma. This completes
the proof of the Lemma.

✷

3. Main result

Let us now state and prove the main result of this work.

Theorem 3.1. Assume that in the domain Q =
{

x ∈ D ⊂ Rd, n ∈ Z, u ∈ U ⊂ Rm
}

1) the function fn(x, u) is bounded by a constant K. Furthermore, it is Lipschitz
with respect to x and u with the constant M ;

2) the solution y = yn(un), y(u0) = x0 of the averaged system (2) is defined
for all admissible un and it belongs to the domain D together with some
ρ−neighborhood;

3) the limit (3) exists uniformly in x ∈ D and u ∈ U ;
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4) the function Φ(x) satisfies Lipschitz condition with constant L in the domain
D;

5) there exists an admissible control ū∗n(ε) for system (2).

Then for any η > 0 there exists ε̃ = ε̃(η) such that the following statements hold

a) Jε > −∞ for any 0 < ε < ε̃.

b) | Jε(ū
∗
n(ε))− Jε |≤ η.

Proof: We prove this theorem in two steps.
i) We prove statement (a) by contradiction. If (a) is not true, then there exists a
sequence {εp}, such that εp → 0 as p→ ∞ and

Jεp → −∞. (14)

According to the definition of infimum for each εp there exists a sequence of ad-
missible controls up,mn such that Jεp(u

p,m
n ) → −∞ as m → ∞. The controls up,mn

are admissible.
Hence there exist solutions xp,mn and yp,mn for systems (1) and (2) respectively. Note
that

Jεp(u
p,m
n ) = Φ(xp,m[

T
εp

]).

Since an optimal control exists for system (2), J̄εp(y
p,m) > J̄εp > −∞ there. Now,

we fix some 0 < η0 <
ρ

2
. Thus, there exists natural number p0 such that

| Jεp(u
p,m
n )− J̄εp(u

p,m
n ) |=| Φ( xp,m[

T
εp

])− Φ( yp,m[

T
εp

]) |≤ L | xp,m[

T
εp

] − y
p,m
[

T
εp

] |≤ Lη0.

for εp < εp0
.

Therefore

Jεp(u
p,m

n ) = Jεp(u
p,m

n )+J̄εp(u
p,m

n )−J̄εp(u
p,m

n ) > Jεp(u
p,m

n )−J̄εp(u
p,m

n )+J̄εp > J̄εp−Lη
0
.

This contradicts the hypothesis in (14).
ii) Now let us prove statement (b). Note that

Jε ≤ Jε(ū
∗
n(ε)) = J̄ε + [Jε(ū

∗
n(ε))− J̄ε(ū

∗
n(ε))].

We estimate the difference

| Jε(ū
∗
n(ε))− J̄ε(ū

∗
n(ε)) |=| Φ( x[ Tε ]

(ū∗n(ε)))− Φ( y[Tε ]
(ū∗n(ε))) |,

where x[ Tε ]
(ū∗n(ε)) is a solution of system (1) for the optimal control ū∗n(ε) of the

averaged system, and y[Tε ]
(ū∗n(ε)) is the optimal control of system (2).

Since the function Φ is Lipschitz, it follows that

| Φ( x[Tε ]
(ū∗n(ε))) − Φ( y[Tε ]

(ū∗n(ε))) |≤ L | x[ Tε ]
(ū∗n(ε))− y[Tε ]

(ū∗n(ε)) | .
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Using Lemma 2.2, for an arbitrary η1 <
ρ

2
and all sufficiently small ε we obtain

Jε ≤ J̄ε + Lη1. (15)

From the definition of infimum, for chosen η1 > 0 there exists an admissible control
u
η
1

n (ε) such that
Jε(u

η
1

n (ε)) ≤ J̄ε + η1.

Hence we obtain the estimate

J̄ε = J̄ε(ū
∗
n(ε)) ≤ J̄ε(u

η
1

n (ε)) ≤ J̄ε(u
η
1

n (ε)) + Jε + η1 − Jε(u
η
1

n (ε)).

Using Lipschitz condition for the function Φ we have

| J̄ε(u
η
1

n (ε))− Jε(u
η
1

n (ε)) |≤ L | y[Tε ]
(uη1

n (ε)) − x[ Tε ]
(uη1

n (ε)) |≤ Lη1.

Thus
J̄ε ≤ Jε + η1 + Lη1.

Hence, it follows from (15) that

| J̄ε − Jε |≤ (L+ 1)η1. (16)

Now, we consider the difference

| Jε(ū
∗
n(ε))− Jε |=| Jε(ū

∗
n(ε))− J̄ε + J̄ε − Jε |≤| Jε(ū

∗
n(ε))− J̄ε | + | J̄ε − Jε | .

It is easily seen from the optimality criterion that

| Jε(ū
∗
n(ε))− J̄ε |≤ Lη1.

From the last estimate and inequality (16) we have

| Jε(ū
∗
n(ε))− Jε |≤ η,

where η = η1(2L+ 1). The theorem is proved.
✷
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