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Lucas-Balancing Numbers
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abstract: In this paper, we find some tridigonal matrices whose determinant
and permanent equal to the negatively subscripted balancing and Lucas-balancing
numbers. Also using the first and second kind of Chebyshev polynomials, we obtain
factorization of these numbers.

Key Words: Balancing numbers, Lucas - balancing numbers, Triangular num-
bers, Tridiagonal matrices, Determinant, Permanent.

Contents

1 Introduction 161

2 Negatively Subscripted Balancing

and Lucas-balancing Numbers 162

3 Factorization of Negatively Subscripted

Balancing and Lucas-balancing Numbers 169

1. Introduction

It is well-known that the sequence of balancing numbers {Bn} are solutions
of the recurrence relation, for n ≥ 2,

Bn+1 = 6Bn −Bn−1 (1)

with B1 = 1, B2 = 6 [1]. Also in [1], it is shown that, if x is a balancing number,
then 8x2 +1 is a perfect square. If x is balancing number then the positive square
root of 8x2 + 1 is called a Lucas-balancing number denoted by Cn [8]. Observe
that C1 = 3, C2 = 17 and the Lucas-balancing numbers Cn satisfy the recurrence
relation

Cn+1 = 6Cn − Cn−1, n ≥ 2, (2)

identical with that for balancing numbers. By using the formulas (1) and (2), we
can extend these sequences backward, to get

B−n = 6B−n+1 −B−n+2 = −Bn

C−n = 6C−n+1 − C−n+2 = Cn.
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In [8], Panda has shown that, the Lucas-balancing numbers are associated with bal-
ancing numbers in the way Lucas numbers are associated with Fibonacci numbers.
In [7], Panda and Ray have proved that the Lucas-balancing numbers are nothing
but the even ordered terms of the associated Pell sequence. Also they have shown
that the nth balancing numbers are product of nth Pell numbers and nth associated
Pell numbers. In [3], K. Liptai searched for those balancing numbers which are
Fibonacci numbers too. He proved that the only Fibonacci number in the sequence
of balancing numbers is 1. In a similar manner, in [4], he proved that there are no
Lucas numbers in the sequence of balancing numbers. L. Szalay in [5] got the same
result. In [9], by using Chebyshev polynomials of first and second kind, Ray has
obtained nice product formulae for both balancing and Lucas-balancing numbers.

In this paper, we consider negatively subscripted balancing and Lucas-balancing
numbers and find some tridiagonal matrices whose determinant and permanent
equal to these numbers. In the final section of the paper, we give the factorization
of these numbers by using the first and second kinds of Chebyshev polynomials.

2. Negatively Subscripted Balancing and Lucas-balancing Numbers

In this section, we define some tridiagonal matrices and then prove that
the determinant and permanent of these matrices are equal to the negatively sub-
scripted balancing and Lucas-balancing numbers. For simplicity, we present some
known definitions which will be used subsequently.

Definition 2.1. [2,6]. If A = (aij) is a square matrix of order n, then the perma-
nent of A, denoted by perA is defined by

perA =
∑

σ∈Sn

∏

1≤i≤n

aiσ(i),

where the summation extends over all permutations σ of the symmetric group Sn.

There are many applications of permanent that are given in [6].

Definition 2.2. [2]. If A = (aij) is an m×n matrix with row vectors r1, r2, . . . rm,

then A is called contractible on column (resp. row) k if column (resp. row) k

contains exactly two nonzero entries. Suppose A is contractible on column k with
aik 6= 0 6= ajk and i 6= j. Then the matrix Aij: k of order (m − 1) × (n − 1)
can be obtained from A by replacing row i with ajkri + aikrj and deleting row j

and column k is called the contraction of A on column k relative to rows i and
j. If A is contractible on row k with aki 6= 0 6= akj and i 6= j, then the matrix
Ak: ij = [AT

ij: k]
T is called the contraction of A on row k relative to columns i and

j.

Definition 2.3. [2]. A matrix A is called convertible if there exists an n × n (1,
-1)–matrix H such that det(A ◦H) = perA, where A ◦H is well known Hadamard
product of A and H. We call H is a converter of A.
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In this paper, every contraction will be on the first column using the first and
second rows. It is well known that, if A be a nonnegative integral matrix of order
n > 1 and let B be a contraction of A. Then,

perA = perB. (3)

First, we start with negatively subscripted balancing numbers. We introduce the
sequence of matrices {Mn, n = 1, 2, · · · }, where Mn is an n× n tridiagonal matrix
with entries mjj = −6, 1 ≤ j ≤ n and mj−1,j = −1, mj,j−1 = 1, 2 ≤ j ≤ n. Then,

Mn =

















−6 −1
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















,

and the following theorem holds.

Theorem 2.4. If the sequence of tridiagonal matrices {Mn, n = 1, 2, 3 · · · } is of

the form

Mn =

















−6 −1
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















,

then

perMn = (−1)n−1B−(n+1),

where B−n is the nth negatively subscripted balancing number.

Proof: Clearly for n = 1, n = 2, we have

perM1 = −6 = B−2

perM2 = 35 = −B−3.

Let the pth contraction of Mn be Mp
n, where 1 ≤ p ≤ n− 2. Using Definition 2.2,
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the matrix Mn can be contracted on Column 1 as

M1
n =

















35 6
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















=

















−B−3 −B−2

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















.

Again the matrix M1
n can be contracted on Column 1 as,

M2
n =





















−204 −35
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6





















=

















−B−4 −B−3

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















.

Proceeding in this way, we obtain, for 3 ≤ r ≤ n− 4,

M r
n =

















(−1)rB−(r+2) (−1)rB−(r+1)

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















,

and therefore

Mn−3
n =





(−1)n−3B−(n−1) (−1)n−3B−(n−2) 0
1 −6 −1
0 1 −6



 .
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By contraction of Mn−3
n on Column 1, gives

Mn−2
n =





(−1)n−3(−6)B−(n−1) + (−1)n−3B−(n−2) (−1)n−2B−(n−1)

1 −6





=





(−1)n−2[6B−(n−1) −B−(n−2)] (−1)n−2B−(n−1)

1 −6





=





(−1)n−2B−n (−1)n−2B−(n−1)

1 −6



 .

Using (3), we get

perMn = perMn−2
n

= (−1)n−2(−6)B−n + (−1)n−2B−(n−1)

= (−1)n−1
[

6B−n −B−(n−1)

]

= (−1)n−1B−(n+1),

which ends the proof of the theorem. ✷

For negatively subscripted Lucas-balancing numbers, consider another n × n

tridiagonal matrix Dn = (dij), with dii = −6 for 2 ≤ i ≤ n, di,i+1 = −1, di+1,i = 1
for 1 ≤ i ≤ n− 1, d11 = −3, then

Dn =

















−3 −1
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















.

We prove the following theorem.

Theorem 2.5. If the sequence of tridiagonal matrices {Dn, n = 1, 2, 3 · · · } is of

the form

Dn =

















−3 −1
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















,
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then

perDn = (−1)n−2C−n,

where C−n is the nth negatively subscripted Lucas-balancing number.

Proof: The theorem holds for n = 1, n = 2, because

perD1 = −3 = −C−1,

perD2 = 17 = C−2.

Let Dp
n be the pth contraction of Dn where 1 ≤ p ≤ n− 2. By virtue of Definition

2.2, the matrix Dn can be contracted on Column 1 as

D1
n =





















17 3
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6





















=

















C−2 C−1

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















.

The matrix D1
n can be contracted on Column 1 as,

D2
n =





















−99 −17
1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6





















=

















−C−3 −C−2

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















.
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Continuing in this way, we obtain, for 3 ≤ r ≤ n− 4,

Dr
n =

















(−1)r−1C−(r+1) (−1)r−1C−r

1 −6 −1

1 −6
. . .

. . .
. . . −1
1 −6

















,

and therefore

Dn−3
n =





(−1)n−4C−(n−2) (−1)n−4C−(n−3) 0
1 −6 −1
0 1 −6



 .

By contraction of Dn−3
n on Column 1, gives

Dn−2
n =





(−1)n−4(−6)C−(n−2) + (−1)n−4C−(n−3) (−1)n−3C−(n−2)

1 −6





=





(−1)n−3[6C−(n−2) − C−(n−3)] (−1)n−3C−(n−2)

1 −6





=





(−1)n−3C−(n−1) (−1)n−3C−(n−2)

1 −6



 .

Again by using (3), we get

perDn = perDn−2
n

= (−1)n−3(−6)C−(n−1) + (−1)n−3C−(n−2)

= (−1)n−2
[

6C−(n−1) − C−(n−2)

]

= (−1)n−2C−n.

This completes the proof of the theorem. ✷

By virtue of Definition 2.3, we need a suitable matrix H for Hadamard product.
Since H is an n× n (-1, 1)–matrix, we can write

H =















1 1 · · · 1 1
−1 1 · · · 1 1
1 −1 · · · 1 1
...

...
...

...
1 1 · · · −1 1















.



168 Prasanta Kumar Ray

Let the Hadamard products Mn◦H and Dn◦H respectively denoted by the matrices
Pn and Qn be given by

Pn =

















−6 −1
−1 −6 −1

−1 −6
. . .

. . .
. . . −1
−1 −6

















Qn =

















−3 −1
−1 −6 −1

−1 −6
. . .

. . .
. . . −1
−1 −6

















.

It is well known that the value of the following determinant,

det













a x

1
x

a
. . .

. . .
. . . x
1
x

a













is independent of x (see p.105, [10]).

Therefore, using the above result and considering the following matrices

P̂n =

















−6 1
1 −6 1

1 −6
. . .

. . .
. . . 1
1 −6

















Q̂n =

















−3 1
1 −6 1

1 −6
. . .

. . .
. . . 1
1 −6

















,

we can write
det(P̂n) = detPn = perMn = (−1)n−1B−(n+1), (4)
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det(Q̂n) = detQn = perDn = (−1)n−2C−n. (5)

3. Factorization of Negatively Subscripted Balancing and

Lucas-balancing Numbers

In this section we find the eigenvalues of the two tridiagonal matrices
whose determinants are associated with the negatively subscripted balancing and
Lucas-balancing numbers. Then with the help of Chebyshev polynomials of first
and second kind, we also obtain the factorization of these numbers.

Theorem 3.1. If B−n is the nth negatively subscripted balancing number, then for

n ≥ 1

B−(n+1) = (−1)n−1
n
∏

k=1

[

−6− 2 cos

(

πk

n+ 1

)]

.

Proof: We introduce another n× n tridiagonal matrix Rn = (bij) with bii = 0 for
1 ≤ i ≤ n and bi,i−1 = bi−1,i = 1 for 2 ≤ i ≤ n. Then,

Rn =

















0 1
1 0 1

1 0
. . .

. . .
. . . 1
1 0

















.

We observe that P̂n = −6I +Rn. Let αk, 1 ≤ k ≤ n be the eigenvalues of Rn with
corresponding eigenvectors Xk. Then for all k

P̂nXk = (−6I +Rn)Xk

= −6IXk +RnXk

= −6Xk + αkXk

= (−6 + αk)Xk.

This shows that −6 + αk, 1 ≤ k ≤ n, are eigenvalues of P̂n. Thus for n ≥ 1, we
have

det P̂n =

n
∏

k=1

[−6 + αk]. (6)

Recall that each αk is a root of the characteristic polynomial p(α) = det(Rn−αI),
and since Rn − αI is a tridiagonal matrix, that is,

Rn − αI =

















−α 1
1 −α 1

1 −α
. . .

. . .
. . . 1
1 −α

















,
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we get the following recursive formulas for the characteristic polynomials:

p1(α) = −α

p2(α) = α2 − 1

pn(α) = −αpn−1(α)− pn−2(α).

This family of polynomials can be transformed into another family {Un(x), n ≥ 1}
by the transformation α = −2x to get,

U1(x) = 2x

U2(x) = 4x2 − 1

Un(x) = 2xUn−1(x)− Un−2(x).

Observe that the family {Un(x), n ≥ 1} is a set of Chebyshev polynomials of second
kind. It is well known that for x = cos θ, the Chebyshev polynomials of the second
kind can be written as

Un(x) =
sin[(n+ 1)θ]

sin θ
,

which when equal to zero gives θk = πk
n+1 , k = 1, 2, · · · , n. Therefore, we get

xk = cos θk

= cos
πk

n+ 1
, k = 1, 2, · · · , n.

The transformation α = −2x, gives the eigenvalues of Rn as

αk = −2 cos
πk

n+ 1
, k = 1, 2, · · · , n. (7)

Thus from (4), (6) and (7), we get the desired result as

B−(n+1) = det P̂n = (−1)n−1
n
∏

k=1

[

−6− 2 cos

(

πk

n+ 1

)]

.

✷

Theorem 3.2. If C−n is the nth negatively subscripted Lucas-balancing number,

then for n ≥ 1

C−n =
(−1)n−2

2

n
∏

k=1

[

−6− 2 cos

(

π(2k − 1)

2n

)]

.

Proof: From equation (5), we have det Q̂n = (−1)n−2C−n. If ej is the jth column
of the identity matrix I, we observe that det(I + e1e

T
1 ) = 2. Thus we may write

det Q̂ =
1

2
det

[

(I + e1e
T
1 )Q̂

]

. (8)
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Also observe that the right hand side of (8) can be expressed as

1

2
det

[

(I + e1e
T
1 )Q̂

]

=
1

2
det

[

−6I +Rn + e1e
T
2

]

.

If γk, k = 1, 2, · · · , n, are the eigenvalues of Rn + e1e
T
2 with corresponding eigen-

vectors Yk, then for each j,

[−6I +Rn + e1e
T
2 ]Yj = −6IYj + (Rn + e1e

T
2 )Yj

= −6Yj + γjYj

= (−6 + γj)Yj .

This shows that the eigenvalues of the matrix
(

−6I +Rn + e1e
T
2

)

are −6 + γk,
where 1 ≤ k ≤ n. Therefore,

det Q̂ =
1

2
det

[

−6I +Rn − ie1e
T
2

]

=
1

2

∏

1≤k≤n

(−6 + γk), n ≥ 1. (9)

In order to find γ
′

ks, we recall that each γk is a zero of the characteristic polynomial
qn(γ) = det(Rn + e1e

T
2 − γI). Since det

(

I − 1
2e1e

T
1

)

= 1
2 , we can express the

characteristic polynomial as

qn(γ) = 2 det

[

(I −
1

2
e1e

T
1 (Rn + e1e

T
2 − γI)

]

= 2det

















− γ
2 1
1 −γ 1

1 −γ
. . .

. . .
. . . 1
1 −γ

















.

We obtain the recursive formulas:

q1(γ) = −
γ

2
,

q2(γ) =
γ2

2
− 1,

qn(γ) = −γqn−1(γ)− qn−2(γ).

Using the transformation γ = −2x, the family of the above polynomial can be
transformed to a new family {Tn(x), n ≥ 1} where,

T1(x) = x

T2(x) = 2x2 − 1

Tn(x) = 2xTn−1(x)− Tn−2(x).
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Again observe that the family {Tn(x), n ≥ 1} is a set of Chebyshev polynomials
of first kind. It is well known that, for x = cos θ, the Chebyshev polynomials of
the first kind can be written as Tn(x) = cosnθ, which when equal to zero gives

θk = π(2k−1)
2n , k = 1, 2, · · · , n. Thus

xk = cos θk

= cos
π(2k − 1)

2n
, k = 1, 2, · · · , n.

Applying the transformation γ = −2x, the eigenvalues of Rn + e1e
T
2 are given by

γk = −2 cos
π(2k − 1)

2n
, k = 1, 2, · · · , n. (10)

Thus from equations (8), (9) and (10), we get

C−n =
(−1)n−2

2

n
∏

k=1

[

−6− 2 cos

(

π(2k − 1)

2n

)]

,

which ends the proof of the theorem. ✷
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