

M^2 -Type Sharp Estimates and Weighted Boundedness for Commutators Related to Singular Integral Operators Satisfying a Variant of Hörmander's Condition

Daqing Lu and Lanzhe Liu

ABSTRACT: In this paper, we prove the M^k -type sharp maximal function estimates for the commutators related to some singular integral operators satisfying a variant of Hörmander's condition. As an application, we obtain the weighted boundedness of the commutators on Lebesgue and Morrey spaces.

Key Words: Singular integral operator; Commutator; Sharp maximal function; Morrey space; BMO.

Contents

1	Introduction	129
2	Preliminaries	129
3	Theorems and Lemmas	132
4	Proofs of Theorems	135

1. Introduction

As the development of singular integral operators (see [14,15]), their commutators have been well studied (see [4]). In [13], the authors prove that the commutators generated by the singular integral operators and BMO functions are bounded on $L^p(\mathbb{R}^n)$ for 1 . Chanillo (see [1]) proves a similar result when singular integral operators are replaced by the fractional integral operators. In [8],some singular integral operators satisfying a variant of Hörmander's condition areintroduced, and the boundedness for the operators are obtained (see [8,16]). Thepurpose of this paper is to prove the sharp maximal function inequalities for thethe commutators related to some singular integral operators satisfying a variant ofHörmander's condition. As an application, we obtain the weighted boundedness ofthe commutator on Lebesgue and Morrey space.

2. Preliminaries

First, let us introduce some notations. Throughout this paper, Q will denote a cube of \mathbb{R}^n with sides parallel to the axes. For any locally integrable function f,

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 42B25

the sharp maximal function of f is defined by

$$f^{\#}(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_Q| dy,$$

where, and in what follows, $f_Q = |Q|^{-1} \int_Q f(x) dx$. We say that f belongs to $BMO(\mathbb{R}^n)$ if $f^{\#}$ belongs to $L^{\infty}(\mathbb{R}^n)$ and define $||f||_{BMO} = ||f^{\#}||_{L^{\infty}}$.

Let M be the Hardy-Littlewood maximal operator defined by

$$M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

For $\eta > 0$, let $M_{\eta}(f) = M(|f|^{\eta})^{1/\eta}$. For $k \in N$, we denote by M^k the operator M iterated k times, i.e., $M^1(f) = M(f)$ and

$$M^{k}(f) = M(M^{k-1}(f))$$
 when $k \ge 2$.

Let Φ be a Young function and $\tilde{\Phi}$ be the complementary associated to Φ , we denote that the Φ -average by, for a function f,

$$||f||_{\Phi,Q} = \inf\left\{\lambda > 0: \frac{1}{|Q|} \int_Q \Phi\left(\frac{|f(y)|}{\lambda}\right) dy \le 1\right\}$$

and the maximal function associated to Φ by

$$M_{\Phi}(f)(x) = \sup_{x \in Q} ||f||_{\Phi,Q}.$$

The Young functions to be using in this paper are $\Phi(t) = t(1 + logt)$ and $\tilde{\Phi}(t) = exp(t)$, the corresponding average and maximal functions denoted by $|| \cdot ||_{L(logL),Q}$, $M_{L(logL)}$ and $|| \cdot ||_{expL,Q}$, M_{expL} . Following [13], we know the generalized Hölder's inequality and the following inequalities hold:

$$\frac{1}{|Q|} \int_{Q} |f(y)g(y)| dy \le ||f||_{\Phi,Q} ||g||_{\tilde{\Phi},Q},$$
$$||f||_{L(logL),Q} \le M_{L(logL)}(f) \le CM^{2}(f),$$
$$||f - f_{Q}||_{expL,Q} \le C||f||_{BMO}$$

and

$$||f - f_Q||_{expL, 2^kQ} \le Ck||f||_{BMO}.$$

The A_p weight is defined by (see [7])

$$A_p = \left\{ w \in L^1_{loc}(\mathbb{R}^n) : \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) dx \right) \left(\frac{1}{|Q|} \int_Q w(x)^{-1/(p-1)} dx \right)^{p-1} < \infty \right\},$$

$$1$$

$$A_{1} = \{ w \in L^{p}_{loc}(\mathbb{R}^{n}) : M(w)(x) \le Cw(x), a.e. \}$$

130

and

$$A_{\infty} = \bigcup_{p \ge 1} A_p.$$

Given a weight function w. For $1 \le p < \infty$, the weighted Lebesgue space $L^p(w)$ is the space of functions f such that

$$||f||_{L^p(w)} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\right)^{1/p} < \infty.$$

Definition 2.1. Let $\Phi = \{\phi_1, ..., \phi_m\}$ be a finite family of bounded functions in \mathbb{R}^n . For any locally integrable function f, the Φ sharp maximal function of f is defined by

$$M_{\Phi}^{\#}(f)(x) = \sup_{Q \ni x} \inf_{\{c_1, \dots, c_m\}} \frac{1}{|Q|} \int_Q |f(y) - \sum_{j=1}^m c_j \phi_j(x_Q - y)| dy,$$

where the infimum is taken over all m-tuples $\{c_1, ..., c_m\}$ of complex numbers and x_Q is the center of Q. For $\eta > 0$, let

$$M_{\Phi,\eta}^{\#}(f)(x) = \sup_{Q \ni x} \inf_{\{c_1,\dots,c_m\}} \left(\frac{1}{|Q|} \int_Q |f(y) - \sum_{j=1}^m c_j \phi_j (x_Q - y)|^\eta dy \right)^{1/\eta}$$

Remark 2.2. We note that $M_{\Phi}^{\#} \approx f^{\#}$ if m = 1 and $\phi_1 = 1$.

Definition 2.3. Given a positive and locally integrable function f in \mathbb{R}^n , we say that f satisfies the reverse Hölder's condition (write this as $f \in \mathbb{R}H_{\infty}(\mathbb{R}^n)$), if for any cube Q centered at the origin we have

$$0 < \sup_{x \in Q} f(x) \le C \frac{1}{|Q|} \int_Q f(y) dy.$$

In this paper, we will study some singular integral operators as following(see [16]).

Definition 2.4. Let $K \in L^2(\mathbb{R}^n)$ and satisfy

$$||K||_{L^{\infty}} \le C,$$
$$K(x)| \le C|x|^{-n}$$

there exist functions $B_1, ... B_m \in L^1_{loc}(\mathbb{R}^n - \{0\})$ and $\Phi = \{\phi_1, ..., \phi_m\} \subset L^{\infty}(\mathbb{R}^n)$ such that $|\det[\phi_j(y_i)]|^2 \in \mathbb{R}H_{\infty}(\mathbb{R}^{nm})$, and for a fixed $\delta > 0$ and any |x| > 2|y| > 0,

$$|K(x-y) - \sum_{j=1}^{m} B_j(x)\phi_j(y)| \le C \frac{|y|^{\delta}}{|x-y|^{n+\delta}}.$$

131

For $f \in C_0^{\infty}$, we define the singular integral operator related to the kernel K by

$$T(f)(x) = \int_{\mathbb{R}^n} K(x-y)f(y)dy.$$

Let b be a locally integrable function on \mathbb{R}^n . The commutator related to T is defined by

$$T^{b}(f)(x) = \int_{R^{n}} (b(x) - b(y)) K(x - y) f(y) dy.$$

Remark 2.5. Note that the classical Calderón-Zygmund singular integral operator satisfies **Definition 2.4** (see [14, 15]).

Definition 2.6. Let φ be a positive, increasing function on R^+ and there exists a constant D > 0 such that

$$\varphi(2t) \leq D\varphi(t) \text{ for } t \geq 0.$$

Let w be a weight function and f be a locally integrable function on \mathbb{R}^n . Set, for $1 \leq p < \infty$,

$$||f||_{L^{p,\varphi}(w)} = \sup_{x \in R^n, \ d > 0} \left(\frac{1}{\varphi(d)} \int_{Q(x,d)} |f(y)|^p w(y) dy \right)^{1/p}$$

where $Q(x,d) = \{y \in \mathbb{R}^n : |x-y| < d\}$. The generalized Morrey space is defined by

$$L^{p,\varphi}(R^n, w) = \{ f \in L^1_{loc}(R^n) : ||f||_{L^{p,\varphi}(w)} < \infty \}.$$

If $\varphi(d) = d^{\eta}$, $\eta > 0$, then $L^{p,\varphi}(\mathbb{R}^n, w) = L^{p,\eta}(\mathbb{R}^n, w)$, which is the classical weighted Morrey spaces (see [11,12]). If $\varphi(d) = 1$, then $L^{p,\varphi}(\mathbb{R}^n, w) = L^p(\mathbb{R}^n, w)$, which is the weighted Lebesgue spaces (see [7]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [2,5,6,9,10]).

3. Theorems and Lemmas

We shall prove the following theorems.

Theorem 3.1. Let T be the singular integral operator as **Definition 2.4**, 0 < r < 1 and $b \in BMO(\mathbb{R}^n)$. Then there exists a constant C > 0 such that, for any $f \in C_0^{\infty}(\mathbb{R}^n)$ and $\tilde{x} \in \mathbb{R}^n$,

$$M_{\Phi,r}^{\#}(T^{b}(f))(\tilde{x}) \leq C||b||_{BMO} \left(M^{2}(f)(\tilde{x}) + M^{2}(T(f))(\tilde{x})\right).$$

Theorem 3.2. Let T be the singular integral operator as **Definition 2.4**, $1 , <math>w \in A_1$ and $b \in BMO(\mathbb{R}^n)$. Then T^b is bounded on $L^p(w)$.

Theorem 3.3. Let T be the singular integral operator as Definition 2.4, $0 < D < 2^n$, $1 , <math>w \in A_1$ and $b \in BMO(\mathbb{R}^n)$. Then T^b is bounded on $L^{p,\varphi}(\mathbb{R}^n, w)$.

To prove the theorems, we need the following lemmas.

Lemma 3.4. ([7], p.485) Let $0 and for any function <math>f \ge 0$. We define that, for 1/r = 1/p - 1/q

$$||f||_{WL^q} = \sup_{\lambda>0} \lambda |\{x \in \mathbb{R}^n : f(x) > \lambda\}|^{1/q}, N_{p,q}(f) = \sup_E ||f\chi_E||_{L^p} / ||\chi_E||_{L^r},$$

where the sup is taken for all measurable sets E with $0 < |E| < \infty$. Then

$$||f||_{WL^q} \le N_{p,q}(f) \le (q/(q-p))^{1/p} ||f||_{WL^q}.$$

Lemma 3.5. (see $\lfloor 13 \rfloor$) We have

$$\frac{1}{|Q|} \int_{Q} |f(x)g(x)| dx \le ||f||_{expL,Q} ||g||_{L(logL),Q}.$$

Lemma 3.6. (see [16]) Let T be the singular integral operator as **Definition 2.3**. Then T is bounded on $L^p(w)$ for $1 , <math>w \in A_1$ and weak (L^1, L^1) bounded.

Lemma 3.7. (see [16]). Let $1 , <math>0 < \eta < \infty$, $w \in A_{\infty}$ and $\Phi = \{\phi_1, ..., \phi_m\} \subset L^{\infty}(\mathbb{R}^n)$ such that $|det[\phi_j(y_i)]|^2 \in \mathbb{R}H_{\infty}(\mathbb{R}^{nm})$. Then, for any smooth function f for which the left-hand side is finite,

$$\int_{\mathbb{R}^n} M_{\eta}(f)(x)^p w(x) dx \le C \int_{\mathbb{R}^n} M_{\Phi,\eta}^{\#}(f)(x)^p w(x) dx$$

Lemma 3.8. (see [2,5]) Let $1 , <math>w \in A_1$ and $0 < D < 2^n$. Then, for any smooth function f for which the left-hand side is finite,

$$||M(f)||_{L^{p,\varphi}(w)} \le C||f||_{L^{p,\varphi}(w)}.$$

Lemma 3.9. Let $1 , <math>0 < \eta < \infty$, $w \in A_1$, $0 < D < 2^n$ and $\Phi = \{\phi_1, ..., \phi_m\} \subset L^{\infty}(\mathbb{R}^n)$ such that $|det[\phi_j(y_i)]|^2 \in \mathbb{R}H_{\infty}(\mathbb{R}^{nm})$. Then, for any smooth function f for which the left-hand side is finite,

$$||M_{\eta}(f)||_{L^{p,\varphi}(w)} \le C||M_{\Phi,\eta}^{\#}(f)||_{L^{p,\varphi}(w)}.$$

Proof: For any cube $Q = Q(x_0, d)$ in \mathbb{R}^n , we know $M(w\chi_Q) \in A_1$ for any cube

Q = Q(x,d) by [3]. If $x \in Q^c$, by Lemma 3.7, we have, for $f \in L^{p,\varphi}(\mathbb{R}^n, w)$,

$$\begin{split} & \int_{Q} |M_{\eta}(f)(y)|^{p} w(y) dy \\ &= \int_{R^{n}} |M_{\eta}(f)(y)|^{p} w(y) \chi_{Q}(y) dy \\ &\leq \int_{R^{n}} |M_{\eta}(f)(y)|^{p} M(w \chi_{Q})(y) dy \\ &\leq C \int_{R^{n}} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} M(w \chi_{Q})(y) dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q \setminus 2^{k}Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} M(w \chi_{Q})(y) dy \\ &\leq C \left(\int_{Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} w(y) dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q \setminus 2^{k}Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} \frac{w(Q)}{|2^{k+1}Q|} dy \right) \\ &\leq C \left(\int_{Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} w(y) dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} \frac{M(w)(y)}{2^{n(k+1)}} dy \right) \\ &\leq C \left(\int_{Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} w(y) dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} \frac{w(y)}{2^{n(k+1)}} dy \right) \\ &\leq C \left(\int_{Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} w(y) dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q} |M_{\Phi,\eta}^{\#}(f)(y)|^{p} \frac{w(y)}{2^{n(k+1)}} dy \right) \\ &\leq C \left(||M_{\Phi,\eta}^{\#}(f)||_{L^{p,\varphi}(w)}^{p} \sum_{k=0}^{\infty} 2^{-nk} \varphi(2^{k+1}d) \\ &\leq C ||M_{\Phi,\eta}^{\#}(f)||_{L^{p,\varphi}(w)}^{p} \sum_{k=0}^{\infty} (2^{-n}D)^{k} \varphi(d) \\ &\leq C ||M_{\Phi,\eta}^{\#}(f)||_{L^{p,\varphi}(w)}^{p} \varphi(d), \end{split}$$

thus

$$\left(\frac{1}{\varphi(d)}\int_{Q}M_{\eta}(f)(x)^{p}w(x)dx\right)^{1/p} \leq C\left(\frac{1}{\varphi(d)}\int_{Q}M_{\Phi,\eta}^{\#}(f)(x)^{p}w(x)dx\right)^{1/p}$$

and

 $||M_{\eta}(f)||_{L^{p,\varphi}(w)} \le C||M_{\Phi,\eta}^{\#}(f)||_{L^{p,\varphi}(w)}.$

This finishes the proof.

Lemma 3.10. Let T be the singular integral operator as Definition 2.4, $1 , <math>w \in A_1$ and $0 < D < 2^n$. Then

$$||T(f)||_{L^{p,\varphi}(w)} \le C||f||_{L^{p,\varphi}(w)}.$$

The proof of the Lemma is similar to that of Lemma 3.9 by Lemma 3.6, we omit the details.

4. Proofs of Theorems

Proof of Theorem 3.1. It suffices to prove for $f \in C_0^{\infty}(\mathbb{R}^n)$ and some constant C_0 , the following inequality holds:

$$\left(\frac{1}{|Q|} \int_{Q} |T^{b}(f)(x) - C_{0}|^{r} dx\right)^{1/r} \leq C||b||_{BMO} \left(M^{2}(f)(\tilde{x}) + M^{2}(T(f))(\tilde{x})\right),$$

where Q is any a cube centered at x_0 , $C_0 = \sum_{j=1}^m g_j \phi_j(x_0 - x)$ and $g_j = \int_{R^n} B_j(x_0 - y)(b(y) - b_{2Q})f_2(y)dy$. Let $\tilde{x} \in Q$. Write, for $f_1 = f\chi_{2Q}$ and $f_2 = f\chi_{(2Q)^c}$,

$$T^{b}(f)(x) = (b(x) - b_{2Q})T(f)(x) - T((b - b_{2Q})f_{1})(x) - T((b - b_{2Q})f_{2})(x).$$

Then

$$\left(\frac{1}{|Q|} \int_{Q} |T^{b}(f)(x) - C_{0}|^{r} dx\right)^{1/r}$$

$$\leq C \left(\frac{1}{|Q|} \int_{Q} |(b(x) - b_{2Q})T(f)(x)|^{r} dx\right)^{1/r} + C \left(\frac{1}{|Q|} \int_{Q} |T((b - b_{2Q})f_{1})(x)|^{r} dx\right)^{1/r}$$

$$+ C \left(\frac{1}{|Q|} \int_{Q} |T((b - b_{2Q})f_{2})(x) - C_{0}|^{r} dx\right)^{1/r}$$

$$= I_{1} + I_{2} + I_{3}.$$

For I_1 , by Hölder's inequality and Lemma 3.6, we obtain

$$I_{1} \leq \frac{C}{|Q|} \int_{2Q} |b(x) - b_{2Q}| |T(f)(x)| dx$$

$$\leq C||b - b_{2Q}||_{expL,2Q} ||T(f)||_{L(logL),2Q}$$

$$\leq C||b||_{BMO} M^{2}(T(f))(\tilde{x}),$$

For I_2 , by Lemma 3.4, 3.5 and 3.6, we obtain

$$\begin{split} I_{2} &\leq C \left(\frac{1}{|Q|} \int_{R^{n}} |T((b-b_{2Q})f_{1})(x)|^{r} \chi_{Q}(x) dx \right)^{1/r} \\ &\leq C |Q|^{-1} \frac{||T((b-b_{2Q})f_{1})\chi_{Q}||_{L^{r}}}{|Q|^{1/r-1}} \\ &\leq C |Q|^{-1} ||T((b-b_{2Q})f_{1})||_{WL^{1}} \\ &\leq C |Q|^{-1} ||(b-b_{2Q})f_{1}||_{L^{1}} \\ &\leq \frac{C}{|2Q|} \int_{2Q} |b(x) - b_{2Q}||f(x)| dx \\ &\leq C ||b-b_{2Q}||_{expL,2Q} ||f||_{L(logL),2Q} \\ &\leq C ||b| - \log M^{2}(f)(\tilde{x}) \end{split}$$

DAQING LU AND LANZHE LIU

For I_3 , we have

$$\begin{split} I_{3} &\leq \frac{C}{|Q|} \int_{Q} |T((b-b_{2Q})f_{2})(x) - C_{0}| dx \\ &\leq \frac{C}{|Q|} \int_{Q} \int_{R^{n}} \left| (K(x-y) - \sum_{j=1}^{m} B_{j}(x_{0}-y)\phi_{j}(x_{0}-x))(b(y) - b_{2Q})f_{2}(y) \right| dy dx \\ &\leq \frac{C}{|Q|} \int_{Q} \sum_{k=1}^{\infty} \left(\int_{2^{k}d \leq |y-x_{0}| < 2^{k+1}d} \frac{|x-x_{0}|^{\delta}}{|y-x_{0}|^{n+\delta}} |b(y) - b_{2Q}| |f(y)| dy \right) dx \\ &\leq C \sum_{k=1}^{\infty} \frac{d^{\delta}}{(2^{k}d)^{n+\delta}} \int_{2^{k+1}Q} |b(y) - b_{2Q}| |f(y)| dy \\ &\leq C \sum_{k=1}^{\infty} \frac{d^{\delta}}{(2^{k}d)^{n+\delta}} (2^{k}d)^{n} ||b - b_{2Q}||_{expL,2^{k+1}Q} ||f||_{L(logL),2^{k+1}Q} \\ &\leq C ||b||_{BMO} M^{2}(f)(\tilde{x}) \sum_{k=1}^{\infty} k 2^{-k\delta} \\ &\leq C ||b||_{BMO} M^{2}(f)(\tilde{x}). \end{split}$$

These complete the proof of Theorem 3.1. **Proof of Theorem 3.2.** By Theorem 3.1 and Lemma 3.6-3.7, we have

$$\begin{aligned} ||T^{b}(f)||_{L^{p}(w)} &\leq ||M_{r}(T^{b}(f))||_{L^{p}(w)} \leq C ||M^{\#}_{\Phi,r}(T^{b}(f))||_{L^{p}(w)} \\ &\leq C ||b||_{BMO} \left(||M^{2}(T(f))||_{L^{p}(w)} + ||M^{2}(f)||_{L^{p}(w)} \right) \\ &\leq C ||b||_{BMO} (||T(f)||_{L^{p}(w)} + ||f||_{L^{p}(w)}) \\ &\leq C ||b||_{BMO} ||f||_{L^{p}(w)}. \end{aligned}$$

This completes the proof of the theorem. **Proof of Theorem 3.3.** By Theorem 3.1 and Lemma 3.8-3.10, we have

$$||T^{b}(f)||_{L^{p,\varphi}(w)} \le ||M_{r}(T^{b}(f))||_{L^{p,\varphi}(w)} \le C ||M^{\#}_{\Phi,r}(T^{b}(f))||_{L^{p,\varphi}(w)}$$

- $\leq C||b||_{BMO} \left(\|M^2(T(f))\|_{L^{p,\varphi}(w)} + \|M^2(f)\|_{L^{p,\varphi}(w)} \right)$
- $\leq C ||b||_{BMO}(||T(f)||_{L^{p,\varphi}(w)} + ||f||_{L^{p,\varphi}(w)})$
- $\leq C||b||_{BMO}||f||_{L^{p,\varphi}(w)}.$

This completes the proof of the theorem.

References

- 1. S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31, 7-16(1982).
- F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7, 273-279(1987).
- 3. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79, 249-254(1980).

136

- 4. R. R. Coifman, R. Rochberg and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. of Math., 103, 611-635(1976).
- G. Di FaZio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital., 5-A(7), 323-332(1991).
- G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Func. Anal., 112, 241-256(1993).
- J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math., 16, Amsterdam, 1985.
- D. J. Grubb and C. N. Moore, a variant of Hörmander's condition for singular integrals, Colloq. Math., 73, 165-172(1997).
- L. Z. Liu, Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators, Acta Math. Scientia, 25(B)(1), 89-94(2005).
- T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in "Harmonic Analysis", Proceedings of a conference held in Sendai, Japan, 1990, 183-189.
- 11. J. Peetre, On convolution operators leaving $L^{p,\lambda}\text{-spaces}$ invariant, Ann. Mat. Pura. Appl., 72, 295-304(1966).
- 12. J. Peetre, On the theory of $L^{p,\lambda}$ -spaces, J. Func. Anal., 4, 71-87(1969).
- C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65, 672-692(2002).
- E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.
- A. Torchinsky, Real variable methods in harmonic analysis, Pure and Applied Math. 123, Academic Press, New York, 1986.
- R. Trujillo-Gonzalez, Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition, Comment. Math. Univ. Carolin., 44, 137-152(2003).

Daqing Lu and Lanzhe Liu Department of Mathematics Changsha University of Science and Technology Changsha 410077 P. R. of China E-mail address: lanzheliu@163.com