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σ-Ideals and Generalized Derivations in σ-Prime Rings

M. Rais Khan, Deepa Arora and M. Ali Khan

abstract: Let R be a σ-prime ring and F and G be generalized derivations
of R with associated derivations d and g respectively. In the present paper, we
shall investigate the commutativity of R admitting generalized derivations F and G

satisfying any one of the properties: (i) F (x)y+F (y)x = xG(y)+yG(x), (ii) F (x2) =
x2, (iii) [F (x), y] = [x,G(y)], (iv) d(x)F (y) = xy, (v)F ([x, y]) = [F (x), y] + [d(y), x]
and (vi) F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y in some appropriate subset of R.
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1. Introduction

Throughout, R will represent an associative ring with center Z(R). Recall that a
ring R is prime if a Rb = 0 implies a = 0 or b = 0. R is σ-prime if a Rb = aRσ(b) = 0
implies a = 0 or b = 0 and R admits an involution σ. Every prime ring equipped
with an involution is σ-prime but the converse need not be true in general. As an
example, taking S = R ×R0 where R0 is an opposite ring of a prime ring R with
(x, y) = (y, x). Then S is not prime if (0, a)S(a, 0) = 0. But, R is σ-prime if we take
(a, b)S(x, y) = 0 and (a, b)Sσ((x, y)) = 0, then aRx× yRb = 0 and aRy×xRb = 0,
and thus aRx = yRb = aRy = xRb = 0 (see for reference [9]). An ideal I of R is
a σ-ideal if I is invariant under σ (viz:σ(I) = I). Oukhtite et al. [9] defined a set
of symmetric and skew symmetric elements of R as Saσ(R) = {x ∈ R|σ(x) = ±x}.
For any x, y ∈ R the symbol [x, y] stands for commutator xy−yx and x◦y denotes
the anti-commutator xy+yx. We shall make extensive use of the basic commutator
identities as follows:

[xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z, x ◦ (yz) = (x ◦ y)z − y[x, z] =
y(x ◦ z) + [x, y]z and (xy) ◦ z = x(y ◦ z) − [x, z]y = (x ◦ z)y + x[y, z]. As defined
by Bresar [6], an additive map F : R → R is called a generalized derivation if
there exists a derivation d : R → R (an additive map d : R → R is a derivation
if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R) such that F (xy) = F (x)y + xd(y)
for all x, y ∈ R. One can easily check that the notion of generalized derivation
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covers the notions of a derivation and a left multiplier (i.e. F (xy) = F (x)y for all
x, y ∈ R). Particularly, one can observe that, for a fixed a ∈ R, the map da : R → R

defined by da(x) = [a, x] for all x ∈ R is a derivation which is said to be an inner
derivation. An additive map ga,b : R → R is called a generalized inner derivation
if ga,b(x) = ax+ xb for some fixed a, b ∈ R.

It is easy to see that if ga,b(x) is a generalized inner derivation, then ga,b(xy) =
ga,b(x)y + xd−b(y) for all x, y ∈ R, where d−b is an inner derivation.

Several authors [1,2,3,17,18,19,20] have established numerous results concerning
derivations and generalized derivations of prime rings. In 2005, Oukhtite et al.
conferred an extension of prime rings in the form of σ-prime rings and proved a
number of results which hold true for prime rings (see for references [9,10,11,12,
13,14,15,16]). In [7] and [8] author et al. extended results concerning derivations
and generalized derivations of σ-prime rings to some more general settings. Ashraf
et al. too contributed to this newly emerged theory in [5], apart from great deal
of work in the field of prime rings.

Recently, Ashraf et al. [4] extended some known theorems for derivations to
generalized derivations in the setting of semiprime rings. In this context, a nat-
ural question arises: Under what additional conditions the above results can be
extended to σ-prime (σ-semiprime) rings. However, in this perspective, we prove
the results for σ-prime rings exhibiting generalized derivations F and G associated
with derivations d and g respectively and hope for similar conversion to σ-semiprime
rings in near future. Now, let I be σ-ideal of σ-prime ring R. For every x, y ∈ I,
we define the following properties.

(P1) (F (x)y + F (y)x)± (xG(y) + yG(x)) = 0.

(P2) F (x2)± x2 = 0.

(P3) [F (x), y]± [x,G(y)] = 0.

(P4) d(x)F (y)± xy = 0.

(P5) F ([x, y]) = [F (x), y] + [d(y), x].

(P6) F (x) ◦ y − d(y) ◦ x = 0.

2. Main Results

In order to prove our results, we need the following known lemmas:

Lemma 2.1 ( [10, Lemma 3.1]). Let R be a σ-prime ring and let I be a nonzero
σ-ideal of R. If a, b in R satisfy aIb = aIσ(b) = 0, then a = 0 or b = 0.

Lemma 2.2 ( [11, Lemma 2.2]). Let I be a nonzero σ-ideal of R and 0 6= d be a
derivation on R which commutes with σ. If [x,R]Id(x) = 0 for all x ∈ I, then R

is commutative.

We begin with
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Theorem 2.3. Let R be a 2-torsion free σ-prime ring and I a nonzero σ-ideal of
R. Suppose that R admits generalized derivations F and G with associated nonzero
derivations d and g which commutes with σ. If R satisfies one of the properties
(P1) and (P3), then R is commutative.

Proof: (i) By the hypothesis (P1), we have

F (x)y + F (y)x = xG(y) + yG(x) for all x, y ∈ I. (2.1)

Combining the expressions obtained after replacing x by xy in (2.1) and multiplying
(2.1) with y from the right, we get

xd(y)y = yxg(y) + x[y,G(y)] for all x, y ∈ I. (2.2)

For any r ∈ R, replacing x by rx in (2.2) and combining with the expression
obtained by multiplying (2.2) with r from the left, we get

[y, r]xg(y) = 0.

Therefore,

[y, r]Ig(y) = 0 for all x ∈ I. (2.3)

Since I is a σ-ideal and gσ = σg, for all y ∈ I∩Saσ(R), so in view of Lemma 2.1,
we have [y, r] = 0 or g(y) = 0. Using the fact that y + σ(y) ∈ Saσ(R) ∩ I for all
y ∈ I, then [y + σ(y), r] = 0 or g(y + σ(y)) = 0 for all y ∈ I and r ∈ R. Now, two
cases arise.

Case 1: If [y + σ(y), r] = 0 and y − σ(y) ∈ Saσ(R) ∩ I,yields [y − σ(y), r] = 0 or
g(y − σ(y)) = 0 r ∈ R.

If [y − σ(y), r] = 0 then 0 = [y − σ(y), r] + [y + σ(y), r] = 2[y, r] = 0 implies
[y, r] = 0, since char R 6= 2. If g(y−σ(y)) = 0 r ∈ R, then g(y) = g(σ(y)) = σ(g(y)).

An application of Lemma 2.1 equation (2.3) implies [y, r] = 0 or g(y) = 0.

Case 2: If g(y+ σ(y)) = 0, then g(y) = −g(σ(y)) = −σ(g(y)), and in view of (2.3)

[y, r]Ig(y) = 0 = [y, r]Iσ(g(y)).

By Lemma 2.1, we arrive at [y, r] = 0 or g(y) = 0.
If g(y) = 0, then for any r in R, we find that yd(r) = 0 for all y ∈ I. Hence,

Id(r) = IRd(r) = σ(I)Rd(r) = 0.

Since I 6= 0 and R is a σ-prime, we obtain d(R) = 0, (i.e. d = 0) yields a
contradiction.

Next, suppose that [y, r] = 0. Then for any s in R, we have

0 = [sy, r] = [s, r]y = [s, r]I = [s, r]RI = [s, r]Rσ(I) = 0.

Since I 6= 0 and R is σ-prime, we obtain [s, r] = 0 for all r, s ∈ R. Hence R is
commutative.

(ii) Similarly we can prove that R is commutative, if R satisfies (P3). ✷
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Remark 2.4. Taking G = F or G = −F in the hypothesis of Theorem 2.4, we get
the following.

Corollary 2.5. Let R be a 2-torsion free σ-prime ring and I a nonzero σ-ideal
of R. Suppose that R admits a generalized derivation F with associated nonzero
derivation d which commutes with σ, such that [F (x), y] + [F (y), x] = 0 for all
x, y ∈ I or if F (x) ◦ y + F (y) ◦ x = 0 for all x, y ∈ I, then R is commutative.

Theorem 2.6. Let R be a 2-torsion free σ-prime ring and I a nonzero σ-ideal of R.
Suppose that R admits generalized derivations F with associated nonzero derivation
d which commutes with σ such that the property (P2) or (P4) is satisfied. Then R

is commutative.

Proof: From the hypothesis of (P2), we write

(i) F (x2) = x2 for all x ∈ I. Replacing x by x+ y in the above relation and using
(P2), we obtain

F (x ◦ y) = x ◦ y for all x, y ∈ I.

Using Theorem 2.2 of [14], we get the required result.

(ii) F (x2) + x2 = 0 for all x ∈ I, then as (i) we get F (x ◦ y) + (x ◦ y) = 0∀x, y ∈ I.
Following the same technique as used in the proof of [14, Theorem 2.2], we get the
required result. ✷

Corollary 2.7. Let R be a 2-torsion free σ-prime ring and I be a nonzero σ-
ideal of R. Suppose that R admits generalized derivations F and G with associated
nonzero derivations d and g which commutes with σ. If [F (x), y] = [x, F (y)] for
all x, y ∈ I (or [F (x), y] + [x, F (y)] = 0) for all x, y ∈ I, then R is commutative.

Theorem 2.8. Let R be a 2-prime ring and I be a nonzero σ-ideal of R. Suppose
that R admits a generalized derivation F with associated nonzero derivation d com-
muting with σ such that property (P5) or (P6) is satisfied. Then R is commutative.

Proof: By our hypothesis (P5), we have

F ([x, y]) = [F (x), y] + [d(y), x]. (2.4)

Replacing y by yx in (2.4) and employing (2.4), we find that

2[x, y]d(x) = y[F (x), x] + y[d(x), x] for all x, y ∈ I. (2.5)

For any r ∈ R, putting y by ry in (2.5) and applying (2.5), we get

2[x, r]yd(x) = 0 for all x, y ∈ I.

Since R is 2-torsion free, we get [x, r]yd(x) = 0 for all x, y ∈ I and r ∈ R.
Therefore, [x,R]Id(x) = 0 for all x ∈ I and r ∈ R.
By application of Lemma 2.2, we conclude that R is commutative. ✷
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3. Counter-examples

Remark 3.1. The following example shows that R to be prime is essential in the
hypothesis of our theorems.

Example 3.2. Take any arbitrary ring M and R =

{

f

(

a b

0 0

) ∣

∣

∣

∣

a, b ∈ M

}

a non

commutative prime ring and I =

{

f

(

0 a

0 0

)
∣

∣

∣

∣

a ∈ M

}

be a nonzero ideal of R.

Define a map F : R → R by F (x) = 2

(

x 0
0 x

)

. Then it is obvious to see that

F is a generalized derivation associated with a nonzero derivation d(x) = [e11, x].
Clearly, F satisfies the properties (P1-P6), for example F ([x, y]) = [x, y] for all
x, y ∈ I. However, R is not commutative.

Example 3.3. Take M = Z[X ] × Z[X ]; if we define an addition on M by com-
ponent wise and multiplication by (p1, p2)(q1, q2) = (p1q2 − p2q1, 0), then M is a
ring such that m = 0 for all m ∈ M . Moreover, M is non commutative and
mn = −nm for all m,n ∈ M . Let F be the additive mapping defined on the ring

R =

{(

a 0
b a

)

\ a, b ∈ M

}

by F

(

a 0
b a

)

=

(

a 0
b− a a

)

. Clearly, F is a nontrivial

left multiplier of R (i.e. derivation d = 0). Since mn = −nm for all m,n ∈ M , it

is easy to check that the map σ : R → R defined by σ

(

a 0
b a

)

=

(

a 0
−b −a

)

is an

involution.

On the other hand, if we set a =

(

0 0
m 0

)

∈ R, where m = 0, then aRa = 0.

And aRσ(a) = 0; proving that R is a non σ-prime ring.

Let U =

{(

0 0
b 0

)/

b ∈ M

}

.

It is clear that U is a σ-Lie ideal of R such that F ([u, v]) = [u, v] for all u, v ∈ U .

Moreover, if m,n ∈ M are such that mn = 0, then u =

(

0 0
m 0

)

∈ U and

r =

(

0 0
m n

)

∈ R and [u, r] = 0, proving that U ⊆ Z(R). Accordingly, in Theorem

2.8 the hypothesis of σ- primeness is crucial.

Remark 3.4. The following examples show that the property of primeness in the
stated results cannot be omitted. (i) Let R be a prime ring and d1,d2 be derivations
of R such that at least one is non-zero. If d1(x)x+ xd2(x) = 0 for all x ∈ R, then
R is commutative; (ii) If a prime ring R has a non-zero commuting derivation on
itself, then R is commutative.

Example 3.5. Let S be a ring in which a2 = 0, a ∈ S and

R =

{(

a 0
b 0

)/

a, b ∈ S

}

.
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Define d1 : R → R by d1

(

a 0
b 0

)

=

(

0 0
a 0

)

and d2 : R → R by d2

(

a 0
b 0

)

=
(

0 0
a− b 0

)

.

Then R is a ring under the usual operations. Clearly, d1 and d2 are derivations
of R such that d1(x)x+ xd2(x) = 0. This indicates that the hypothesis of primness
in not superfluous.

Remark 3.6. Example 3.3 demonstrates that if we replace the prime ring by a
semi prime ring in Remark 3.4 (ii), then R may not be commutative, even for an
ordinary derivation.
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