

(3s.) **v. 31** 2 (2013): 109–111. ISSN-00378712 IN PRESS doi:10.5269/bspm.v31i2.15138

A Bertrand Postulate for a Subclass of Primes

G Sudhaamsh Mohan Reddy, S Srinivas Rau, B Uma

ABSTRACT: Let d be a squarefree integer and consider the subclass of primes with Legendre symbol $\left(\frac{d}{p}\right) = +1$. It is shown that for x large enough (x, 2x] contain a prime of this type.

Key Words: Primes ; Legendre Symbol ; Bertrand's Postulate.

Bertrand's Postulate states that "for every n > 1 there is at least one prime p such that n ".

Let d be a squarefree integer. It is known ([2],p75-76) that the set of primes p with Legendre symbol $\left(\frac{d}{p}\right) = +1$ has (analytic/natural) density $\frac{1}{2}$. We state this as

Lemma 1. Let $\pi_1(x) = |\{p | p \le x, p \quad prime, (\frac{d}{p}) = +1\}|$. Then

$$\lim_{x \to \infty} \frac{\pi_1(x)}{\pi(x)} = \frac{1}{2}$$

Here $\pi(x) = \sum_{p \leq x} 1$ is the usual counting function. We prove the following using certain standard results via Lemmas 1,2,3.

Proposition 1. For all x large enough, the interval (x, 2x] contains a prime p with $\left(\frac{d}{p}\right) = +1$.

Remark 1. Unlike Bertrand's postulate, such a statement can fail for small x, even if the interval is "doubled" to (x, 4x). For example if d = 5 and x = 2, then (2,8) contains three primes; 3,5 and 7. But $(\frac{5}{3}) = -1$, $(\frac{5}{5}) = 0$ and $(\frac{5}{7}) = -1$. Recall Chebyshev's function

$$\theta(\mathbf{x}) = \sum_{p \leq x} logp = log(\prod_{p \leq x} p)$$

We introduce correspondingly $\theta_1(\mathbf{x}) = \sum_{p \leq x, (\frac{d}{p}) = +1} \log p$. Note that $\pi_1(x) \leq \pi(x)$ and $\theta_1(\mathbf{x}) \leq \theta(\mathbf{x})$

Lemma 2. $\lim_{x\to\infty} \frac{\theta_1(\mathbf{x})}{x} = \frac{1}{2}$

Proof: $\lim_{x\to\infty} \frac{\theta_1(x)}{x} = \lim_{x\to\infty} \left[\frac{\pi_1(x)\log x}{x} - \frac{1}{x}\int_2^x \frac{\pi_1(t)}{t}dt\right]$ by adapting directly the proof of the corresponding result for θ and π ([1], Th 4.3).

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 11A41

Again $\lim_{x\to\infty}\frac{1}{x}\int_2^x\frac{\pi_1(t)}{t}dt=0$ ([1],p79). This forces the second term above to tend to 0. Hence

$$\lim_{x \to \infty} \frac{\theta_1(\mathbf{x})}{x} = \lim_{x \to \infty} \frac{\pi_1(x) \log x}{x} = \lim_{x \to \infty} \frac{\pi_1(x)}{\pi(x)}$$
$$= \frac{1}{2}$$

by the Prime Number Theorem $(\pi(x) \sim \frac{\log x}{x})$ and Lemma1

Lemma 3.
$$\lim_{x\to\infty} \left(\frac{\theta_1(2x)}{x} - \frac{\theta_1(x)}{x}\right) = 2(\frac{1}{2}) - \frac{1}{2} = \frac{1}{2}$$

Proof: Apply Lemma2 to each of the limits.

Proof of Proposition1:

$$\theta_1(2\mathbf{x}) - \theta_1(\mathbf{x}) = \log(\prod_{p \le 2x, (\frac{d}{p} = +1)} p) - (\log\prod_{p \le x, (\frac{d}{p}) = +1} p)$$

$$\therefore \theta_1(2\mathbf{x}) - \theta_1(\mathbf{x}) = \log(\prod_{x$$

This is zero precisely when (x, 2x] does not contain any prime p with the symbol +1. But if it is zero for infinitely many x, with $x \to \infty$, we have a contradiction to Lemma3 as there would be a subsequence with limit $0 \neq \frac{1}{2}$. Hence there is x_0 such that for all $x > x_0$, (x, 2x] contains a prime p with symbol $(\frac{d}{p}) = +1$.

References

1. Tom Apostol, Introduction to Analytic Number Theory, Springer 1976

2. J-P.Serre, A Course in Arithmetic, Springer 1973

G Sudhaamsh Mohan Reddy FST, IFHE University, Dontanapalli,Shankarpalli Road, Hyderabad-501504,India E-mail address: dr.sudhamshreddy@gmail.com

and

S Srinivas Rau FST, IFHE University, Dontanapalli,Shankarpalli Road, Hyderabad-501504,India E-mail address: rauindia@yahoo.co.in

and

B Uma H No:1-18-56/1/1, MES COLONY, ALWAL SECUNDRERABAD-500015,India E-mail address: umanmu@yahoo.com