

(3s.) **v. 31** 2 (2013): 101–107. ISSN-00378712 in press

### Operators on Grill $\mathcal{M}$ -Space

Shyamapada Modak

ABSTRACT: In this paper, we shall obtain a new topology from non topological space. We also discuss the various properties of such spaces.

Key Words: grill *m*-space,  $\varphi_{\mathsf{G}}$ - operator,  $\psi_{\varphi}$ - operator.

### Contents

| 1 | Introduction                                     | 101 |
|---|--------------------------------------------------|-----|
| 2 | Preliminaries                                    | 101 |
| 3 | $\varphi_{\mathrm{g}}	extsf{-}\mathbf{Operator}$ | 102 |
| 4 | $\psi_{\omega}$ -Operator                        | 105 |

### 1. Introduction

The concept of grill is already in literature. Mathematicians like Choquet [5], Chattopadhyay, Njastad and Thrown [3,4] have considered the concept on topological space and using this concept they have developed the topics; Proximity spaces, Closure spaces, the Theory of Compactifications and similar other extension problems. The notion of grill topological space as like ideal topological space [6,7] was introduced by Roy and Mukherjee [9]. After that Al-Omari and Noiri [1] studied the field in detail. A new type of generalization of topological space has been introduced by Al-Omari and Noiri [2], and the space is called *m*-space. They studied this space in front of ideal.

In this paper we have considered *m*-space and grill on *m*-space, and introduced two operators. Ultimate we have obtained a topology, however *m*-space need not a topological space. We have also discussed the properties of the new topology.

#### 2. Preliminaries

In this section we shall discuss some definitions and theorems:

**Definition 2.1.** [2] A subfamily  $\mathcal{M}$  of the power set  $\wp(X)$  of a nonempty set X is called an m-structure on X if  $\mathcal{M}$  satisfies the following conditions:

- 1.  $\mathcal{M}$  contains  $\phi$  and X,
- 2. M is closed under the finite intersection.

Typeset by  $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

<sup>2000</sup> Mathematics Subject Classification: 54A05, 54C10

The pair  $(X, \mathcal{M})$  is called an m-space.

**Definition 2.2.** [2] A set  $A \in \wp(X)$  is called an *m*-open set if  $A \in \mathcal{M}$ .  $B \in \wp(X)$  is called an *m*-closed set if  $X \setminus B \in \mathcal{M}$ . We set  $mInt(A) = \cup \{U : U \subseteq A, U \in \mathcal{M}\}$  and  $mCl(A) = \cap \{F : A \subseteq F, X \setminus F \in \mathcal{M}\}.$ 

Here we shall prove two theorems related to mInt(A) and mCl(A):

**Theorem 2.3.** Let  $(X, \mathcal{M})$  be an *m*-space. Then  $x \in mCl(A)$  if and only if every *m*-open set  $U_x$  containing  $x, U_x \cap A \neq \phi$ .

**Proof:** Let  $x \in mCl(A)$ . If possible supposed that  $U_x \cap A = \phi$ , where  $U_x$  is an *m*-open set containing *x*. Then  $A \subseteq (X \setminus U_x)$  and  $X \setminus U_x$  is an *m*-closed set containing *A*. Therefore  $x \in (X \setminus U_x)$ , a contradiction. Conversely supposed that  $U_x \cap A \neq \phi$ , for every *m*-open set  $U_x$  containing *x*. If possible suppose that  $x \notin mCl(A)$ , then there exists *F* subset of *X* which satisfy  $A \subseteq F, X \setminus F \in \mathcal{M}$  and  $x \notin F$ . Therefore  $x \in (X \setminus F)$ . So for an *m*-open set  $X \setminus F$  containing *x*,  $A \cap (X \setminus F) = \phi$ , a contradiction to the fact that  $U_x \cap A \neq \phi$ .

**Theorem 2.4.** Let  $(X, \mathcal{M})$  be an *m*-space and  $A \subseteq X$ . Then  $mInt(A) = X \setminus mCl(X \setminus A)$ .

**Proof:** Let  $x \in mInt(A)$ . Then there is an  $U \in \mathcal{M}$ , such that  $x \in U \subseteq A$ . Hence  $x \notin (X \setminus U)$ , i.e.,  $x \notin mCl(X \setminus U)$ , since  $X \setminus U$  is an *m*-closed set containing  $X \setminus U$ . So  $x \notin mCl(X \setminus A)$  (from Definition 2.2), and hence  $x \in X \setminus mCl(X \setminus A)$ . Conversely suppose that  $x \in X \setminus mCl(X \setminus A)$ . So  $x \notin mCl(X \setminus A)$ , then there is an *m*-open set  $U_x$  containing x, such that  $U_x \cap (X \setminus A) = \phi$ . So  $U_x \subseteq A$ . Therefore  $x \in mInt(A)$ . Hence the result.  $\Box$ 

A subcollection  $\mathcal{G}$  (not containing the empty set) of  $\wp(X)$  is called a grill [5] on X if  $\mathcal{G}$  satisfies the following conditions:

- 1.  $A \in \mathcal{G}$  and  $A \subseteq B$  implies  $B \in \mathcal{G}$ ;
- 2.  $A, B \subseteq X$  and  $A \cup B \in \mathcal{G}$  implies that  $A \in \mathcal{G}$  or  $B \in \mathcal{G}$ .

An *m*-space  $(X, \mathcal{M})$  with a grill  $\mathcal{G}$  on X is called a grill *m*-space and is denoted as  $(X, \mathcal{M}, \mathcal{G})$ .

# 3. $\varphi_{\rm q}$ -Operator

In this section we shall obtain a topology with the help of  $\varphi_{q}$ -Operator.

**Definition 3.1.** Let  $(X, \mathcal{M})$  be an *m*-space and  $\mathcal{G}$  be a grill on *X*. A mapping  $\varphi_{\mathcal{G}}$ :  $\wp(X) \to \wp(X)$  is defined as follows:  $\varphi_{\mathcal{G}}(A) = \varphi(A) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \mathcal{M}(x)\}$  for each  $A \in \wp(X)$ , where  $\mathcal{M}(x) = \{U \in \mathcal{M} : x \in U\}$ . The mapping  $\varphi$  is called the operator associated with the grill  $\mathcal{G}$  and the *m*-structure  $\mathcal{M}$  on *X*.

102

**Properties of**  $\varphi_{q}$ :

(1). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then  $\varphi(\phi) = \phi$ .

**Proof:** Obvious from definition.

**Corollary 3.2.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then for  $G \notin \mathcal{G}$ ,  $\varphi(G) = \phi$ .

(2). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then for  $A \subseteq X$ ,  $\varphi(A) \subseteq mCl(A)$ . Proof. Let  $x \notin mCl(A)$ , then from Theorem 2.3,  $U \in \mathcal{M}(x)$  such that  $U \cap A = \phi \notin \mathcal{G}$ . Implies that  $x \notin \varphi(A)$ . Hence  $\varphi(A) \subseteq mCl(A)$ .

(3). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then for  $A \subseteq X$ ,  $mCl[\varphi(A)] \subseteq \varphi(A)$ .

**Proof:** Let  $x \in mCl[\varphi(A)]$  and  $U \in \mathcal{M}(x)$  then  $U \cap \varphi(A) \neq \phi$ . Let  $y \in U \cap \varphi(A)$ . Then  $y \in U$  and  $y \in \varphi(A)$ . Therefore  $U \cap A \in \mathcal{G}$ , and hence  $x \in \varphi(A)$ . Thus  $mCl[\varphi(A)] \subseteq \varphi(A)$ .  $\Box$ 

**Corollary 3.3.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then for  $A \subseteq X$ ,  $\varphi(A)$  is an *m*-closed set.

(4). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*- space. Then for  $A \subseteq X$ ,  $\varphi[\varphi(A)] \subseteq \varphi(A)$ .

**Proof:** From (2),  $\varphi[\varphi(A)] \subseteq mCl[\varphi(A)]$ . Again from (3),  $mCl[\varphi(A)] \subseteq \varphi(A)$ . So,  $\varphi[\varphi(A)] \subseteq \varphi(A)$ .

(5). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*- space. Then for  $A, B \subseteq X$  and  $A \subseteq B$ ,  $\varphi(A) \subseteq \varphi(B)$ .

**Proof:** Let  $x \in \varphi(A)$ . Then for all  $U \in \mathcal{M}(x)$ ,  $U \cap A \in \mathcal{G}$ . Again it is obvious that  $U \cap B \in \mathcal{G}$  (from definition of grill). Hence  $x \in \varphi(B)$ .

(6). If  $\mathfrak{G}_1$  and  $\mathfrak{G}_2$  are two grills on *m*-space  $(X, \mathfrak{M})$  and  $\mathfrak{G}_1 \subseteq \mathfrak{G}_2$ , then  $\varphi_{\mathfrak{G}_1}(A) \subseteq \varphi_{\mathfrak{G}_2}(A)$ .

### Proof: Obvious.

(7). Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then for  $A, B \subseteq X, \varphi(A \cup B) = \varphi(A) \cup \varphi(B)$ .

**Proof:** From (5),  $\varphi(A) \cup \varphi(B) \subseteq \varphi(A \cup B)$ . For reverse inclusion, suppose that  $x \notin \varphi(A) \cup \varphi(B)$ . Then there are  $U_1, U_2 \in \mathcal{M}(x)$  such that  $U_1 \cap A \notin \mathcal{G}, U_2 \cap B \notin \mathcal{G}$  and hence  $(U_1 \cap A) \cup (U_2 \cap B) \notin \mathcal{G}$ . Now  $U_1 \cap U_2 \in \mathcal{M}(x)$  and  $(A \cup B) \cap (U_1 \cap U_2) \subseteq (U_1 \cap A) \cup (U_2 \cap B) \notin \mathcal{G}$ , so,  $x \notin \varphi(A \cup B)$ . Therefore  $\varphi(A \cup B) \subseteq \varphi(A) \cup \varphi(B)$ . Hence the result.

(8). Let  $\mathcal{G}$  be a grill on *m*-space  $(X, \mathcal{M})$ . If  $U \in \mathcal{M}$ , then  $U \cap \varphi(A) = U \cap \varphi(U \cap A)$ , for any  $A \subseteq X$ .

**Proof:** From (5),  $U \cap \varphi(U \cap A) \subseteq U \cap \varphi(A)$ . For reverse inclusion, suppose  $x \in U \cap \varphi(A)$  and  $V \in \mathcal{M}(x)$ . Then  $U \cap V \in \mathcal{M}(x)$  and  $x \in \varphi(A)$ , implies  $(U \cap V) \cap A \in \mathcal{G}$ . So  $(U \cap A) \cap V \in \mathcal{G}$ . This implies that  $x \in \varphi(U \cap A)$ . Thus  $x \in U \cap \varphi(U \cap A)$ .

(9). Let  $\mathcal{G}$  be a grill on *m*-space  $(X, \mathcal{M})$  and  $A, B \subseteq X$ . Then  $[\varphi(A) \setminus \varphi(B)] = [\varphi(A \setminus B) \setminus \varphi(B)].$ 

**Proof:** Here,  $\varphi(A) = \varphi[(A \setminus B) \cup (A \cap B)] = [\varphi(A \setminus B) \cup \varphi(A \cap B)](\text{from }(7)) \subseteq [\varphi(A \setminus B) \cup \varphi(B)](\text{from }(5))$ . Thus  $[\varphi(A) \setminus \varphi(B)] \subseteq [\varphi(A \setminus B) \setminus \varphi(B)]$ . Again,  $\varphi(A \setminus B) \subseteq \varphi(A)(\text{from }(5))$ . This implies that  $[\varphi(A \setminus B) \setminus \varphi(B)] \subseteq [\varphi(A) \setminus \varphi(B)]$ . Hence  $[\varphi(A) \setminus \varphi(B)] = [\varphi(A \setminus B) \setminus \varphi(B)]$ .

**Corollary 3.4.** Let  $\mathcal{G}$  be a grill on *m*-space  $(X, \mathcal{M})$  and suppose  $A, B \subseteq X$  with  $B \notin \mathcal{G}$ . Then  $\varphi(A \cup B) = \varphi(A) = \varphi(A \setminus B)$ .

**Proof:** We know from (7),  $\varphi(A \cup B) = \varphi(A) \cup \varphi(B) = \varphi(A)$  (from Corollary 3.2). Again from Property5,  $\varphi(A \setminus B) \subseteq \varphi(A)$ . Also from (5),  $[\varphi(A) \setminus \varphi(B)] \subseteq \varphi(A \setminus B)$ . This implies that  $\varphi(A) \subseteq \varphi(A \setminus B)$ , since  $B \notin \mathfrak{G}$ . Thus  $\varphi(A) = \varphi(A \setminus B)$ .  $\Box$ 

Let  $\mathfrak{G}$  be a grill on the *m*-space  $(X, \mathcal{M})$ . We define a map  $CL : \wp(X) \to \wp(X)$  by  $CL(A) = A \cup \varphi(B)$ , for all  $A \in \wp(X)$ . Then we have:

Theorem 3.5. The above map CL satisfies Kuratowski Closure axioms.

**Proof:** From Property1,  $CL(\phi) = \phi$ , and obviously  $A \subseteq CL(A)$ . Now  $CL(A \cup B) = (A \cup B) \cup \varphi(A \cup B) = (A \cup B) \cup \varphi(A) \cup \varphi(B)$  (from Property7) =  $CL(A) \cup CL(B)$ . Again for any  $A \subseteq X$ ,  $CL[CL(A)] = CL[A \cup \varphi(A)] = [A \cup \varphi(A)] \cup \varphi[A \cup \varphi(A)] = A \cup \varphi(A) \cup \varphi[\varphi(A)]$  (from Property7) =  $A \cup \varphi(A)$  (from Property4) = CL(A).  $\Box$ 

If  $\mathcal{G}$  is a grill on the *m*-space  $(X, \mathcal{M})$ , then from Kuratowski Closure operator CL, we get an unique topology on X which is given by following:

**Theorem 3.6.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then  $\tau_{\mathcal{M}\mathcal{G}} = \{V \subseteq X : CL(X \setminus V) = X \setminus V\}$  is a topology on X, where  $CL(A) = A \cup \varphi(A)$ .

We denote the closure of A with respect to the topology  $\tau_{MG}$  by  $\tau_{MG}$ -cl(A)**Properties of the topology**  $\tau_{MG}$ :

**Theorem 3.7.** (a). If  $\mathfrak{G}_1$  and  $\mathfrak{G}_1$  are two grills on X with  $\mathfrak{G}_1 \subseteq \mathfrak{G}_2$ , then  $\tau_{\mathfrak{M}\mathfrak{G}2} \subseteq \tau_{\mathfrak{M}\mathfrak{G}1}$ . (b). If  $\mathfrak{G}$  is a grill on a set X and  $B \notin \mathfrak{G}$ , then B is closed in  $(X, \tau_{\mathfrak{M}\mathfrak{G}})$ . (c). For any subset A of a m-space  $(X, \mathfrak{M})$  and any grill  $\mathfrak{G}$  on X,  $\varphi(A)$  is  $\tau_{\mathfrak{M}\mathfrak{G}}$ closed.

**Proof:** (a). Let  $U \in \tau_{\mathcal{M}\mathfrak{G}2}$ . Then  $\tau_{\mathcal{M}\mathfrak{G}2}$ - $cl(X \setminus U) = CL(X \setminus U)$ . This implies that  $(X \setminus U) = (X \setminus U) \cup \varphi_{\mathfrak{G}2}(X \setminus U)$ . Thus  $\varphi_{\mathfrak{G}2}(X \setminus U) \subseteq (X \setminus U)$ . Implies that  $\varphi_{\mathfrak{G}1}(X \setminus U) \subseteq (X \setminus U)$  (from Propretty6). So  $(X \setminus U) = \tau_{\mathcal{M}\mathfrak{G}1}$ - $cl(X \setminus U)$ , and hence  $U \in \tau_{\mathcal{M}\mathfrak{G}1}$ .

(b). It is obvious that, for  $B \notin \mathcal{G}$ ,  $\varphi(B) = \phi$ . Then  $\tau_{\mathcal{MG}}$ - $cl(B) = CL(B) = B \cup \varphi(B) = B$ . Hence B is  $\tau_{\mathcal{MG}}$ -closed.

(c). We have,  $CL(\varphi(A)) = \varphi(A) \cup \varphi(\varphi(A)) = \varphi(A)$ . Thus  $\varphi(A)$  is  $\tau_{M\mathfrak{G}}$ -closed. Here we find a simple open base for the topology  $\tau_{M\mathfrak{G}}$  on X.

104

**Theorem 3.8.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*- space. Then  $\beta(\mathcal{M}, \mathcal{G}) = \{V \setminus A : V \in \mathcal{M} and A \notin \mathcal{G}\}$  is an open base for  $\tau_{\mathcal{M}\mathcal{G}}$ .

**Proof:** Let  $U \in \tau_{M\mathfrak{G}}$  and  $x \in U$ . Then  $(X \setminus U)$  is  $\tau_{M\mathfrak{G}}$ -closed so that  $CL(X \setminus U) = (X \setminus U)$ , and hence  $\varphi(X \setminus U) \subseteq (X \setminus U)$ . Then  $x \notin \varphi(X \setminus U)$  and so there exists  $V \in \mathcal{M}(x)$  such that  $(X \setminus U) \cap V \notin \mathfrak{G}$ . Let  $A = (X \setminus U) \cap V$ , then  $x \notin A$  and  $A \notin \mathfrak{G}$ . Thus  $x \in (V \setminus A) = V \setminus [(X \setminus U) \cap V] = V \setminus (V \setminus U) \subseteq U, V \setminus A \in \beta(\mathcal{M}, \mathfrak{G})$ . It now suffices to observe that  $\beta(\mathcal{M}, \mathfrak{G})$  is closed under finite intersections. Let  $V_1 \setminus A, V_2 \setminus B \in \beta(\mathcal{M}, \mathfrak{G})$ , that is  $V_1, V_2 \in \mathcal{M}$  and  $A, B \notin \mathfrak{G}$ . Then  $V_1 \cap V_2 \in \mathcal{M}$  and  $A \cup B \notin \mathfrak{G}$ . Now,  $(V_1 \setminus A) \cap (V_2 \setminus B) = (V_1 \cap V_2) \setminus (A \cup B) \in \beta(\mathcal{M}, \mathfrak{G})$ , proving ultimate that  $\beta(\mathcal{M}, \mathfrak{G})$  is an open base for  $\tau_{\mathfrak{M}\mathfrak{G}}$ .

**Corollary 3.9.** For any grill  $\mathcal{G}$  on an m-space  $(X, \mathcal{M}), \mathcal{M} \subseteq \beta(\mathcal{M}, \mathcal{G}) \subseteq \tau_{\mathcal{M}\mathcal{G}}$ .

## 4. $\psi_{\omega}$ -Operator

An important result in topological space  $(X, \tau)$  is:

 $Int(A) = X \setminus Cl(X \setminus A)$  [8]. This is the relation between interior and closure operators. Same relation also hold in *m*-space(Theorem 2.4). In this section we are interested to find out the similar result with the help of  $\varphi_{\rm q}$  and  $\psi_{\varphi}$  operators.

**Definition 4.1.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill m- space. An operator  $\psi_{\varphi} : \wp(X) \to \mathcal{M}$  is defined as follows for every  $A \in \wp(X)$ ,  $\psi_{\varphi}(A) = \{x \in X : \text{ there exists a } U \in \mathcal{M}(x) \text{ such that } U \setminus A \notin \mathcal{G}\}$  and observe that  $\psi_{\varphi}(A) = X \setminus \varphi(X \setminus A)$ .

Several basic facts concerning the behavior of the operator  $\psi_{\varphi}$  are given bellow:

**Theorem 4.2.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then following properties hold: (*i*). If  $A \subseteq X$ , then  $\psi_{\omega}(A)$  is  $\mathcal{M}$ -open in  $(X, \mathcal{M})$ .

(*ii*). If  $A \subseteq B$ , then  $\psi_{\varphi}(A) \subseteq \psi_{\varphi}(B)$ .

(iii). If  $A, B \in \wp(X)$ , then  $\psi_{\varphi}(A \cap B) = \psi_{\varphi}(A) \cap \psi_{\varphi}(B)$ .

(iv). If  $U \in \tau_{\mathfrak{MG}}$ , then  $U \subseteq \psi_{\varphi}(U)$ .

(v). If  $A \subseteq X$ , then  $\psi_{\varphi}(A) \subseteq \psi_{\varphi}(\psi_{\varphi}(A))$ .

(vi). Let  $A \subseteq X$ , then  $\psi_{\varphi}(A) = \psi_{\varphi}(\psi_{\varphi}(A))$  if and only if  $\varphi(X \setminus A) = \varphi[\varphi(X \setminus A)]$ . (vii). If  $A \notin \mathcal{G}$ , then  $\psi_{\varphi}(A) = X \setminus \varphi(X)$ .

(viii). If  $A \subseteq X$ , then  $A \cap \psi_{\varphi}(A) = \tau_{\mathfrak{M}\mathfrak{G}}\operatorname{-int}(A)$  (where  $\tau_{\mathfrak{M}\mathfrak{G}}\operatorname{-int}(A)$  denote the interior operator of  $(X, \tau_{\mathfrak{M}\mathfrak{G}})$ ).

(ix). If  $A \subseteq X$  and  $G \notin \mathfrak{G}$ , then  $\psi_{\varphi}(A \setminus G) = \psi_{\varphi}(A)$ .

(x). If  $A \subseteq X$  and  $G \notin \mathfrak{G}$ , then  $\psi_{\varphi}(A \cup G) = \psi_{\varphi}(A)$ .

(xi). If  $A, B \subseteq X$  and  $(A \setminus B) \cup (B \setminus A) \notin \mathfrak{G}$ , then  $\psi_{\varphi}(A) = \psi_{\varphi}(B)$ .

**Proof:** (i). Obvious from definition.

(ii). Obvious from Property5.

(iii). It is obvious from (ii),  $\psi_{\varphi}(A \cap B) \subseteq \psi_{\varphi}(A)$  and  $\psi_{\varphi}(A \cap B) \subseteq \psi_{\varphi}(B)$ . Hence  $\psi_{\varphi}(A \cap B) \subseteq \psi_{\varphi}(A) \cap \psi_{\varphi}(B)$ . Now, let  $x \in \psi_{\varphi}(A) \cap \psi_{\varphi}(B)$ . There exists  $U, V \in \mathcal{M}(x)$  such that  $U \setminus A \notin \mathcal{G}$  and  $V \setminus B \notin \mathcal{G}$ . Let  $G = U \cap V \in \mathcal{M}(x)$  and we have  $G \setminus A \notin \mathcal{G}$  and  $G \setminus B \notin \mathcal{G}$ (from definition of grill). Thus  $[G \setminus (A \cap B)] =$   $[(G \setminus A) \cup (G \setminus B)] \notin \mathcal{G}$  (from definition of grill), and hence  $x \in \psi_{\varphi}(A \cap B)$ . We have shown that  $\psi_{\varphi}(A) \cap \psi_{\varphi}(B) \subseteq \psi_{\varphi}(A \cap B)$ . Hence the prove is completed. (iv). If  $U \in \tau_{\mathcal{M}\mathcal{G}}$ , then  $X \setminus U$  is  $\tau_{\mathcal{M}\mathcal{G}}$ -closed which implies  $\varphi(X \setminus U) \subseteq (X \setminus U)$  and hence  $U \subseteq [X \setminus \varphi(X \setminus U)] = \psi_{\varphi}(U)$ .

(v). This follows from (i) and (iv).

(vi). This follows from the facts:

1.  $\psi_{\varphi}(A) = X \setminus \varphi(X \setminus A).$ 

2.  $\psi_{\varphi}(\psi_{\varphi}(A)) = [X \setminus \varphi[X \setminus (X \setminus \varphi(X \setminus A))]] = [X \setminus \varphi[\varphi(X \setminus A)]].$ 

(vii). We know from Corollary 3.4,  $\varphi(X \setminus A) = \varphi(X)$  if  $A \notin \mathcal{G}$ . Then  $\psi_{\varphi}(A) = X \setminus \varphi(X)$ .

(viii). If  $x \in A \cap \psi_{\varphi}(A)$ , then  $x \in A$  and there exists a  $U \in \mathcal{M}(x)$  such that  $U \setminus A \notin \mathcal{G}$ . Then by Theorem 3.8,  $[U \setminus (U \setminus A)]$  is a  $\tau_{\mathcal{M}\mathcal{G}}$  -open neighbourhood of x and  $x \in \tau_{\mathcal{M}\mathcal{G}}$ -int(A). Conversely suppose that  $x \in \tau_{\mathcal{M}\mathcal{G}}$ -int(A), there exists a basic  $\tau_{\mathcal{M}\mathcal{G}}$ -open neighbourhood  $V \setminus G$  of x where  $V \in \mathcal{M}(x)$  and  $G \notin \mathcal{G}$ , such that  $x \in V \setminus G \subseteq A$  which implies that  $V \setminus A \subseteq G$  and hence  $V \setminus A \notin \mathcal{G}$ . Hence  $x \in A \cap \psi_{\varphi}(A)$ .

(ix).  $\psi_{\varphi}(A \setminus G) = [X \setminus \varphi[X \setminus (A \setminus G)]] = [X \setminus \varphi[(X \setminus A) \cup G]] = [X \setminus \varphi(X \setminus A)]$ (since  $G \notin \mathfrak{G} = \psi_{\varphi}(A)$ .

 $\begin{array}{l} (\mathbf{x}, \varphi) = \psi_{\varphi}(A), \\ (\mathbf{x}), \psi_{\varphi}(A \cup G) = X \setminus \varphi[X \setminus (A \cup G)] = X \setminus \varphi[(X \setminus A) \setminus G)] = X \setminus \varphi(X \setminus A) (\text{from } (\mathbf{x})) = \psi_{\varphi}(A). \end{array}$ 

(xi). Assume  $(A \setminus B) \cup (B \setminus A) \notin \mathcal{G}$ . Let  $A \setminus B = G_1$  and  $B \setminus A = G_2$ . Observe that  $G_1, G_2 \notin \mathcal{G}$  (from definition of grill). Also observe that  $B = (A \setminus G_1) \cup G_2$ . Thus  $\psi_{\varphi}(A) = \psi_{\varphi}(A \setminus G_1) = \psi_{\varphi}[(A \setminus G_1) \cup G_2] = \psi_{\varphi}(A)$ (from (ix) and (x)).  $\Box$ 

**Corollary 4.3.** Let  $(X, \mathcal{M}, \mathcal{G})$  be a grill *m*-space. Then  $U \subseteq \psi_{\varphi}(U)$  for every  $U \in \mathcal{M}$ .

**Proof:** This follows from the fact  $\mathcal{M} \subseteq \tau_{\mathcal{M}}$ .

### References

- 1. A. Al-Omari and T. Noiri, On $\psi_{\mathcal{G}}$  -operator in grill topological spaces, Accepted at Annals of Oradea University Mathematics Fascicola.
- 2. A. Al-Omari and T. Noiri, On $\psi_{\star}\text{-operator}$ in ideal m-spaces, Bol. Soc. Paran. Mat. (3s) v. 30 1 (2012) 53-66.
- 3. K. C. Chattopadhyay, O. Njastad, and W. J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 35(4) (1983), 613 629.
- K. C. Chattopadhyay, and W. J. Thron, Extensions of closure spaces, Can. J. Math., 29(6)(1977), 1277 - 1286.
- G. Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris., 224 (1947), 171-173.
- 6. T. R. Hamlett, and D. Jankovic, Ideals in topological spaces and the set operator  $\psi$  , Bull. U.M.I., (7), 4-B(1990), 863 874.
- 7. D. Jankovic, and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990) 295 310.
- 8. K. Kuratowski, Topology I, Warszawa, 1933.

9. B. Roy, and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math. 33(4)~(2007),~771 - 786.

Shyamapada Modak Department of Mathematics University of Gour Banga NH-34, Mokdumpur, Malda-732103. India E-mail address: spmodak2000@yahoo.co.in