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Iterative method for solving a problem with mixed boundary

conditions for biharmonic equation arising in fracture mechanics ∗

Dang Quang A and Mai Xuan Thao

abstract: In this paper we consider a mixed boundary value problem for bihar-
monic equation of the Airy stress function which models a crack problem of a solid
elastic plate. An iterative method for reducing the problem to a sequence of mixed
problems for Poisson equations is proposed and investigated. The convergence of the
method is established theoretically and illustrated on many numerical experiments.

Key Words: Iterative method; Biharmonic equation; Mixed boundary condi-
tions; Crack problem.
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1. Introduction

The solution of fourth order differential equations by their reduction to
BVP for the second order equations, with the aim of using available efficient algo-
rithms for the latter ones attracts attention from many researchers. Namely, for
the biharmonic equation with the Dirichlet boundary condition, there is intensively
developed the iterative method, which leads the problem to two problems for the
Poisson equation at each iteration (see e.g. [10,12,14]). In 1992, Abramov and
Ulijanova [1] proposed an iterative method for the Dirichlet problem for the bi-
harmonic type equation, but the convergence of the method is not proved. In our
previous works [3,5,7,8] with the help of boundary or mixed boundary-domain op-
erators appropriately introduced, we constructed iterative methods for biharmonic
and biharmonic type equations associated with the Dirichlet, Neumann or simple
type of mixed boundary conditions. These iterative methods are originated from
our earlier works [2,6]. It should be said that the mentioned above problems are
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reduced to sequences of second order problems with boundary conditions of only
one type on the whole boundary, i.e., the boundary conditions are not mixed. Re-
cently, in [9] we have developed the iterative method for a problem in rectangular
domain with rather complicated mixed boundary conditions for biharmonic equa-
tion arising in nano physics [15]. It leads to the solution of a sequence of problems
for the Poisson equation with mixed boundary conditions. But these boundary
conditions are weakly mixed in the sense that on each side of the rectangle there is
only one type of conditions. This property does not cause difficulties when using
the method of complete reduction [17] for solving difference equations for second
order differential problems at each iteration.

In this work we develop our technique for a problem with more complicated
mixed conditions for biharmonic equation, namely, we consider the following prob-
lem

∆2u = f in Ω, (1.1)

u = g1,
∂u

∂ν
= g2 on Γ1 , (1.2)

∂u

∂ν
= g3,

∂∆u

∂ν
= g4 on Γ2, (1.3)

where Ω is the rectangle (−1, 1) × (0, 1), and Γ1 = SA + SC + SD + SE , Γ2 = SB ,

SA, SB , SC , SD and SE are parts of the boundary Γ = ∂Ω as shown in Figure 1, ∆
is the Laplace operator, f and gi (i = 1, 4 ) are functions given in Ω and on parts
of the boundary Γ, respectively.

-
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Figure 1: Domain Ω and parts of its boundary

This problem with zero right hand sides in equation and special boundary con-
ditions is the problem for the Airy function in the model studied by Schiff et al.
[18] (see also [11], which deals with a two-dimensional solid elastic plate containing
a single edge crack, subjected to a uniform inplane load normal to the two edges
parallel to the crack, while the remaining edges are stress free. For the problem
in general setting (1.1) - (1.3) we propose an iterative method which reduces it to
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a sequence of problems for the Poisson equation. The convergence of the method
is established and performed numerical experiments confirm the efficiency of the
method under investigation.

2. Iterative method on continuous level

2.1. Description of method

First, we assume that the problem (1.1)-(1.3) has a unique solution and it is
sufficiently smooth.

As usual, we set
∆u = v in Ω, v |Γ1

= ϕ.

Then the problem (1.1)-(1.3) is reduced to the problem

∆v = f in Ω,

v = ϕ on Γ1,

∂v

∂ν
= g4 on Γ2,

(2.1)

∆u = v in Ω,

u = g1 on Γ1,

∂u

∂ν
= g3 on Γ2.

(2.2)

where ϕ as u is unknown function but it is related to u by the second condition in
(1.2), i. e., by the relation

∂u

∂ν
= g2 on Γ1. (2.3)

Now we consider the following iterative process for finding ϕ and simultaneously
for finding u:

(i) Given ϕ(0) ∈ L2(Γ1) , for example, ϕ(0) = 0 on Γ1;

(ii) Knowing ϕ(k) on Γ1 (k = 0, 1, ...) solve consecutively two problems

∆v(k) = f in Ω,

v(k) = ϕ(k) on Γ1,

∂v(k)

∂ν
= g4 on Γ2.

(2.4)

∆u(k) = v(k) in Ω,

u(k) = g1 on Γ1,

∂u(k)

∂ν
= g3 on Γ2.

(2.5)
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(iii) Compute the new approximation

ϕ(k+1) = ϕ(k) − τ
(∂u(k)

∂ν

∣

∣

∣

Γ1

− g2

)

(2.6)

where τ is an iterative parameter to be chosen later.

2.2. Investigation of convergence

In order to investigate the convergence of the iterative process (2.4)-(2.6) firstly
we rewrite (2.6) in the canonical form of two-layer iterative scheme [16]:

ϕ(k+1) − ϕ(k)

τ
+

∂u(k)

∂ν
− g2 = 0 on Γ1 (2.7)

Next, we introduce the operator B defined on boundary functions ϕ by the formula

Bϕ =
∂u

∂ν
on Γ1, (2.8)

where u is found from the problems:

∆v = 0 in Ω,

v = ϕ on Γ1,

∂v

∂ν
= 0 on Γ2,

(2.9)

∆u = v in Ω,

u = 0 on Γ1,

∂u

∂ν
= 0 on Γ2.

(2.10)

The properties of the operator B will be investigated in the sequel. Now, let us
return to the problem (2.1)- (2.2). We represent their solution in the form

u = u1 + u2, v = v1 + v2, (2.11)

where u1, v1 satisfy the problems (2.9)-(2.10) and u2, v2 are the solutions of the
problems

∆v2 = f in Ω,

v2 = 0 on Γ1,

∂v2

∂ν
= g4 on Γ2,

(2.12)
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∆u2 = v2 in Ω,

u2 = g1 on Γ1,

∂u2

∂ν
= g3 on Γ2.

(2.13)

According to the definition of the operator B we have

Bϕ =
∂u1

∂ν
on Γ1. (2.14)

Since the function u found from Problems (2.1)-(2.2) should satisfy the relation
(2.3), taking into account the representation (2.11) we obtain the equation

Bϕ = F, (2.15)

where

F = g2 −
∂u2

∂ν
on Γ1. (2.16)

Thus, we have reduced the original problem (1.1)-(1.3) to the operator equation
(2.15), whose right hand side F is completely defined by the data f, g1, g2, g3, g4.

Proposition 2.1. The iterative process (2.4)- (2.6) is the realisation of the two-

layer iterative scheme

ϕ(k+1) − ϕ(k)

τ
+ Bϕ(k) = F, (k = 0, 1, ...) (2.17)

for the operator equation (2.15).

Proof. Indeed, if in (2.4), (2.5) we put

u(k) = u
(k)
1 + u2, v(k) = v

(k)
1 + v2, (2.18)

where u2, v2 are the solutions of Problems (2.14)-(2.15) then we get

∆v
(k)
1 = 0 in Ω,

v
(k)
1 = ϕ(k) on Γ1,

∂v
(k)
1

∂ν
= 0 on Γ2,

(2.19)

∆u
(k)
1 = v(k) in Ω,

u
(k)
1 = 0 on Γ1,

∂u
(k)
1

∂ν
= 0 on Γ2.

(2.20)
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From here we see that

Bϕ(k) =
∂u

(k)
1

∂ν
on Γ1.

Therefore, taking into account the first relation in (2.18) and the above equality,
from (2.7) we obtain (2.17). Thus, the proposition is proved. 2

Proposition 2.1 enables us to lead the investigation of convergence of the ierative
process (2.4)-(2.6) to the study of the iterative scheme (2.17). For this reason we
need some properties of the operator B.

Proposition 2.2. The operator B defined by (2.8)-(2.10) is linear, symmetric,

positive and compact operator in the space L2(Γ1).

Proof. The linearity of B is obvious. To estiblish the other properties of B we
consider the inner product (Bϕ, ϕ̄) for two arbitrary functions ϕ and ϕ̄ in L2(Γ1).
Recall that the operator B acting on ϕ is defined by (2.8)-(2.10). Denote now by
v̄ and ū the solutions of (2.9) and (2.10), where instead of ϕ there stands ϕ̄.

We have

(Bϕ, ϕ̄) =

∫

Γ1

∂u

∂ν
.ϕ̄ dΓ =

∫

Γ

∂u

∂ν
.v̄ dΓ (2.21)

since
∂u

∂ν
= 0 on Γ2. Next, in view of v = ∆u, using the Green formula we have

∫

Ω

v.v̄dx =

∫

Ω

∆u.v̄dx =

∫

Γ

∂u

∂ν
.v̄dΓ −

∫

Ω

∇u.∇v̄dx. (2.22)

From (2.21) and (2.22) it follows

(Bϕ, ϕ̄) =

∫

Ω

v.v̄dx +

∫

Ω

∇u.∇v̄dx. (2.23)

To calculate the second integral in (2.23) we observe that on one hand
∫

Ω

∆v̄.udx = 0

because ∆v̄ = 0 in Ω, and on other hand
∫

Ω

∆v̄.udx =

∫

Γ

∂v̄

∂ν
.udΓ −

∫

Ω

∇v̄.∇udx.

Therefore, we have
∫

Ω

∇v̄.∇udx =

∫

Γ

∂v̄

∂ν
.udΓ.

Further, due to the fact that
∂v̄

∂ν
= 0 on Γ2 and u = 0 on Γ1 the integral in the

right hand side is equal to zero. Consequently,
∫

Ω

∇v̄.∇udx = 0,
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and finally, from (2.23) we obtain

(Bϕ, ϕ̄) =

∫

Ω

v.v̄dx = (Bϕ̄, ϕ). (2.24)

It means that the operator B is symmetric. Besides, we have

(Bϕ,ϕ) =

∫

Ω

v2dx ≥ 0.

If (Bϕ,ϕ) = 0 then v = 0 almost everywhere in Ω, hence ϕ = v|Γ1
= 0. Thus, B

is positive operator. Now, we prove the compactness of the operator B. In order
to do this suppose that ϕ ∈ Hs(Γ1) with s ≥ 0. Then Problem (2.9) has a unique
solution v ∈ Hs+1/2(Ω), and consequently, Problem (2.10) has a unique solution

u ∈ Hs+5/2(Ω). It implies that
∂u

∂ν

∣

∣

Γ1

∈ Hs+1(Γ1). So, the operator B maps

Hs(Γ1) into Hs+1(Γ1). Due to the compactness of embedding Hs+1(Γ1) ⊂ Hs(Γ1)
we conclude that B is a compact operator in H = L2(Γ1).

Thus, the proof of the proposition is complete. 2

Before stating the result of convergence of the iterative process (2.4)-(2.6) we
assume that the data functions f, g1, . . . , g4 have needed smoothness so that the
original problem (1.1)-(1.3) has a unique solution u ∈ H5/2(Ω). It is guaranteed if
f ∈ H−3/2(Ω), g1 ∈ H2(Γ1), g2 ∈ H3/2(Γ1), g3 ∈ H3/2(Γ2), g4 ∈ L2(Γ2). Then, we
can see that the function F defined by (2.16) belongs to H3/2(Γ1).

We shall consider (2.15) as an operator equation in the space H = L2(Γ1).

Theorem 2.3. The iterative process (2.4)-(2.6) or alternatively, the iterative scheme

(2.17) is convergent if

0 < τ <
2

||B||
. (2.25)

Proof. This theorem follows from Lemma A.1 in Appendix A of [9] due to the
properties of symmetry, positivity and compactness of the operator B estiblished
by Proposition 2.2. 2

It should be said that the determination or estimation of ||B|| is a difficult
problem, but in Section 4 by experimental way we can find a interval of τ , for
which the iterative process has good convergence.

3. On numerical realization of the iterative method

From the previous section we see that for realizing the iterative method it is
required to solve consecutively two mixed BVPs (2.4) and (2.5). These BVPs are
strongly mixed in the sense that the transmission of the Dirichlet and Neumann
boundary conditions occurs at a inner point, namely at the middle of the bottom
side of the rectangle. For solving these problems we use a domain decomposition
method proposed in [4] which reduces the strongly mixed problem to a sequence of
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weakly mixed problems in subdomains in the sense that on each side of subdomains
there is given boundary condition of only one type, either Dirichlet or Neumann
type.

Below we briefly describe this domain decomposition method applied to the
model problem

∆u = f in Ω,

u = g on Γ1,

∂u

∂ν
= h on Γ2,

(3.1)

where Γ1 = SA + SC + SD1
+ SD2

+ SE , Γ2 = SB are shown in Figure 2 (the same
as in Figure 1). Denote two parts of the rectangle [−1, 1] × [0, 1] by Ω1 and Ω2

and their common boundary by SI . Besides, we denote the outward normal to the
boundary of Ωi by νi and the solution u of Problem (3.1) in Ωi by ui, i.e., ui = u|Ωi

(i = 1, 2).

-

6

SA SB

SC

SD2

SE

0-1 1

1

SI

Ω1 Ω2

SD1

Figure 2: Domains Ω1,Ω2 and their boundaries

The iterative process for finding u1 and u2 is described as follows:

(i) Given ϕ(0) ∈ L2(SI) , for example, ϕ(0) = 0 on SI ;

(ii) Knowing ϕ(k) on SI (k = 0, 1, ...) solve consecutively two problems

∆u
(k)
1 = f in Ω1,

u
(k)
1 = g on SA + SE + SD1

,

∂u
(k)
1

∂ν1
= ϕ(k) on SI ,

(3.2)
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∆u
(k)
2 = f in Ω2,

u
(k)
2 = g on SC + SD2

,

u
(k)
2 = u

(k)
1 on SI ,

∂u
(k)
2

∂ν2
= h on SB.

(3.3)

(iii) Compute the new approximation

ϕ(k+1) = (1 − θ)ϕ(k) − θ
∂u

(k)
2

∂ν2
on SI (3.4)

where θ is an iterative parameter to be chosen appropriately.

Remark that Problems (3.2) and (3.3) are weakly mixed problems, where the Neu-
mann boundary condition is prescribed on one side of the subdomains and the
Dirichlet boundary condition is prescribed on other sides. In order to numerically
solve these problems we discretize them on uniform grids by difference schemes of
second order approximation obtained by a variational method. After that the sys-
tem of difference equations are solved following the method of complete reduction
with the complexity O(MN lnN), where M,N are the number of grid nodes on the
vertical and horizontal sides of the subdomains. Next, for computing the normal
derivative in (3.4) we also use an approximate formula of second order error. We
take in the formula (3.4) θ = 0.5 and carry out the iterative process (3.3)-(3.4)

until max{‖u
(k+1)
1 − u

(k)
1 ‖∞, ‖u

(k+1)
2 − u

(k)
2 ‖∞} < ε , where ε is a given accuracy

taken of the same order as O(h2), h being the stepsize of the grid.

Below we report the results of using the above domain decomposition method for
the numerical realization of the iterative process (2.4)-(2.6), where for computing
the normal derivative in (2.6) we also use an approximate formula of second order
error.

4. Numerical results

We perform some experiments for testing the convergence of the iterative pro-
cess (2.4)-(2.6) in both two cases, where the exact solution of the problem (1.1)-(1.3)
is known and unknown.

Example 1: Given function u(x, y) as the exact solution of the problem
(1.1)-(1.3), calculate corresponding right hand side function f(x, y) and boundary
conditions (1.2), (1.3), and then carry out the iterative process (2.4)-(2.6) until
||u(k) − u||∞ ≤ ε, where ε is the same given accuracy as in the previous section.
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τ K1 K2 K3 K4 K5

2.0 9 18 26 34 0
2.1 8 17 25 33 0
2.2 8 16 24 31 0
2.3 8 15 23 30 0
2.4 8 15 22 28 0
2.5 8 14 21 27 0
2.6 8 12 20 26 0
2.7 10 14 19 25 0
2.8 12 18 19 24 0
2.9 16 22 23 26 0
3.0 20 29 31 33 0

Table 1: Convergence of the iterative process in Example 1

The following functions are taken as the exact solutions of the problem

u1(x, y) = sin x sin y

u2(x, y) = x2 + y2

u3(x, y) = x3 + yex + y3 + xe−y

u4(x, y) = ex ln(y + 5) − sin y. ln(x + 6)

u5(x, y) = ex. sin y + sin x.ey

The results of computation on the uniform grid of 65× 65 nodes are given in Table
1, where Ki (i = 1, ..., 5) is the number of iterations for achieving the exact solution
ui(x, y) with the accuracy ε = 10−3.

Looking at Table 1 it appears that the result of computation for the function
u = u5(x, y) = ex. sin y + sin x.ey is surprising. But this result is completely right
because for the function we have ∆u = 0, g4 = ∂∆u

∂ν = 0 and f = ∆2u = 0. This

implies that the solutions of the problems (2.4), (2.5) for k = 0 are v(0) = 0, u(0) =
ex. sin y + sinx.ey. So, immediately we achieve the exact solution of the problem,
and hence, K5=0.

For the functions ui(x, y), i = 1, ..., 4 we see that the iterative process (2.4)-(2.6)
has good convergence for the iterative parameter τ ∈ [2.3; 2.9].

Example 2: Given arbitrary data functions f, g1, g2, g3, g4 in the problem
(1.1)-(1.3), we perform the iterative process (2.4)-(2.6) until ||u(k) −u(k−1)||∞ ≤ ε.
Below we report the results on convergence of the process for two collections of
data functions:

(i)

f = xe−y + y.ex

g1 = sinx. sin y; g2 = − sin x. sin y + ln(x + y + 2)

g3 = sin y + ey. sin x + x; g4 = cos y + ex. sin y + x − y2
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τ K1 K2

2.0 30 17
2.1 29 17
2.2 29 16
2.3 28 16
2.4 27 16
2.5 27 16
2.6 26 15
2.7 25 14
2.8 25 16
2.9 24 18
3.0 30 24

Table 2: Convergence of the iterative process in Example 2

(ii)

f = 0

g1 = x(x2 − 1)y(1 − y); g2 = x + y

g3 = xy; g4 = 0

The results of computation on the uniform grid of 65×65 nodes are given in Table 2,
where Ki (i = 1, 2) is the number of iterations for achieving the accuracy ε = 10−3

for the collections (i) and (ii).
From Table 2 we see that, as in Example 1, the iterative process (2.4)-(2.6) has

good convergence for the iterative parameter τ ∈ [2.3; 2.9].
Example 3: Consider the model fracture problem which is depicted in Figure

3 (see [11]).

SA SB

SC

SD

SE

0

Ω

x

6y

∆2u = 0
u = 0

∂u
∂x = 0

u = 0, ∂u
∂y = 0 ∂u

∂y = 0, ∂3u
∂y3 = 0

y = 1 u = 1
2 (x + 1)2, ∂u

∂y = 0

u = 2

x = −1

∂u
∂x = 2

- x = 1

Figure 3: The model fracture problem

The conditions ∂u
∂y = 0, ∂3u

∂y3 = 0 on the part SB = {(x, 0)|0 < x < 1} leads
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to the conditions ∂u
∂y = 0, ∂∆u

∂y = 0. Therefore, the problem has the form of (1.1)-

(1.3) . The iterative process (2.4)-(2.6) with the parameter τ = 2.5 for solving the
model problem on the grid 65 × 65 with the given accuracy 10−3 converges after
10 iterations.

The graph of the obtained approximate solution is shown in Figure 4.

−1
−0.5

0
0.5

1

0

0.5

1
−0.5

0

0.5

1

1.5

2

xy

Figure 4: The graph of the approximate solution of the model fracture problem

5. Concluding remarks

In this paper we investigated an iterative method for solving a boundary value
problem for biharmonic equation with boundary conditions, which are of different
types on different sides of a rectangle and the transmission of boundary conditions
occurs not only in vertices but also in the middle point of a side of the rectangle.
Due to the latter property we say that the problem is strongly mixed. Our iterative
method based on iterative scheme for operator equation reduces the problem to
sequence of strongly mixed problems for Poisson equation, and for the latter ones
we apply a decomposition method recently developed by ourselves, which in its
turn leads the problem to weakly mixed problems for Poisson equation. Finally,
the difference method is used for realizing the latter problems. The convergence
of the proposed iterative method at continuous level is proved and many different
numerical experiments confirmed the efficiency of the method.
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The proposed iterative method can be applied to other mixed boundary value
problems for biharmonic and biharmonic type equations.

The author is grateful to Dr. Vu Vinh Quang for coding algorithms in the paper
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