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Decay of Small Solutions for the Zakharov-Kuznetsov Equation posed

on a half-strip

Nikolai A. Larkin and Eduardo Tronco

abstract: We formulate in a half-strip an initial boundary value problem for the
Zakharov-Kuznetsov equation. Assuming the existence of a regular global solution,
we prove an exponential decay for small initial data.
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1. Introduction

Dispersive equations attract attention of many mathematicians. More popu-
lar are Korteweg-de Vries and Schrödinger equations. The theory of the Cauchy
problem for them nowadays is well developed and presented in papers of Bona
and his colleagues [1], Kruzhkov and Faminskii [11], Kato [9], Bourgain [3], Saut
[21], Temam [23], Ponce and his colleages [10,17], etc. Last years appeared pa-
pers on initial boundary value problems for dispersive equations in bounded and
non-bounded domains. Here we can mention again Bona and his colleagues [2],
Bubnov [4], Faminskii [6], Faminskii and Larkin [7], Larkin [13,14].

Quite recently was discovered that the KdV equation has an implicit internal
dissipation. This property allowed to prove exponential decay of small solutions
in bounded domains without adding any artificial damping. Later, this effect was
proved for a wide class of dispersive equations of any odd order in the space variable.
We can mention here papers of Larkin [13,14], Faminskii and Larkin [7,8]. In [20]
Rosier showed that control of the linear KdV equation with a "drift term", ux, is
impossible for the critical domains. It means that there is not decay of solutions
with time for a set of critical domains. Hence, there is not also decay of solutions
in a quarter-plane. By the way, without the "drift term" it is possible to prove
exponential decay of small solutions for the KdV equation posed on any bounded
interval (0, L).

Recently appeared papers of Faminskii [6], Pyatkov [19], Linares and Pastor
[15], Linares and Saut [18] on initial boundary value problems for the Zakharov-
Kuznetsov (ZK) equation which may be considered as multi-dimensional analogue
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of the KdV equation , see [24]. Our work was motivated by the paper of Saut and
Temam [22] on initial boundary value problem in a domain bounded in x variable
and non-bounded in y variable. Studying this paper, we discovered that the term
uxyy in ZK equation delivers additional "dissipation" which can help to prove
decay of small solutions in non-bounded domains of a channel type non-bounded
in x direction and we consider the following initial boundary value problem.

2. Formulation of the problem and main results

Let T,L be real positive numbers;

D =
{

(x, y) ∈ R
2 : x > 0, y ∈ (0, L)

}

;

Qt = D × (0, t), t ∈ (0, T ).

Consider in Qt the following initial boundary value problem:

Lu ≡ ut + αux + uux + ∆ux = 0 in Qt; (2.1)

u(0, y, t) = u(x, 0, t) = u(x,L, t) = 0,

y ∈ (0, L), x > 0, t > 0; (2.2)

u(x, y, 0) = u0(x, y), (x, y) ∈ D; (2.3)

where α = 0 or α = 1, ∆ = D2
x + D2

y. Exploiting regularization of (2.1)-(2.3) by a
parabolic problem as in [22], one can prove the following result.

Theorem 2.1. Let T and L be arbitrary finite real positive numbers. Let

u0 ∈ H1(D), u0y ∈ H1(D), ∆u0x ∈ L2(D),

u0(0, y) = u0yy(0, y) = u0(x, 0) = u0(x,L) = 0,

and there is a real positive k such that
∫

D

ekx [∆u0x + u0u0x + u0x]
2
dxdy < ∞.

Then there exists a unique regular solution of (2.1)-(2.3) such that

u ∈ L∞(0, T ;H2(D)),

∆ux ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)),

ux ∈ L2(0, T ;H2(D)), ut ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)).

3. Decay of Solutions

The main result of this article is the following theorem.

Theorem 3.1. Let α = 1, L ∈ (0, 2
√

2) and ‖u0‖2
L2(D) ≤

9(8 − L2)2

800L2
. Then regular

solutions of (2.1)-(2.3) satisfy the inequality

‖u‖2
L2(D)(t) ≤ e−χt(ekx, u2

0),
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where χ =
8
√

2(8 − L2)3/2

125L3
, k =

√

2(8 − L2)√
5L

.

Proof: Transforming the integral

(u,Lu)(t) = (u, ut)(t) + (u, ux)(t) + (u2, ux)(t) + (u,∆ux)(t) = 0 (3.1)

to the equality

‖u‖2
(t) +

∫ t

0

∫ L

0

u2
x(0, y, τ)dydτ = ‖u0‖2

,

we get

‖u‖2
(t) ≤ ‖u0‖2

, t > 0. (3.2)

Next, consider for some k > 0 the equality

(ekxu,Lu)(t) = (ekxu, ut)(t) + (ekxu, ux)(t)

+(ekxu2, ux)(t) + (ekxu,∆ux)(t) = 0

which can be reduced to the form

d

dt
(ekx, u2)(t) + k(ekx, u2

y)(t) + 3k(ekx, u2
x)(t)

+

∫ L

0

u2
x(0, y, t)dy − (k + k3)(ekx, u2)(t) − 2k

3
(ekx, u3)(t) = 0.

(3.3)

It is easy to prove

Proposition 3.2. Let ϕ ∈ H1
0 (0, L), then

∫ L

0

ϕ2(y)dy ≤ L2

8

∫ L

0

ϕ2
y(y)dy. (3.4)

Proof: Let y ∈ (0,
L

2
), then

ϕ(y) =

∫ y

0

ϕs(s)ds ≤ y1/2

(
∫ y

0

ϕ2
s(s)ds

)1/2

and
∫ L/2

0

ϕ2(y)dy ≤
∫ L/2

0

y

∫ y

0

ϕ2
s(s)dsdy ≤ L2

8

∫ L/2

0

ϕ2
y(y)dy.

Analogously,
∫ L

L/2

ϕ2(y)dy ≤ L2

8

∫ L

L/2

ϕ2
y(y)dy.
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Finally,
∫ L

0

ϕ2(y)dy ≤ L2

8

∫ L

0

ϕ2
y(y)dy.

Proposition is proved. 2

It is known, [12], that

‖ϕ‖2
L4(R2) ≤ 2‖ϕ‖2

L2(R2)‖∇ϕ‖2
L2(R2). (3.5)

Using (3.5), we calculate

I = −2k

3
(ekx, u3)(t) ≤ 2k

3
‖u‖(t)‖ekxu2‖(t)

≤ 2k

3
‖u‖(t)‖ekx/2u‖2

L4(D)(t)

≤ 4k

3
‖u‖(t)‖ekx/2u‖(t)‖∇(ekx/2u)‖(t).

Taking into account (3.2), we continue

I ≤ 4k

3
‖u0‖‖ekx/2u‖(t)

{

(ekx, [u2
y +

k2

2
u2 + 2u2

x])(t)

}1/2

.

Making use of the Young inequality, we get

I ≤ 2ǫ(ekx, u2
y)(t) + 4ǫ(ekx, u2

x)(t) + ǫk2(ekx, u2)(t)

+
2k2

ǫ
‖u0‖2

(ekx, u2)(t), (3.6)

where ǫ is an arbitrary positive number.
Substituting I into (3.3), we come to the inequality

d

dt
(ekx, u2)(t) + (k − 2ǫ)(ekx, u2

y)(t) + (3k − 4ǫ)(ekx, u2
x)(t)

−(k + ǫk + k3)(ekx, u2)(t) − 2k2

ǫ
‖u0‖2

(ekx, u2)(t) ≤ 0.

(3.7)

Taking 0 < ǫ ≤ k

4
and exploiting (3.4), we get

d

dt
(ekx, u2)(t) +

[

k

(

8

L2
− 1

)

− 16ǫ

L2

]

(ekx, u2)(t)

−5k3

4
(ekx, u2)(t) − 2k2

9ǫ
‖u0‖2

(ekx, u2)(t) ≤ 0. (3.8)

Denote
8

L2
− 1 = 4δ2 > 0, (3.9)
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whence

δ =
1

2L

√

8 − L2. (3.10)

Putting
16ǫ

L2
= 2kδ2, (3.7) reads

d

dt
(ekx, u2)(t) + 2k

(

δ2 − 5

8
k2

)

(ekx, u2)(t) − 2k2

9ǫ
‖u0‖2

(ekx, u2)(t) ≤ 0.

(3.11)

Now we choose k > 0 such that δ2 − 5

8
k2 > 0. For this purpose, put k2 =

8

5
γ2δ2,

or k =

√

8

5
γδ, where γ ∈ (0, 1).

With this choice of k > 0, (3.11) becomes

d

dt
(ekx, u2)(t) + 2k

[

(1 − γ2)δ2 − k

2ǫ
‖u0‖2

]

(ekx, u2)(t) ≤ 0.

Now we assume ‖u0‖2
such that

k

2ǫ
‖u0‖2 ≤ γ2(1 − γ2)δ2 (3.12)

which gives
d

dt
(ekx, u2)(t) + χ(ekx, u2)(t) ≤ 0, (3.13)

where

χ = 2k(1 − γ2)2
(8 − L2)

4L2
=

√

8

5

γ(1 − γ2)2

4L3
(8 − L2)

3/2

=
1

2

√

2

5

γ(1 − γ2)2

L3
(8 − L2)

3/2
.

The function A(γ) = γ(1 − γ2)2 has its maximal value when γ2 =
1

5
, hence

max
γ>0,γ 6=1

A(γ) =
16

25
√

5
.

With this, χ becomes

χ =
8
√

2

125

(8 − L2)
3/2

L3
.

Solving (3.13), we prove Theorem. 2
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Theorem 3.3. Let α = 0, L > 0, k =
4
√

3

5
L, ‖u0‖ ≤

√
3

5L
. Then regular solutions

of (2.1)-(2.3) satisfy the following inequality

(ekx, u2)(t) ≤ e−χt(ekx, u2
0),

where χ =
96
√

3

125L
.

Proof: Putting α = 0 in (2.1), multiplying it by ekxu, and taking into account
(3.6), we come to the inequality

d

dt
(ekx, u2)(t) + (k − 2ǫ)(ekx, u2

y)(t) − k2(ǫ + k)(ekx, u2)(t)

+(3k − 4ǫ)(ekx, u2
x)(t) − 2k2

ǫ
‖u0‖2

(ekx, u2)(t) ≤ 0. (3.14)

Putting ǫ =
k

4
and using (3.4), we get

d

dt
(ekx, u2)(t) + 4k

(

1

L2
− 5

16
k2

)

(ekx, u2)(t)

−2k2

ǫ
‖u0‖2

(ekx, u2)(t) ≤ 0. (3.15)

For k =
4γ√

5
L, where γ ∈ (0, 1), (3.15) reads

d

dt
(ekx, u2)(t) + 4k

[

(1 − γ2)

L2
− 2‖u0‖2

]

(ekx, u2)(t) ≤ 0.

Taking ‖u0‖2
=

γ2(1 − γ2)

2L2
, we find

d

dt
(ekx, u2)(t) + χ(ekx, u2)(t) ≤ 0, (3.16)

where χ =
16√

5

γ3(1 − γ2)

L
.

The function A(γ) = γ3(1− γ2) has its maximal value when γ =

√

3

5
, which gives

χ =
96
√

3

125L
, k =

4
√

3

5
L, ‖u0‖ ≤

√
3

5
L.

Solving (3.16), we complete the proof of Theorem. 2

Remark. The presence in (2.1) of a linear term ux(α = 1) implies a restriction
for value of L : (L < 2

√
2), which means that a channel D has a limitation in

width. On the other hand , absence of that term (α = 0) allows to L bo be any
finite positive number; it means that a channel may be of any finite width.
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