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Global behavior of the difference equation
xn+1 = Axn−1

B−Cxnxn−2

R. Abo-Zeid and Cengiz Cinar

abstract: The aim of this work is to investigate the global stability, periodic
nature, oscillation and the boundedness of all admissible solutions of the difference
equation

xn+1 =
Axn−1

B − Cxnxn−2

, n = 0, 1, 2, . . .

where A, B, C are positive real numbers.
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1. Introduction and Preliminaries

Recently there has been a great interest in studying the qualitative proper-
ties of rational difference equations. For the systematical studies of rational and
non-rational difference equations, one can refer to the monographs [1,3,4,5,6] and
references therein.

M. Aloqeili in [2] discussed the stability properties and semi-cycle behavior of
the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1

, n = 0, 1, . . .

with real initial conditions and positive real number a.
In this paper, we study the global asymptotic stability of the difference equation

xn+1 =
Axn−1

B − Cxnxn−2

, n = 0, 1, . . . (1)
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where A,B,C are nonnegative real numbers.
Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, · · · (2)

where f : Rk+1 → R.

Definition 1.1 [4].
An equilibrium point for equation (2) is a point x̄ ∈ R such that x̄ = f(x̄, x̄, . . . , x̄).

Definition 1.2 [4].

1. An equilibrium point x̄ for equation (2) is called locally stable if for ev-
ery ǫ > 0, ∃δ > 0 such that every solution {xn} with initial conditions
x−k, x−k+1,. . . , x0 ∈]x̄ − δ, x̄ + δ[ is such that xn ∈]x̄ − ǫ, x̄ + ǫ[,∀n ∈ N .
Otherwise x̄ is said to be unstable.

2. The equilibrium point x̄ of equation (2) is called locally asymptotically stable
if it is locally stable and there exists γ > 0 such that for any initial conditions
x−k, x−k+1, . . . , x0 ∈]x̄ − γ, x̄ + γ[, the corresponding solution {xn} tends to
x̄.

3. An equilibrium point x̄ for equation (2) is called global attractor if every
solution {xn} converges to x̄ as n → ∞.

4. The equilibrium point x̄ for equation (2) is called globally asymptotically stable
if it is locally asymptotically stable and global attractor.

The linearized equation associated with equation (2) is

yn+1 =

k
∑

i=0

∂f

∂xn−i

(x̄, . . . , x̄)yn−i, n = 0, 1, 2, . . . (3)

The characteristic equation associated with equation (3) is

λk+1 −
k

∑

i=0

∂f

∂xn−i

(x̄, . . . , x̄)λk−i = 0. (4)

Theorem 1.3 [4]. Assume that f is a C1 function and let x̄ be an equilibrium
point of equation (2) . Then the following statements are true:

1. If all roots of equation (4) lie in the open disk |λ| < 1, then x̄ is locally
asymptotically stable.

2. If at least one root of equation (4) has absolute value greater than one, then
x̄ is unstable.

The change of variables xn =
√

B
C

yn reduces equation (1) to the difference equation

yn+1 =
ryn−1

1 − ynyn−2

, n = 0, 1, 2, . . . (5)

where r = A
B

.
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2. Linearized stability analysis

In this section we study the local asymptotic stability of the equilibrium points
of equation (5). We can see that equation (5) has the equilibrium points ȳ = 0 and
ȳ1 =

√
1 − r, ȳ2 = −

√
1 − r when r < 1 and the zero equilibrium only when r ≥ 1.

The linearized equation associated with equation (5) about ȳ is

zn+1 −
r

1 − ȳ2
zn−1 −

rȳ2

(1 − ȳ2)2
(zn + zn−2) = 0, n = 0, 1, 2, ... (6)

The characteristic equation associated with this equation is

λ3 − r

1 − ȳ2
λ − rȳ2

(1 − ȳ2)2
(λ2 + 1) = 0. (7)

We summarize the results of this section in the following theorem.

Theorem 2.1 1. If r > 1, then the zero equilibrium point is a saddle point.

2. If r < 1, then the equilibrium points ȳ = 0 is locally asymptotically stable and
ȳ1 =

√
1 − r, ȳ2 = −

√
1 − r are unstable.

Proof: The linearized equation associated with equation (5) about ȳ = 0 is

zn+1 − rzn−1 = 0, n = 0, 1, 2, ...

The characteristic equation associated with this equation is

λ3 − rλ = 0.

That is λ = 0,±√
r.

1. If r < 1, then |λ| < 1 for all roots and ȳ = 0 is locally asymptotically stable.

2. If r > 1, it follows that ȳ = 0 is unstable (saddle point).
The linearized equation (6) about ȳ = ±

√
1 − r becomes

zn+1 − zn−1 − ( 1

r
)(1 − r)(zn + zn−2) = 0, n = 0, 1, 2, . . .

The associated characteristic equation is

λ3 − λ − ( 1

r
)(1 − r)(λ2 + 1) = 0.

Let f(λ) = λ3 − λ − ( 1

r
)(1 − r)(λ2 + 1).

We can see that f(λ) has a root in (1,∞). Then ȳ1 =
√

1 − r, ȳ2 = −
√

1 − r

are unstable.

2
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3. Oscillation

Theorem 3.1 Assume that r < 1. Then the interval (−
√

1 − r,
√

1 − r) is an
invariant interval for equation (5).

Proof: The proof is by induction. Suppose that y−2, y−1, y0 ∈ (−
√

1 − r,
√

1 − r).
Hence | y−i |<

√
1 − r, i = 0, 1, 2. This implies that | y−2y0 |< 1 − r.

Then

| y1 |= r | y−1 |
| 1 − y0y−2 | <

r | y−1 |
| 1− | y0y−2 || <| y−1 |,

| y2 |= r | y0 |
| 1 − y1y−1 | <

r | y0 |
| 1− | y1y−1 || <| y0 |,

where | y1 |<| y−1 |<
√

1 − r.
Now if for a certain n0 ∈ N we have yn0−2, yn0−1, yn0

∈ (−
√

1 − r,
√

1 − r), then

| yn0+1 |= r|yn0−1|

|1−yn0
yn0−2|

<
r|yn0−1|

|1−|yn0
yn0−2||

<| yn0−1 |<
√

1 − r. This completes the

proof.
2

Corollary 3.2 Assume that {yn}∞n=−2 be a solution of equation (5) such that ei-
ther y−2, y−1, y0 ∈ (0,

√
1 − r) (or (−

√
1 − r, 0)). Then {yn}∞n=−2 is positive (or

negative). Moreover, {yn}∞n=−2 decreases (or increases) to the zero equilibrium
point.

Theorem 3.3 Let {yn}∞n=−2 be a nontrivial solution of equation (5) and let ȳ1 =√
1 − r, ȳ2 = −

√
1 − r denote the nonzero equilibrium points of equation (5) such

that either,
(C1) ȳ2 = −

√
1 − r < y−1 < 0 < y−2, y0 <

√
1 − r = ȳ1

or
(C2) ȳ2 = −

√
1 − r < y−2, y0 < 0 < y−1 <

√
1 − r = ȳ1

is satisfied. Then {yn}∞n=−2 oscillates about ȳ = 0 with semicycles of length one.
Moreover y2n+2 < (>)y2n and y2n+1 > (<)y2n−1, n = 0, 1, 2, ....

Proof: Assume that condition (C1) is satisfied. Then we have
y1 = ry

−1

1−y0y
−2

> y−1, y2 = ry0

r−y
−1y1

< y0.

Now suppose that for a fixed n0 ∈ N we have

−
√

1 − r < y2n0−1 < y2n0+1 < 0 and 0 < y2n0
< y2n0−2 <

√
1 − r.

Then
0 > y2n0+3 =

ry2n0+1

1 − y2n0+2y2n0

> y2n0+1,

and
0 < y2n0+2 =

ry2n0

1 − y2n0+1y2n0−1

< y2n0
.

Therefore, y2n > y2n+2 > 0 and y2n−1 < y2n+1 < 0 for all n ≥ −1 and the result
follows.
For condition (C2), the result is similar and will be omitted.

2
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4. Global behavior of equation (5)

Theorem 4.1 The following statements are true.

1. If r < 1, then the zero equilibrium point is a global attractor with basin
(−

√
1 − r,

√
1 − r)3.

2. If r = 1, then equation (5) has prime period two solutions of the form
. . . , 0, ϕ, 0, ϕ, 0, . . .,where ϕ ∈ R.

3. If r > 1, then there exist solutions which are neither bounded nor persist.

Proof:

1. Suppose that y−2, y−1, y0 ∈ (−
√

1 − r,
√

1 − r). Then using theorem (3.1) we
have that yn ∈ (−

√
1 − r,

√
1 − r), n ≥ 1.

Moreover, we have | yn+1 |<| yn−1 |, n = 0, 1, ....
That is | y2n+1 |<| y2n−1 | and | y2n+2 |<| y2n |, n = 0, 1, ...

From equation (5) we have

| y2n+1 |= r | y2n−1 |
| 1 − y2ny2n−2 | ≤

r | y2n−1 |
| 1− | y2ny2n−2 ||

and

| y2n+2 |= r | y2n |
| 1 − y2n+1y2n−1 | ≤

r | y2n |
| 1− | y2n+1y2n−1 || .

Now suppose that limn→∞ | y2n+1 |= L and limn→∞ | y2n |= M . Then

L ≤ rL

| 1 − M2 | and M ≤ rM

| 1 − L2 | .

If L 6= 0, then | 1 − M2 |≤ r. This implies that
√

1 − r ≤ M ≤
√

1 + r,
which is a contradiction. Hence we have L = 0. The second inequality gives
M ≤ rM , from which M = 0 where r < 1. Therefore, {yn}∞n=−2 converges
to zero. This completes the proof.

2. Clear!

3. Let {yn}∞n=−2 be a solution of equation (5) with the initial conditions, | y−i |<√
r − 1(>

√
r + 1), i = 0, 2 and | y−i |>

√
r + 1(<

√
r − 1), i = 1. We

consider only the case | y−i |<
√

r − 1, i = 0, 2 and | y−i |>
√

r + 1, i = 1.
It follows that | y−2y0 |=| y−2 || y0 |< r− 1. That is −r + 1 < y−2y0 < r− 1.
This implies that −r + 2 < 1 − y−2y0 < r. Hence we have

| y1 |= | ry−1 |
| 1 − y0y−2 | >

r | y−1 |
r

=| y−1 |>
√

r + 1.

It follows that | y1y−1 |=| y1 || y−1 |> r + 1, which implies that r + 2 <

1 − y1y−1 < −r and so

| y2 |= | ry0 |
| 1 − y1y−1 | <

r | y0 |
r

=| y0 |<
√

r − 1.
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By induction we get | y2n+1 |>| y2n−1 |>
√

r + 1 and | y2n+2 |<| y2n |<√
r − 1, n ≥ 0.

Now suppose that | y2n |→ L and | y2n+1 |→ M as n → ∞. But

| y2n+2 |= r | y2n |
| 1 − y2n+1y2n−1 | ≤

r | y2n |
| 1− | y2n+1y2n−1 || .

Then L ≤ rL
|1−M2| . If L 6= 0, then | 1 − M2 |≤ r. This implies that M ≤√

r + 1. This is a contradiction and so L = 0. Now, as

| y2n+1 |= r | y2n−1 |
| 1 − y2ny2n−2 | ≥

r | y2n−1 |
1+ | y2n || y2n−2 | ,

then we have M ≥ rM
1+L2 = rM and therefore, M = ∞.

The case when | y−i |>
√

r + 1, i = 0, 2 and | y−i |<
√

r − 1, i = 1 is similar
and will be omitted.

2

Conjecture Assume that r < 1. Then the zero equilibrium point is global
asymptotically stable (in the set of all admissible solutions).

5. Numerical examples

Example 5.1 Figure 1. shows that if r = 0.6, then the solution {yn}∞n=−2 with
initial conditions y−2 = 0.3, y−1 = −0.2, y0 = 0.35 converges to zero.

Example 5.2 Figure 2. shows that if r = 1.9, then the solution {yn}∞n=−2 with
initial conditions y−2 = 0.9, y−1 = −1.7, y0 = 0.9 is neither bounded nor persist.
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Figure 1: The difference equation yn+1 = 0.6yn−1

1−yn−2yn
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Figure 2: The difference equation yn+1 = 1.9yn−1

1−yn−2yn
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