A New Characterization of the Mathieu Groups of degree 11 and 12 by the Number of Sylow Subgroups

Alireza Khalili Asboei*, Seyed Sadegh Salehi Amiri, Ali Iranmanesh and Abolfazl Tehranian

Abstract

Let G be a finite group with trivial center and $n_{p}(G)$ be the number of Sylow p-subgroup of G. In this paper we prove that if G is a centerless group and $n_{p}(G)=n_{p}(M)$, where M denotes either of the Mathieu groups M_{11} or M_{12} for every prime $p \in \pi(G)$, then $M \leq G \leq A u t(M)$.

Key Words: Finite Group, simple group, Sylow subgroup.

Contents

1 Introduction

2 Preliminary Results 214
3 Proof of the Main Theorem

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of prime divisors of $|G|$. A finite group G is called a simple K_{n}-group, if G is a simple group with $|\pi(G)|=n$. Throughout this paper, we denote by $n_{p}(G)$ the number of Sylow $p-\operatorname{subgroup}$ of G, that is., $n_{p}(G)=\left|S y l_{p}(G)\right|$. In $1992, \mathrm{Bi}[2]$ showed that $L_{2}\left(p^{k}\right)$ can be characterized only by the order of normalizer of its Sylow subgroups. In other words, if G is a group and $\left|N_{G}(P)\right|=\left|N_{L_{2}\left(p^{k}\right)}(Q)\right|$, where $P \in \operatorname{Syl}_{r}(G)$ and $Q \in \operatorname{Syl}_{r}\left(L_{2}\left(p^{k}\right)\right)$ for every prime r, then $G \cong L_{2}\left(p^{k}\right)$. This type of characterization is done for the following groups:
$L_{2}\left(p^{k}\right)$ [2], $L_{n}(q)[3], S_{4}(q)$ [4], Alternating groups [5], $U_{n}(q)$ [6], Janko groups [10], Mathieu simple groups [11] and ${ }^{2} D_{n}\left(p^{k}\right)$ [9]. Let S be one of the above simple groups. If G is a group and $n_{p}(G)=n_{p}(S)$ for every prime number p and $|G|=|S|$, then $\left|N_{G}(P)\right|=\left|N_{S}(Q)\right|$, where $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{p}(S)$ for every prime p, hence $G \cong S$. In this work the assumption of $|G|=|S|$ is replaced with $Z(G)=1$. The main theorem of our paper is as follow:

Main Theorem: Let G be a finite group with trivial center such that $n_{p}(G)=n_{p}(M)$, for every prime $p \in \pi(G)$, where M denotes one of the Mathieu groups M_{11} or M_{12}. Then $M \leq G \leq \operatorname{Aut}(M)$.

[^0]We note that a finite group G is not necessity characterizable by the number of its Sylow subgroups. For example $n_{p}\left(A_{5}\right)=n_{p}\left(A_{5} \times D_{8}\right)$, for every prime p, where D_{8} is the Dihedral group of degree 8 , but $A_{5} \not \nexists A_{5} \times D_{8}$. In this paper, G is a finite group with trivial center. All further unexplained notations are standard and the reader is refered to [1], for example.

2. Preliminary Results

In this section some preliminary lemmas are mentioned without proof and are used in the proof of the main theorem of this paper.

Lemma 2.1. [7] Let G be a finite solvable group and $|G|=m . n$, where $m=$ $p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}},(m, n)=1$. Let $\pi=\left\{p_{1}, \ldots, p_{r}\right\}$ and h_{m} be the number of $\pi-$ Hall subgroups of G. Then $h_{m}=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, satisfies the following conditions for all $i \in\{1,2, \ldots, s\}$:

1. $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$, for some p_{j}.
2. The order of some chief factor of G is divisible by $q_{i}^{\beta_{i}}$.

Lemma 2.2. [8] If G is a simple K_{3} - group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, \operatorname{PSL}(2,7), \operatorname{PSL}(2,8), \operatorname{PSL}(2,17), \operatorname{PSL}(3,3)$, $\operatorname{PSU}(3,3)$ or $\operatorname{PSU}(4,2)$.

Lemma 2.3. [14] Let G be a finite group and M be a normal subgroup of G. Then both $n_{p}(M)$ and $n_{p}(G / M)$ divide $n_{p}(G)$ and moreover $n_{p}(M) n_{p}(G / M) \mid n_{p}(G)$ for every prime p.

Lemma 2.4. [12] Let G be a group and $H, K \leq G$, then $[H, K] \leq K$ if and only if $H \leq N_{G}(K)$.

Lemma 2.5. [13] Let G be a simple K_{4}-group. Then G is isomorphic to one of the following groups:
(1) $A_{7}, A_{8}, A_{9}, A_{10}$.
(2) M_{11}, M_{11}, J_{2}.
(3) (a) $L_{2}(r)$, where r is a prime and satisfies $r^{2}-1=2^{a} .3^{b} . v^{c}$ with $a \geq 1, b \geq 1$, $c \geq 1, v>3$, is a prime;
(b) $L_{2}\left(2^{m}\right)$, where $2^{m}-1=u$, $2^{m}+1=3 t^{b}$, with $m \geq 2$, u, tare primes, $t>3, b \geq 1$;
(c) $L_{2}\left(3^{m}\right)$, where $3^{m}+1=4 t, 3^{m}-1=2 u^{c}$ or $3^{m}+1=4 t^{b}, 3^{m}-1=2 u$, with $m \geq 2, u, t$ are odd primes, $b \geq 1, c \geq 1$;
(d) $L_{2}(16), L_{2}(25), L_{2}(49), L_{2}(81), L_{3}(4), L_{3}(5), L_{3}(7), L_{3}(8), L_{3}(17), L_{4}(3)$, $S_{4}(4), S_{4}(5), S_{4}(7), S_{4}(9), S_{6}(2), O_{8}^{+}(2), G_{2}(3), U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9)$, $U_{4}(3), U_{5}(2), S z(8), S z(32),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$.

3. Proof of the Main Theorem

In this section, at first we prove that the group M_{11} is characterizable by the number of its Sylow subgroup.
Case 1. Characterization of the group M_{11}
Let G be a finite group with trivial center such that $n_{2}(G)=n_{2}\left(M_{11}\right)=495$, $n_{3}(G)=n_{3}\left(M_{11}\right)=55, n_{5}(G)=n_{5}\left(M_{11}\right)=396$ and $n_{11}(G)=n_{11}\left(M_{11}\right)=144$. First we prove that G is an unsolvable group. If G is a solvable group, since $n_{11}(G)=144$, then $9 \equiv 1(\bmod 11)$ by Lemma 2.1 , which is a contradiction. Hence G is an unsolvable group. Since G is a finite group, then it has a chief series. Let $1=N_{0} \unlhd N_{1} \unlhd \ldots \triangleleft N_{r-1} \unlhd N_{r}=G$, be a chief series of G. Since G is an unsolvable group, then there exists a non-negative integer i, such that N_{i} / N_{i-1} is the direct product of isomorphic simple groups and N_{i-1} is a maximal solvable normal subgroup of G. Now set $N_{i}:=H$ and $N_{i-1}:=N$. Hence G has the following normal series:

$$
1 \unlhd N \triangleleft H \unlhd G
$$

such that H / N is a direct product of isomorphic non-abelian simple groups. Let $H / N=S_{1} \times \ldots \times S_{r}$, where S_{1} is an unsolvable simple group and $S_{1} \cong \ldots \cong S_{r}$, S_{1} is a simple K_{3}-group or a simple K_{4}-group. Since $n_{p}(H / N) \mid n_{p}(G)$ for every prime $p \in \pi(G)$ by Lemma 2.3, then H / N is not simple K_{3} - group, by Lemma 2.2. So H / N is simple K_{4}-group. If $H / N \cong L_{2}(r)$, where r is a prime and satisfies $r^{2}-1=2^{a} .3^{b} . v^{c}$ with $a \geq 1, b \geq 1, c \geq 1$ and $v>3$, is a prime, then by $\pi(H / N$ $)=\{2,3,5,11\}, r=11$, which is a contradiction by Lemma 2.3. If $H / N \cong L_{2}\left(2^{m}\right)$ where $2^{m}-1=u, 2^{m}+1=3 t^{b}$, with $m \geq 2, u, t$ are primes, $t>3, b \geq 1$, then u, $t \in\{3,5,11\}$, which is a contradiction. If $H / N \cong L_{2}\left(3^{m}\right)$ where $3^{m}+1=4 t, 3^{m}-1$ $=2 u^{c}$ or $3^{m}+1=4 t^{b}, 3^{m}-1=2 u$, with $m \geq 2, u, t$ are odd primes, $b \geq 1, c \geq 1$, then $u, t \in\{3,5,11\}$, which is a contradiction. Hence by the above discussion, Lemma 2.5 and [1] $H / N \cong M_{11}$. Now set $\bar{H}:=H / N \cong M_{11}$ and $\bar{G}:=G / N$. On the other hand, we have:

$$
M_{11} \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq A u t(\bar{H})
$$

Let $K=\left\{x \in G \mid x N \in C_{\bar{G}}(\bar{H})\right\}$, then $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$. Hence $M_{11} \leq$ $G / K \leq \operatorname{Aut}\left(M_{11}\right)$. Since $\operatorname{Out}\left(M_{11}\right)=1$, we have G / K is isomorphic to M_{11}. We prove that $K=N$. Suppose that $K \neq N$, by Lemma 2.3 we have $n_{p}(K)=1$ for every prime $p \in \pi(G)$, then K is a nilpotent subgroup of G. On the other hand, since $C_{\bar{G}}(\bar{H}) \cong K / N$ and N is a maximal solvable normal subgroup of G, we have K is an unsolvable normal subgroup of G, which is a contradiction. Thus $K=N$, and so $G / N \cong M_{11}$. We claim that $N=1$. Let Q be a Sylow $q-$ subgroup of N, since N is nilpotent, then Q is normal in G. Now if $P \in \operatorname{Syl}_{p}(G)$, then Q normalizes P and so if $p \neq q$, then $P \leq N_{G}(Q)=G$. Also we note that $N P / N$ is a Sylow p-subgroup of G / N. On the other hand, if $R / N=N_{G / N}(N P / N)$, then $R=N_{G}(P) N$. We know that $n_{p}(G)=n_{p}(G / N)$, so $|G: R|=\left|G: N_{G}(P)\right|$. Thus $R=N_{G}(P)$ and therefore $N \leq N_{G}(P)$. So $Q \leq N_{G}(P)$. Since $P \leq N_{G}(Q)$
and $Q \leq N_{G}(P)$ by Lemma 2.4, this implies that $[P, Q] \leq P$ and $[P, Q] \leq Q$, so $[P, Q] \leq P \cap Q=1$. Therefore, $P \leq C_{G}(Q)$ and $Q \leq C_{G}(P)$, in the other word P and Q centralize each other. Let $C=C_{G}(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus $|G: C|$ is a power of q. Now let S be a Sylow q-subgroup of G. Then $G=C S$. Also if $Q>1$, then $C_{Q}(S)$ is nontrivial, and we see that $C_{Q}(S) \leq Z(G)$. By the assumption $Z(G)=1$, it follows that $Q=1$. Since q was arbitary, we have $N=1$. Therefore, $G \cong M_{11}$.

Case 2. Characterization of the group M_{12}
Let G be a finite group with trivial center such that $n_{2}(G)=n_{2}\left(M_{12}\right)=1485$, $n_{3}(G)=n_{3}\left(M_{12}\right)=880, n_{5}(G)=n_{5}\left(M_{12}\right)=2376$ and $n_{11}(G)=n_{11}\left(M_{12}\right)=$ 1728. At first we prove that G is an unsolvable group. If G is a solvable group, since $n_{3}(G)=880$, then $11 \equiv 1(\bmod 3)$ by Lemma 2.1 , which is a contradiction. Hence G is an unsolvable group. Since G is a finite group and unsolvable, then it has the following normal series:

$$
1 \unlhd N \triangleleft H \unlhd G
$$

such that H / N is a direct product of isomorphic non-abelian simple groups. Let $H / N=S_{1} \times \ldots \times S_{r}$, where S_{1} is an unsolvable simple group and $S_{1} \cong \ldots \cong S_{r}, S_{1}$ is a simple K_{3}-group or a simple K_{4}-group. Let S_{1} be a simple K_{3}-group, since $n_{p}(H / N) \mid n_{p}(G)$ for every prime $p \in \pi(G)$ by Lemma 2.3 , then H / N is isomorphic to A_{5} or A_{6} by Lemma 2.2. Suppose that $H / N \cong A_{5}$. Similar to the proof of Case 1, there exists a normal subgroup K such that $N \leq K$ and $A_{5} \leq G / K \leq S_{5}$. If $G / K \cong A_{5}$, then we prove that $K=N$. Suppose that $K \neq N$. Since $N<K$ and N is a maximal solvable normal subgroup G, then K is an unsolvable normal subgroup of G. Hence K has the following normal series:

$$
1 \unlhd N_{1} \triangleleft H_{1} \unlhd K
$$

such that H_{1} / N_{1} is a simple K_{3}-group or a simple K_{4}-group. On the other hand, $n_{3}(K)\left|88, n_{2}(K)\right| 297, n_{5}(K) \mid 396$ and $n_{11}(K) \mid 1728$ by Lemma 2.3. Since $n_{p}\left(H_{1} / N_{1}\right) \mid n_{p}(K)$ for every prime $p \in \pi(G)$, we get a contradiction by Lemma 2.2 and Lemma 2.5. Therefore, $N=K$ and $G / N \cong A_{5}$. This implies that $11 \in \pi(N)$ and the order of a Sylow 11-subgroup in G and N are equal. As N is normal in G thus the number of Sylow 11-subgroups of G and N are equal. Therefore the number of Sylow 11-subgroups of N is $1728=2^{6} \times 3^{3}$. Since N is solvable by Lemma $2.1,3^{3} \equiv 1(\bmod 11)$, a contradiction. Similar to the above discussion if $G / K \cong S_{5}$, we can get a contradiction. If $G / K \cong A_{6}$, then similarly we can get a contradiction. Now let S_{1} be a simple K_{4}-group. It is easy to see by Lemma 2.3, Lemma 2.5 and [1], to conclude that $H / N \cong M_{12}$. Similar to the proof of Case 1, there exists a normal subgroup K such that $N \leq K$ and $M_{12} \leq G / K \leq \operatorname{Aut}\left(M_{12}\right)$. Since $\operatorname{Out}\left(M_{12}\right)=2$, we have G / K is isomorphic to one of the groups M_{12} or $M_{12} \cdot 2$. Let $G / K \cong M_{12}$, then we prove that $K=N$. Suppose that $K \neq N$, by Lemma 2.3, we have $n_{p}(K)=1$ for every prime $p \in \pi(G)$, then K is a nilpotent subgroup of G. On the other hand, since $C_{\bar{G}}(\bar{H}) \cong K / N$ and N
is a maximal solvable normal subgroup of G, we have K is an unsolvable normal subgroup of G, which is a contradiction. Thus $K=N$, and so $G / N \cong M_{12}$. We claim that $N=1$. Let Q be a Sylow q-subgroup of N, since N is nilpotent, then Q is normal in G. We have that if $P \in \operatorname{Syl}_{p}(G)$, then Q normalizes P and so if $p \neq q$, then P and Q centralize each other. Let $C=C_{G}(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus $|G: C|$ is a power of q. Now let S be a Sylow q-subgroup of G. Then $G=C S$. Also if $Q>1$, then $C_{Q}(S)$ is nontrivial, and we see that $C_{Q}(S) \leq Z(G)$. By the assumption $Z(G)=1$, it follows that $Q=1$. Since q was arbitary, we have $N=1$. Therefore, $G \cong M_{12}$. If $G / K \cong M_{12} \cdot 2$, similarly we can prove that $G \cong M_{12} .2$ and the proof is completed.

Acknowledgments

The authors would like to thank professor M. R. Darafsheh and the referee for valuable suggestions leading to corrections of some of the proofs as well as a much clearer restructuring of the presentation of the results.

References

1. J. H. Conway, R. T. Curtis, S. P. Norton, et al, Atlas of finite groups, Clarendon, Oxford, (1985).
2. J. Bi, A characterization of $L_{2}(q)$, (Chinese), J. Liaoning Univ (Natural Sciences Edition), 19 (2), 1-4 (1992).
3. J. Bi, A characterization of $L_{n}(q)$ by the normalizers' orders of their Sylow subgroups, Acta Math. Sinica (New Ser), 11 (3), 300-306 (1995).
4. J. Bi, On the group with the same orders of Sylow normalizers as the finite simple group $S_{4}(q)$, Algebra, Groups and Geom, 18 (3), 349-355 (2001).
5. J. Bi, Characterization of Alternating groups by orders of normalizers of Sylow subgroups, Algebra Colloq, 8 (3), 249-256 (2001).
6. J. Bi, On the groups with the same orders of Sylow normalizers as the finite projective special unitary group, Sci. China, Ser A, 47 (6), 801-811 (2004).
7. M. Hall, The Theory of Groups, Macmillan, New York, (1959).
8. M. Herzog, On finite simple groups of order divisible by three primes only, Journal of Algebra, 120 (10), 383-388 (1968).
9. A. Iranmanesh and N. Ahanjideh, A characterization of ${ }^{2} D_{n}\left(p^{k}\right)$ by order of normalizer of Sylow subgroups, International journal of Algebra, Vol. 2, no. 18, 853-865 (2008).
10. B. Khosravi and B. Khosravi, Groups with the same orders of Sylow normalizers as the Janko groups, J. Apple. Algebra Discrete Struct, 3, 23-31 (2005).
11. B. Khosravi and B. Khosravi, Two new characterizations of the Mathieu simple groups, Internal. J. Math. and Mathematical Science, 9, 1449-1453 (2005).
12. D. J. S. Robinson, A course on the theory of groups, Springer-Verlag, New York, (1982).
13. W. Shi, On simple K_{4}-groups, Chinese Science Bull, 36(17): 1281-1283 (1991) (in Chinese).
14. J. Zhang, Sylow numbers of finite groups, Journal of Algebra, 176(10), 111-123 (1995).
[^1]
[^0]: * Corresponding author

 2000 Mathematics Subject Classification: 20D06, 20D15, 20D20

[^1]: Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri and Abolfazl Tehranian
 Department of Mathematics, Science and Research Branch
 Islamic Azad University, Tehran, Iran
 E-mail address: khaliliasbo@yahoo.com
 and
 Ali Iranmanesh
 Department of Mathematics, Faculty of Mathematical Sciences
 Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran

