Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) **v. 31** 1 (2013): 213–218. ISSN-00378712 in press doi:10.5269/bspm.v31i1.14818

A New Characterization of the Mathieu Groups of degree 11 and 12 by the Number of Sylow Subgroups

Alireza Khalili Asboei*, Seyed Sadegh Salehi Amiri, Ali Iranmanesh and Abolfazl Tehranian

ABSTRACT: Let G be a finite group with trivial center and $n_p(G)$ be the number of Sylow p-subgroup of G. In this paper we prove that if G is a centerless group and $n_p(G)=n_p(M)$, where M denotes either of the Mathieu groups M_{11} or M_{12} for every prime $p \in \pi(G)$, then $M \leq G \leq Aut(M)$.

Key Words: Finite Group, simple group, Sylow subgroup.

Contents

1	Introduction	213

2 Preliminary Results 214

3 Proof of the Main Theorem

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of prime divisors of |G|. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. Throughout this paper, we denote by $n_p(G)$ the number of Sylow p- subgroup of G, that is., $n_p(G) = |Syl_p(G)|$. In 1992, Bi [2] showed that $L_2(p^k)$ can be characterized only by the order of normalizer of its Sylow subgroups. In other words, if G is a group and $|N_G(P)| = |N_{L_2(p^k)}(Q)|$, where $P \in Syl_r(G)$ and $Q \in Syl_r(L_2(p^k))$ for every prime r, then $G \cong L_2(p^k)$. This type of characterization is done for the following groups:

 $L_2(p^k)$ [2], $L_n(q)$ [3], $S_4(q)$ [4], Alternating groups [5], $U_n(q)$ [6], Janko groups [10], Mathieu simple groups [11] and ${}^2D_n(p^k)$ [9]. Let S be one of the above simple groups. If G is a group and $n_p(G) = n_p(S)$ for every prime number p and |G| = |S|, then $|N_G(P)| = |N_S(Q)|$, where $P \in Syl_p(G)$ and $Q \in Syl_p(S)$ for every prime p, hence $G \cong S$. In this work the assumption of |G| = |S| is replaced with Z(G) = 1. The main theorem of our paper is as follow:

Main Theorem: Let G be a finite group with trivial center such that $n_p(G)=n_p(M)$, for every prime $p \in \pi(G)$, where M denotes one of the Mathieu groups M_{11} or M_{12} . Then $M \leq G \leq Aut(M)$.

 $\mathbf{215}$

^{*} Corresponding author

²⁰⁰⁰ Mathematics Subject Classification: 20D06, 20D15, 20D20

We note that a finite group G is not necessity characterizable by the number of its Sylow subgroups. For example $n_p(A_5) = n_p(A_5 \times D_8)$, for every prime p, where D_8 is the Dihedral group of degree 8, but $A_5 \not\cong A_5 \times D_8$. In this paper, G is a finite group with trivial center. All further unexplained notations are standard and the reader is referred to [1], for example.

2. Preliminary Results

In this section some preliminary lemmas are mentioned without proof and are used in the proof of the main theorem of this paper.

Lemma 2.1. [7] Let G be a finite solvable group and |G| = m.n, where $m = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, (m,n) = 1. Let $\pi = \{p_1, \dots, p_r\}$ and h_m be the number of π -Hall subgroups of G. Then $h_m = q_1^{\beta_1} \dots q_s^{\beta_s}$, satisfies the following conditions for all $i \in \{1, 2, \dots, s\}$:

- 1. $q_i^{\beta_i} \equiv 1 \pmod{p_i}$, for some p_i .
- 2. The order of some chief factor of G is divisible by $q_i^{\beta_i}$.

Lemma 2.2. [8] If G is a simple K_3 -group, then G is isomorphic to one of the following groups: A_5 , A_6 , PSL(2,7), PSL(2,8), PSL(2,17), PSL(3,3), PSU(3,3) or PSU(4,2).

Lemma 2.3. [14] Let G be a finite group and M be a normal subgroup of G. Then both $n_p(M)$ and $n_p(G/M)$ divide $n_p(G)$ and moreover $n_p(M)$ $n_p(G/M) \mid n_p(G)$ for every prime p.

Lemma 2.4. [12] Let G be a group and H, $K \leq G$, then $[H, K] \leq K$ if and only if $H \leq N_G(K)$.

Lemma 2.5. [13] Let G be a simple K_4 -group. Then G is isomorphic to one of the following groups:

(1) A_7 , A_8 , A_9 , A_{10} . (2) M_{11} , M_{11} , J_2 . (3) (a) $L_2(r)$, where r is a prime and satisfies $r^2 - 1 = 2^a \cdot 3^b \cdot v^c$ with $a \ge 1$, $b \ge 1$, $c \ge 1$, v > 3, is a prime; (b) $L_2(2^m)$, where $2^m - 1 = u$, $2^m + 1 = 3t^b$, with $m \ge 2$, u, tare primes, t > 3, $b \ge 1$; (c) $L_2(3^m)$, where $3^m + 1 = 4t$, $3^m - 1 = 2u^c$ or $3^m + 1 = 4t^b$, $3^m - 1 = 2u$, with $m \ge 2$, u, t are odd primes, $b \ge 1$, $c \ge 1$; (d) $L_2(16)$, $L_2(25)$, $L_2(49)$, $L_2(81)$, $L_3(4)$, $L_3(5)$, $L_3(7)$, $L_3(8)$, $L_3(17)$, $L_4(3)$, $S_4(4)$, $S_4(5)$, $S_4(7)$, $S_4(9)$, $S_6(2)$, $O_8^+(2)$, $G_2(3)$, $U_3(4)$, $U_3(5)$, $U_3(7)$, $U_3(8)$, $U_3(9)$, $U_4(3)$, $U_5(2)$, $S_2(8)$, $S_2(32)$, ${}^{3}D_4(2)$, ${}^{2}F_4(2)'$.

3. Proof of the Main Theorem

In this section, at first we prove that the group M_{11} is characterizable by the number of its Sylow subgroup.

Case 1. Characterization of the group M_{11}

Let G be a finite group with trivial center such that $n_2(G) = n_2(M_{11}) = 495$, $n_3(G) = n_3(M_{11}) = 55$, $n_5(G) = n_5(M_{11}) = 396$ and $n_{11}(G) = n_{11}(M_{11}) = 144$. First we prove that G is an unsolvable group. If G is a solvable group, since $n_{11}(G) = 144$, then $9 \equiv 1 \pmod{11}$ by Lemma 2.1, which is a contradiction. Hence G is an unsolvable group. Since G is a finite group, then it has a chief series. Let $1 = N_0 \leq N_1 \leq ... < N_{r-1} \leq N_r = G$, be a chief series of G. Since G is an unsolvable group, then there exists a non-negative integer *i*, such that N_i/N_{i-1} is the direct product of isomorphic simple groups and N_{i-1} is a maximal solvable normal subgroup of G. Now set $N_i := H$ and $N_{i-1} := N$. Hence G has the following normal series:

$1 \trianglelefteq N \lhd H \trianglelefteq G$

such that H/N is a direct product of isomorphic non-abelian simple groups. Let $H/N = S_1 \times \ldots \times S_r$, where S_1 is an unsolvable simple group and $S_1 \cong \ldots \cong S_r$, S_1 is a simple K_3 -group or a simple K_4 -group. Since $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$ by Lemma 2.3, then H/N is not simple K_3 -group, by Lemma 2.2. So H/N is simple K_4 -group. If $H/N \cong L_2(r)$, where r is a prime and satisfies $r^2 - 1 = 2^a \cdot 3^b \cdot v^c$ with $a \ge 1, b \ge 1, c \ge 1$ and v > 3, is a prime, then by $\pi(H/N) = \{2, 3, 5, 11\}, r = 11$, which is a contradiction by Lemma 2.3. If $H/N \cong L_2(2^m)$ where $2^m - 1 = u, 2^m + 1 = 3t^b$, with $m \ge 2, u, t$ are primes, $t > 3, b \ge 1$, then $u, t \in \{3, 5, 11\}$, which is a contradiction. If $H/N \cong L_2(3^m)$ where $3^m + 1 = 4t^b, 3^m - 1 = 2u$, with $m \ge 2, u, t$ are odd primes, $b \ge 1, c \ge 1$, then $u, t \in \{3, 5, 11\}$, which is a contradiction. Hence by the above discussion, Lemma 2.5 and [1] $H/N \cong M_{11}$. Now set $\overline{H} := H/N \cong M_{11}$ and $\overline{G} := G/N$. On the other hand, we have:

$$M_{11} \cong \overline{H} \cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \overline{G}/C_{\overline{G}}(\overline{H}) = N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq Aut(\overline{H}).$$

Let $K = \{x \in G \mid xN \in C_{\overline{G}}(\overline{H})\}$, then $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$. Hence $M_{11} \leq G/K \leq Aut(M_{11})$. Since $Out(M_{11}) = 1$, we have G/K is isomorphic to M_{11} . We prove that K = N. Suppose that $K \neq N$, by Lemma 2.3 we have $n_p(K) = 1$ for every prime $p \in \pi(G)$, then K is a nilpotent subgroup of G. On the other hand, since $C_{\overline{G}}(\overline{H}) \cong K/N$ and N is a maximal solvable normal subgroup of G, we have K is an unsolvable normal subgroup of G, which is a contradiction. Thus K = N, and so $G/N \cong M_{11}$. We claim that N = 1. Let Q be a Sylow q- subgroup of N, since N is nilpotent, then Q is normal in G. Now if $P \in Syl_p(G)$, then Q normalizes P and so if $p \neq q$, then $P \leq N_G(Q) = G$. Also we note that NP/N is a Sylow p-subgroup of G/N. On the other hand, if $R/N = N_{G/N}(NP/N)$, then $R = N_G(P)N$. We know that $n_p(G) = n_p(G/N)$, so $|G:R| = |G:N_G(P)|$. Thus $R = N_G(P)$ and therefore $N \leq N_G(P)$. So $Q \leq N_G(P)$. Since $P \leq N_G(Q)$

and $Q \leq N_G(P)$ by Lemma 2.4, this implies that $[P,Q] \leq P$ and $[P,Q] \leq Q$, so $[P,Q] \leq P \cap Q = 1$. Therefore, $P \leq C_G(Q)$ and $Q \leq C_G(P)$, in the other word P and Q centralize each other. Let $C = C_G(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus |G : C| is a power of q. Now let S be a Sylow q-subgroup of G. Then G = CS. Also if Q > 1, then $C_Q(S)$ is nontrivial, and we see that $C_Q(S) \leq Z(G)$. By the assumption Z(G) = 1, it follows that Q = 1. Since q was arbitrary, we have N = 1. Therefore, $G \cong M_{11}$.

Case 2. Characterization of the group M_{12}

Let G be a finite group with trivial center such that $n_2(G) = n_2(M_{12}) = 1485$, $n_3(G) = n_3(M_{12}) = 880$, $n_5(G) = n_5(M_{12}) = 2376$ and $n_{11}(G) = n_{11}(M_{12}) = 1728$. At first we prove that G is an unsolvable group. If G is a solvable group, since $n_3(G) = 880$, then $11 \equiv 1 \pmod{3}$ by Lemma 2.1, which is a contradiction. Hence G is an unsolvable group. Since G is a finite group and unsolvable, then it has the following normal series:

$1 \trianglelefteq N \lhd H \trianglelefteq G$

such that H/N is a direct product of isomorphic non-abelian simple groups. Let $H/N = S_1 \times \ldots \times S_r$, where S_1 is an unsolvable simple group and $S_1 \cong \ldots \cong S_r$, S_1 is a simple K_3 -group or a simple K_4 -group. Let S_1 be a simple K_3 -group, since $n_p(H/N) \mid n_p(G)$ for every prime $p \in \pi(G)$ by Lemma 2.3, then H/N is isomorphic to A_5 or A_6 by Lemma 2.2. Suppose that $H/N \cong A_5$. Similar to the proof of Case 1, there exists a normal subgroup K such that $N \leq K$ and $A_5 \leq G/K \leq S_5$. If $G/K \cong A_5$, then we prove that K = N. Suppose that $K \neq N$. Since N < K and N is a maximal solvable normal subgroup G, then K is an unsolvable normal subgroup of G. Hence K has the following normal series:

$$1 \trianglelefteq N_1 \lhd H_1 \trianglelefteq K,$$

such that H_1/N_1 is a simple K_3 -group or a simple K_4 -group. On the other hand, $n_3(K) \mid 88, n_2(K) \mid 297, n_5(K) \mid 396$ and $n_{11}(K) \mid 1728$ by Lemma 2.3. Since $n_p(H_1/N_1) \mid n_p(K)$ for every prime $p \in \pi(G)$, we get a contradiction by Lemma 2.2 and Lemma 2.5. Therefore, N = K and $G/N \cong A_5$. This implies that $11 \in \pi(N)$ and the order of a Sylow 11-subgroup in G and N are equal. As N is normal in G thus the number of Sylow 11-subgroups of G and N are equal. Therefore the number of Sylow 11-subgroups of N is $1728 = 2^6 \times 3^3$. Since N is solvable by Lemma 2.1, $3^3 \equiv 1 \pmod{11}$, a contradiction. Similar to the above discussion if $G/K \cong S_5$, we can get a contradiction. If $G/K \cong A_6$, then similarly we can get a contradiction. Now let S_1 be a simple K_4 -group. It is easy to see by Lemma 2.3, Lemma 2.5 and [1], to conclude that $H/N \cong M_{12}$. Similar to the proof of Case 1, there exists a normal subgroup K such that $N \leq K$ and $M_{12} \leq G/K \leq Aut(M_{12})$. Since $Out(M_{12}) = 2$, we have G/K is isomorphic to one of the groups M_{12} or M_{12} . Let $G/K \cong M_{12}$, then we prove that K = N. Suppose that $K \neq N$, by Lemma 2.3, we have $n_p(K) = 1$ for every prime $p \in \pi(G)$, then K is a nilpotent subgroup of G. On the other hand, since $C_{\overline{G}}(\overline{H}) \cong K/N$ and N

is a maximal solvable normal subgroup of G, we have K is an unsolvable normal subgroup of G, which is a contradiction. Thus K = N, and so $G/N \cong M_{12}$. We claim that N = 1. Let Q be a Sylow q-subgroup of N, since N is nilpotent, then Qis normal in G. We have that if $P \in Syl_p(G)$, then Q normalizes P and so if $p \neq q$, then P and Q centralize each other. Let $C = C_G(Q)$, then C contains a full Sylow p-subgroup of G for all primes p different from q, and thus |G : C| is a power of q. Now let S be a Sylow q-subgroup of G. Then G = CS. Also if Q > 1, then $C_Q(S)$ is nontrivial, and we see that $C_Q(S) \leq Z(G)$. By the assumption Z(G) = 1, it follows that Q = 1. Since q was arbitary, we have N = 1. Therefore, $G \cong M_{12}$. If $G/K \cong M_{12}.2$, similarly we can prove that $G \cong M_{12}.2$ and the proof is completed.

Acknowledgments

The authors would like to thank professor M. R. Darafsheh and the referee for valuable suggestions leading to corrections of some of the proofs as well as a much clearer restructuring of the presentation of the results.

References

- 1. J. H. Conway, R. T. Curtis, S. P. Norton, et al, *Atlas of finite groups*, Clarendon, Oxford, (1985).
- J. Bi, A characterization of L₂(q), (Chinese), J. Liaoning Univ (Natural Sciences Edition), 19 (2), 1-4 (1992).
- J. Bi, A characterization of L_n(q) by the normalizers' orders of their Sylow subgroups, Acta Math. Sinica (New Ser), 11 (3), 300-306 (1995).
- 4. J. Bi, On the group with the same orders of Sylow normalizers as the finite simple group $S_4(q)$, Algebra, Groups and Geom, 18 (3), 349-355 (2001).
- 5. J. Bi, Characterization of Alternating groups by orders of normalizers of Sylow subgroups, Algebra Colloq, 8 (3), 249-256 (2001).
- J. Bi, On the groups with the same orders of Sylow normalizers as the finite projective special unitary group, Sci. China, Ser A, 47 (6), 801-811 (2004).
- 7. M. Hall, The Theory of Groups, Macmillan, New York, (1959).
- M. Herzog, On finite simple groups of order divisible by three primes only, Journal of Algebra, 120 (10), 383-388 (1968).
- A. Iranmanesh and N. Ahanjideh, A characterization of ²D_n(p^k) by order of normalizer of Sylow subgroups, International journal of Algebra, Vol. 2, no. 18, 853-865 (2008).
- B. Khosravi and B. Khosravi, Groups with the same orders of Sylow normalizers as the Janko groups, J. Apple. Algebra Discrete Struct, 3, 23-31 (2005).
- B. Khosravi and B. Khosravi, Two new characterizations of the Mathieu simple groups, Internal. J. Math. and Mathematical Science, 9, 1449-1453 (2005).
- 12. D. J. S. Robinson, A course on the theory of groups, Springer-Verlag, New York, (1982).
- 13. W. Shi, On simple K₄-groups, Chinese Science Bull, 36(17): 1281–1283 (1991) (in Chinese).
- 14. J. Zhang, Sylow numbers of finite groups, Journal of Algebra, 176(10), 111-123 (1995).

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri and Abolfazl Tehranian Department of Mathematics, Science and Research Branch Islamic Azad University, Tehran, Iran E-mail address: khaliliasbo@yahoo.com

and

Ali Iranmanesh Department of Mathematics, Faculty of Mathematical Sciences Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran