Biharmonic S-Curves According to Sabban Frame in Heisenberg Group Heis^{3}

Talat Körpinar and Essin Turhan

ABSTRACT: In this paper, we study biharmonic curves accordig to Sabban frame in the Heisenberg group Heis ${ }^{3}$. We characterize the biharmonic curves in terms of their geodesic curvature and we prove that all of biharmonic curves are helices in the Heisenberg group Heis^{3}. Finally, we find out their explicit parametric equations according to Sabban Frame.
Key Words: Biharmonic curve, Heisenberg group, curvature, torsion.

Contents

1 Introduction
2 The Heisenberg Group Heis ${ }^{3}$
3 Biharmonic S-Curves According To
Sabban Frame In The Heisenberg Group Heis ${ }^{3}$

1. Introduction

Harmonic maps $f:(M, g) \longrightarrow(N, h)$ between manifolds are the critical points of the energy

$$
\begin{equation*}
E(f)=\frac{1}{2} \int_{M} e(f) v_{g} \tag{1.1}
\end{equation*}
$$

where v_{g} is the volume form on (M, g) and

$$
e(f)(x):=\frac{1}{2}\|d f(x)\|_{T^{*} M \otimes f^{-1} T N}^{2}
$$

is the energy density of f at the point $x \in M$.
Critical points of the energy functional are called harmonic maps.
The first variational formula of the energy gives the following characterization of harmonic maps: the map f is harmonic if and only if its tension field $\tau(f)$ vanishes identically, where the tension field is given by

$$
\begin{equation*}
\tau(f)=\operatorname{trace} \nabla d f \tag{1.2}
\end{equation*}
$$

As suggested by Eells and Sampson in [6], we can define the bienergy of a map f by

$$
\begin{equation*}
E_{2}(f)=\frac{1}{2} \int_{M}\|\tau(f)\|^{2} v_{g} \tag{1.3}
\end{equation*}
$$

[^0]and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in [7,8], showing that the Euler-Lagrange equation associated to E_{2} is
\[

$$
\begin{align*}
\tau_{2}(f) & =-\partial^{f}(\tau(f))=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f, \tau(f)) d f \tag{1.4}\\
& =0
\end{align*}
$$
\]

where \mathcal{J}^{f} is the Jacobi operator of f. The equation $\tau_{2}(f)=0$ is called the biharmonic equation. Since \mathcal{J}^{f} is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

This study is organised as follows: Firstly, we study biharmonic curves accordig to Sabban frame in the Heisenberg group Heis ${ }^{3}$. Secondly, we characterize the biharmonic curves in terms of their geodesic curvature and we prove that all of biharmonic curves are helices in the Heisenberg group Heis ${ }^{3}$. Finally, we find out their explicit parametric equations according to Sabban Frame.

2. The Heisenberg Group Heis ${ }^{3}$

Heisenberg group Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with the following multipilcation:

$$
\begin{equation*}
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right) \tag{2.1}
\end{equation*}
$$

Heis 3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g is given by

$$
g=d x^{2}+d y^{2}+(d z-x d y)^{2}
$$

The Lie algebra of Heis^{3} has an orthonormal basis

$$
\begin{equation*}
\mathbf{e}_{1}=\frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad \mathbf{e}_{3}=\frac{\partial}{\partial z}, \tag{2.2}
\end{equation*}
$$

for which we have the Lie products

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=\mathbf{e}_{3}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\left[\mathbf{e}_{3}, \mathbf{e}_{1}\right]=0
$$

with

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1
$$

We obtain

$$
\begin{aligned}
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{1} & =\nabla_{\mathbf{e}_{2}} \mathbf{e}_{2}=\nabla_{\mathbf{e}_{3}} \mathbf{e}_{3}=0 \\
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{2} & =-\nabla_{\mathbf{e}_{2}} \mathbf{e}_{1}=\frac{1}{2} \mathbf{e}_{3} \\
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{3} & =\nabla_{\mathbf{e}_{3}} \mathbf{e}_{1}=-\frac{1}{2} \mathbf{e}_{2} \\
\nabla_{\mathbf{e}_{2}} \mathbf{e}_{3} & =\nabla_{\mathbf{e}_{3}} \mathbf{e}_{2}=\frac{1}{2} \mathbf{e}_{1}
\end{aligned}
$$

The components $\left\{R_{i j k l}\right\}$ of R relative to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ are defined by

$$
R_{i j k}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{k}, \quad R_{i j k l}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}, \mathbf{e}_{l}\right)=g\left(R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{l}, \mathbf{e}_{k}\right) .
$$

The non vanishing components of the above tensor fields are

$$
\begin{gathered}
R_{121}=\frac{3}{4} \mathbf{e}_{2}, \quad R_{131}=-\frac{1}{4} \mathbf{e}_{3}, \quad R_{122}=-\frac{3}{4} \mathbf{e}_{1}, \\
R_{232}=-\frac{1}{4} \mathbf{e}_{3}, \quad R_{133}=\frac{1}{4} \mathbf{e}_{1}, \quad R_{233}=\frac{1}{4} \mathbf{e}_{2}
\end{gathered}
$$

and

$$
\begin{equation*}
R_{1212}=-\frac{3}{4}, \quad R_{1313}=R_{2323}=\frac{1}{4} \tag{2.3}
\end{equation*}
$$

3. Biharmonic S-Curves According To Sabban Frame In The Heisenberg Group Heis ${ }^{3}$

Let $\gamma: I \longrightarrow$ Heis 3 be a non geodesic curve on the Heisenberg group Heis ${ }^{3}$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Heisenberg group Heis ${ }^{3}$ along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, N is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B} \tag{3.1}\\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N}
\end{align*}
$$

where κ is the curvature of γ and τ is its torsion,

$$
\begin{aligned}
g(\mathbf{T}, \mathbf{T}) & =1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1 \\
g(\mathbf{T}, \mathbf{N}) & =g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0
\end{aligned}
$$

Now we give a new frame different from Frenet frame. Let $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }^{3}}^{2}$ be unit speed spherical curve. We denote σ as the arc-length parameter of α. Let us denote $\mathbf{t}(\sigma)=\alpha^{\prime}(\sigma)$, and we call $\mathbf{t}(\sigma)$ a unit tangent vector of α. We now set a vector $\mathbf{s}(\sigma)=\alpha(\sigma) \times \mathbf{t}(\sigma)$ along α. This frame is called the Sabban frame of α on the Heisenberg group Heis^{3}. Then we have the following spherical Frenet-Serret formulae of α :

$$
\begin{align*}
\nabla_{\mathbf{t}} \alpha & =\mathbf{t} \\
\nabla_{\mathbf{t}} \mathbf{t} & =-\alpha+\kappa_{g} \mathbf{s} \tag{3.2}\\
\nabla_{\mathbf{t}} \mathbf{s} & =-\kappa_{g} \mathbf{t}
\end{align*}
$$

where κ_{g} is the geodesic curvature of the curve α on the $\mathbb{S}_{H e i s^{3}}^{2}$ and

$$
\begin{aligned}
g(\mathbf{t}, \mathbf{t}) & =1, g(\alpha, \alpha)=1, g(\mathbf{s}, \mathbf{s})=1 \\
g(\mathbf{t}, \alpha) & =g(\mathbf{t}, \mathbf{s})=g(\alpha, \mathbf{s})=0
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\alpha & =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3} \\
\mathbf{t} & =t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3} \tag{3.3}\\
\mathbf{s} & =s_{1} \mathbf{e}_{1}+s_{2} \mathbf{e}_{2}+s_{3} \mathbf{e}_{3}
\end{align*}
$$

To separate a biharmonic curve according to Sabban frame from that of FrenetSerret frame, in the rest of the paper, we shall use notation for the curve defined above as biharmonic \mathcal{S}-curve.

Theorem 3.1. $\alpha: I \longrightarrow \mathbb{S}_{H e i s^{3}}^{2}$ is a biharmonic S-curve if and only if

$$
\begin{align*}
\kappa_{g} & =\text { constant } \neq 0, \\
1+\kappa_{g}^{2} & =-\left[\frac{1}{4}-s_{3}^{2}\right]+\kappa_{g}\left[-\alpha_{3} s_{3}\right], \tag{3.4}\\
\kappa_{g}^{\prime \prime}-\kappa_{g}^{3} & =\alpha_{3} s_{3}+\kappa_{g}\left[\frac{1}{4}-\alpha_{3}^{2}\right]
\end{align*}
$$

Proof: Using (2.1) and Sabban formulas (3.2), we have (3.4).

Corollary 3.2. $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }^{3}}^{2}$ is a biharmonic S-curve if and only if

$$
\begin{align*}
\kappa_{g} & =\text { constant } \neq 0 \\
1+\kappa_{g}^{2} & =-\left[\frac{1}{4}-s_{3}^{2}\right]+\kappa_{g}\left[-\alpha_{3} s_{3}\right] \tag{3.4}\\
\kappa_{g}^{3} & =-\alpha_{3} s_{3}-\kappa_{g}\left[\frac{1}{4}-\alpha_{3}^{2}\right] .
\end{align*}
$$

Lemma 3.3. All of biharmonic \mathcal{S}-curves in $\mathbb{S}_{H e i s^{3}}^{2}$ are helices.
Theorem 3.4. Let $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }}{ }^{3}$ be a unit speed non-geodesic biharmonic

S-curve. Then, the parametric equations of α are

$$
\begin{align*}
x^{\mathcal{S}}(\sigma)= & -\frac{\sin ^{2} \varphi}{\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \cos \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}, \\
y^{\mathcal{S}}(\sigma)= & \frac{\sin ^{2} \varphi}{\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \sin \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}, \tag{3.5}\\
z^{\mathcal{S}}(\sigma)= & \cos \varphi \sigma-\sin \varphi \frac{\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right) \sigma+\mathcal{M}_{1}}{2\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \\
& -\sin ^{2} \varphi \frac{\sin 2\left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]}{4\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \\
& +\frac{\mathcal{M}_{2}}{\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \sin ^{3} \varphi \sin \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{4},
\end{align*}
$$

where $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4}$ are constants of integration.
Proof: Since α is biharmonic, α is a \mathcal{S}-helix. So, without loss of generality, we take the axis of α is parallel to the vector \mathbf{e}_{3}. Then,

$$
\begin{equation*}
g\left(\mathbf{t}, \mathbf{e}_{3}\right)=t_{3}=\cos \varphi \tag{3.6}
\end{equation*}
$$

where φ is constant angle.
So, substituting the components t_{1}, t_{2} and t_{3} in the equation (3.3), we have the following equation

$$
\begin{equation*}
\mathbf{t}=\sin \varphi \sin \mu \mathbf{e}_{1}+\sin \varphi \cos \mu \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3} \tag{3.7}
\end{equation*}
$$

The covariant derivative of the vector field t is:

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\left(t_{1}^{\prime}+t_{2} t_{3}\right) \mathbf{e}_{1}+\left(t_{2}^{\prime}-t_{1} t_{3}\right) \mathbf{e}_{2}+t_{3}^{\prime} \mathbf{e}_{3} \tag{3.8}
\end{equation*}
$$

From above equation we have

$$
\begin{equation*}
\mu(\sigma)=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1} \tag{3.10}
\end{equation*}
$$

where \mathcal{M}_{1} is a constant of integration.
Thus (3.9) and (3.10), imply

$$
\begin{align*}
\mathbf{t}= & \sin \varphi \sin \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right] \mathbf{e}_{1} \tag{3.11}\\
& +\sin \varphi \cos \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right] \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3}
\end{align*}
$$

Using (2.1) in (3.11), we obtain

$$
\begin{aligned}
\mathbf{t}= & \left(\sin \varphi \sin \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right], \sin \varphi \cos \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]\right. \\
& \cos \varphi+\sin \varphi\left(-\frac{\sin ^{2} \varphi}{\left(\sqrt{1+\kappa_{g}^{2}}-\sin \varphi \cos \varphi\right)} \cos \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}(3.12)\right.\right. \\
& \left.\left.+\mathcal{M}_{2}\right) \cos \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \varphi}-\cos \varphi\right) \sigma+\mathcal{M}_{1}\right]\right)
\end{aligned}
$$

where $\mathcal{M}_{1}, \mathcal{N}_{2}$ are constants of integration.
Integrating both sides, we have (3.9). This proves our assertion. Thus, the proof of theorem is completed.

We can use Mathematica in above theorem, yields

Acknowledgments

The authors thank to the referee for useful suggestions and remarks for the revised version.

References

1. M. Babaarslan and Y. Yayli: The characterizations of constant slope surfaces and Bertrand curves, International Journal of the Physical Sciences 6(8) (2011), 1868-1875.
2. R. Caddeo and S. Montaldo: Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12(8) (2001), 867-876.
3. B. Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188.
4. I. Dimitric: Submanifolds of \mathbb{E}^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65.
5. J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
6. J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
7. G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
8. G. Y. Jiang: 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7(4) (1986), 389-402.
9. T. Körpınar and E. Turhan: On Spacelike Biharmonic Slant Helices According to Bishop Frame in the Lorentzian Group of Rigid Motions $\mathbb{E}(1,1)$, Bol. Soc. Paran. Mat. 30 (2) (2012), 91-100.
10. E. Loubeau and S. Montaldo: Biminimal immersions in space forms, preprint, 2004, math.DG/0405320 v1.
11. B. O'Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).
12. K. Onda: Lorentz Ricci Solitons on 3-dimensional Lie groups, Geom Dedicata 147 (1) (2010), 313-322.
13. E. Turhan and T. Körpınar: Parametric equations of general helices in the sol space $\mathfrak{S o l}^{3}$, Bol. Soc. Paran. Mat. 31 (1) (2013), 99-104.
14. E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
15. E. Turhan and T. Körpınar: On Characterization Canal Surfaces around Timelike Horizontal Biharmonic Curves in Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung AA Journal of Physical Sciences 66a (2011), 441-449.

Talat Körpinar
Firat University,
Department of Mathematics,
23119, Elaziğ, Turkey
E-mail address: talatkorpinar@gmail.com
and
Essin Turhan
Firat University,
Department of Mathematics, 23119, Elaziğ, Turkey
E-mail address: essin.turhan@gmail.com

[^0]: 2000 Mathematics Subject Classification: 53C41, 53A10

