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abstract: In this paper we investigate special generalized q-Genocchi measures.
We introduce q-Genocchi measures with weight α. The present paper deals with
q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-
Genocchi polynomials can be deduced. We apply the method of generating function,
which are exploited to derive further classes of q-Genocchi polynomials and develop
q-Genocchi measures. To be more precise, we present the integral representation
of p-adic q-Genocchi measure with weight α which yields a deeper insight into the
effectiveness of this type of generalizations. Generalized q-Genocchi numbers with
weight α possess a number of interesting properties which we state in this paper.
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1. Introduction, Definitions and Notations

The study of q-Genocchi measures and q-Genocchi polynomials and their com-
binatorial relations has received much attention [1], [2], [3], [5], [7], [9], [11], [12], [16].
Genocchi numbers and specially q-Genocchi numbers are the signs of very strong
bond between elementary number theory, complex analytic number theory, Homo-
topy theory (stable Homotopy groups of spheres), differential topology (differential
structures on spheres), theory of modular forms (Eisenstein series), p-adic ana-
lytic number theory(p-adic L-functions), quantum physics(quantum Groups). For
showing the value of this type of numbers, we list some of their applications. One
of applications of Genocchi numbers that was investigated by Jeff Remmel, In
[24], is counting the number of up-down ascent sequences. Another application
of Genocchi numbers is in Graph theory. For instance, Boolean numbers of the
associated Ferrers Graphs are the Genocchi numbers of the second kind. Also one
of application of q-Genocchi numbers is in q-Analysis. Actually there is an unex-
pected connection of the literature of p-adic analysis with q-analysis and quantum
Groups, quantum top, and thus with non commutative Geometry, and q-analysis.
For instance, spherical functions on quantum Groups are q-special functions. The
q-Genocchi numbers can be defined in number of ways. The way in which it is
defined is often determined by which sorts of applications they are intended to be
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used for. There exist two important definitions of the q-Genocchi numbers and
polynomials. The generating function definition, which is the most commonly used
definition, and q-analog of Seidel’s triangle associated to Genocchi numbers. As
such it makes it very appealing for use in combinatorial applications. This type
of definition have interesting combinatorial interpret ions in the classical model
for q-Genocchi numbers. In the last decade, a surprising number of papers ap-
peared proposing new generalizations of the Genocchi polynomials and q-Genocchi
polynomials to real and complex variables or treating other topics related to q-
Genocchi numbers. In [8], Carlitz defined q-extentions of Bernoulli numbers and
polynomials and after several mathematicians developed his definition in terms of
Genocchi numbers and defined q-Genocchi numbers and polynomials. In [25], Af-
ter Y. Simsek by applying a derivative operator and the Mellin transformation for
q-Genocchi numbers defined q-analogue of the Genocchi zeta function, q-analogue
Hurwitz type Genocchi zeta function and q-Genocchi type l-function. By using
this functions, he constructed p-adic interpolation functions which interpolate gen-
eralized q-Genocchi numbers at negative integers. Next, Professor T. Kim found
some connections between q-Genocchi numbers and q-Volkenborn integral. In [12],
Kim studied some families of multiple Genocchi numbers and polynomials. By us-
ing the fermionic p-adic invariant integral on Zp, they constructed p-adic Genocchi
numbers and polynomials of higher order. Mehmet Cenkci, et al, in [7], defined
q-extentions of p-adic measures and obtained general systems of congruences, in-
cluding Kummer-type congruences for q-Genocchi numbers. T.Kim, et al, in [22]
[23], presented new concept of Bernoulli and Euler measure of weight α. In this
paper we give another construction of q-Genocchi numbers and show the Integral
representation of p-adic q-Genocchi measures with weight α.

Assume that p be a fixed odd prime number. Throughout this paper Z, Zp, Qp

and Cp will denote by the ring of integers, the field of p-adic rational numbers and
the completion of the algebraic closure of Qp, respectively.Also we denote N∗ = N∪
{0} and exp (x) = ex. Let vp : Cp → Q ∪ {∞} (Q is the field of rational numbers)
denote the p-adic valuation of Cp normalized so that vp (p) = 1. The absolute value
on Cp will be denoted as |.|p, and |x|p = p−vp(x) for x ∈ Cp. When one talks of
q-extensions, q is considered in many ways, e.g. as an indeterminate, a complex
number q ∈ C, or a p-adic number q ∈ Cp, If q ∈ C we assume that |q| < 1. If

q ∈ Cp, we assume |1 − q|p < p−
1

p−1 , so that qx = exp (x log q) for |x|p ≤ 1. We use
the following notation

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x

1 + q
(1.1)

Where limq→1 [x]q = x; cf. [1-6,8,10-23,25].
For a fixed positive integer d with (d, f) = 1, we set

X = Xd = lim
←−
N

Z/dpNZ,

X∗ = ∪
0<a<dp
(a,p)=1

a + dpZp
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And
a + dpNZp =

{
x ∈ X | x ≡ a

(
mod dpN

)}
,

Where a ∈ Z satisfies the condition 0 ≤ a < dpN .
It is known that

µq

(
x + pNZp

)
=

qx

[pN ]q

Is a distribution on X for q ∈ Cp with |1 − q|p ≤ 1.
Let UD (Zp) be the set of uniformly differentiable function on Zp. We say that

f is a uniformly differentiable function at a point a ∈ Zp, if the difference quotient

Ff (x, y) =
f (x) − f (y)

x − y

has a limit f́ (a) as (x, y) → (a, a) and denote this by f ∈ UD (Zp) . The p-adic
q-integral of the function f ∈ UD (Zp) is defined by

Iq (f) =

∫

Zp

f (x) dµq (x) = lim
N→∞

1

[pN ]q

pN−1∑

x=0

f (x) qx (1.2)

The bosonic integral is considered as the bosonic limit q→1, I1 (f)=limq→1 Iq (f) .

Similarly we have p-adic fermionic integration defined by T.Kim [17], on Zp as fol-
lows

I−q (f) = lim
q→−q

Iq (f) =

∫

Zp

f (x) dµ−q (x)

Let q → 1, then we have p-adic fermionic integral on Zp as follows

I−1 (f) = lim
q→−1

Iq (f) = lim
N→∞

pN−1∑

x=0

f (x) (−1)x ,

So by applying f (x) = etx, we get

t

∫

Zp

extdµ−1 (x) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
(1.3)

Where Gn are Genocchi numbers. By using (1.3), we have

∫

Zp

etxdµ−1 (x) =
∞∑

n=0

Gn+1

n + 1

tn

n!

so from above, we obtain

∞∑

n=0

(∫

Zp

xndµ−1 (x)

)
tn

n!
=
∞∑

n=0

(
Gn+1

n + 1

)
tn

n!
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So by computing the coefficients of tn

n! on both sides of the above equation we
get

Gn+1

n + 1
=

∫

Zp

xndµ−1 (x)

In [3], q-extension of Genocchi numbers are defined by

G0,q = 0, q (qGq + 1)n + Gn,q =

{
[2]q , n = 0

0, n (= 0
(1.4)

with the usual convention about replacing (Gq)
n by Gn,q.

The (h, q)-extension of Genocchi numbers are defined by

G(h)
0,q = 0, q

(
qG(h)

q + 1
)n

+ G(h)
n,q =

{
[2]q , n = 0

0, n (= 0
(1.5)

with the usual convention about replacing
(
G(h)

q

)n

by G(h)
n,q (see [6]).

Recently, for n ∈ N∗, Araci et al. are defined weighted q-Genocchi numbers by

G̃(α)
0,q = 0, q1−α

(
qG̃(α)

q + 1
)n

+ G̃(α)
n,q =

{
[2]q , if n = 0

0, if n (= 0,
(1.6)

with the usual convention about replacing
(
G̃(α)

q

)n

by G̃(α)
n,q .

From (1.1) and (1.6), the Witt’s formula for the q-Genocchi numbers and poly-
nomials with weight α are defined by

G̃(α)
n,q

n
=

∫

Zp

[y]n−1
qα dµ−q (y) , where n ∈ N. (1.7)

The q-Genocchi polynomials with weight α are also defined by

G̃(α)
n,q (x) = q−αx

n∑

k=0

(
n

k

)
qαkx [x]n−k

qα G̃(α)
k,q (1.8)

By (1.1),(1.7) and (1.8), we can derive the Witt’s formula for G̃(α)
n,q (x) as follows:

G̃(α)
n,q (x)

n
=

∫

Zp

[x + y]n−1
qα dµ−q (y) , where n ∈ N. (1.9)

For n ∈ N∗ and d ∈ N, the distribution relation for the q-Genocchi polynomials
with weight α are known that

G̃(α)
n,q (x) =

[d]n−1
qα

[d]−q

d−1∑

a=0

(−1)a qaG̃(α)
n,qd

(
x + a

d

)
, (see [2] [5]) (1.10)
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Obviously, a special case of (1.10) when α = 1 is limq→1 G̃(1)
n,q (x) = Gn (x) ,

where Gn (x) are called Genocchi polynomials.
Let U be any compact open set of Zp, by the same method of [22], it can be

written as a finite disjoint union of sets

U =
k

U
j=1

(
aj + pNZp

)
,

where N ∈ N∗ and a1, a2,..., ak ∈ N with 0 ≤ ai < pN .

Lemma 1.1. Every map µ from the collection of compact-open sets in X to Qp

for which

µ
(
a + pNZp

)
=

p−1
∪

b=0

(
a + bpN + dpN+1Zp

)

holds whenever a+pNZp ⊂ X, extends to a p-adic measure on X. (for proof see [22])

In this paper, we derive our results by using Kim et al. method in [22].
The purpose of this paper is to establish p-adic q-Genocchi measure with weight α
on Zp and to derive their integral represantations. Finally, we obtain generalized q-
Genocchi numbers with weight α and some interesting properties of the generalized
q-Genocchi numbers with weight α.

2. p-adic q-Genocchi measure with weight α

In this section, by using p-adic q-integral on Zp and the following Eq. (2.1), we
derive some interesting properties concerning the q-Genocchi numbers ans polyno-
mials with weight α.

Now we define a map µ(α)
k,q on the balls in Zp as follows:

µ(α)
k,q (a + pnZp) =

[pn]k−1
qα

[pn]−q

(−1)a qaf (α)
k,pn

(
{a}n

pn

)
(2.1)

where {a}n = a (mod pn) .

Theorem 2.1. Let α, k ∈ N. Then we see that µ(α)
k,q is p-adic measure on Zp if and

only if

[p]k−1
(qpn )α

[p](−q)pn

p−1∑

b=0

(−1)bpn

qbpn

f (α)
k,(qpn )p

( a
pn + b

p

)
= f (α)

k,qpn

(
a

pn

)
.

Proof: For each n ∈ N and 0 ≤ a < pn. From expression (2.1),Then

p−1∑

b=0

µ(α)
k,q

(
a + bpn + pn+1Zp

)
=

p−1∑

b=0

[
pn+1

]k−1

qα

[pn+1]−q

(−q)a+bpn

f (α)

k,qpn+1

(
a + bpn

pn+1

)

= (−1)a qa
[p]k−1

(qpn )α [pn]k−1
qα

[p](−q)pn [pn]−q

p−1∑

b=0

(−1)bpn

qbpn

f (α)
k,(qpn )p

( a
pn + b

p

)
(2.2)
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By (2.1) , we note that µ(α)
k,q is p-adic measure on Zp if and only if

f (α)
k,qpn

(
a

pn

)
=

[p]k−1
(qpn )α

[p](−q)pn

p−1∑

b=0

(−1)bpn

qbpn

f (α)
k,(qpn )p

( a
pn + b

p

)
.

Thus, we complete the proof. !

Now, we set as follows:

f (α)
k,qpn (x) = G̃(α)

k,qpn (x) . (2.3)

From (2.1) and (2.3), we simply see that

µ(α)
k,q (a + pnZp) =

[pn]k−1
qα

[pn]−q

(−1)a qaG̃(α)
k,qpn

(
a

pn

)
(2.4)

By using (1.2), (1.10) and (2.4), we get the following theorem:

Theorem 2.2. For α, k ∈ N,we have
∫

X

dµ(α)
k,q (x) = G̃(α)

k,q .

Proof: For each k ∈ N, Thus

∫

X

dµ(α)
k,q (x) = lim

N→∞

dpN−1∑

x=0

µ(α)
k,q

(
x + dpNZp

)

= lim
N→∞

[
dpN

]k−1

qα

[dpN ]−q

dpN−1∑

a=0

(−1)a qaG̃(α)
k,qdpn

(
a

dpN

)

= G̃(α)
k,q

We arrive at the desired result. !

Let χ be Dirichlet’s character with conductor d ∈ N. Then we define the gener-
alized q-Genocchi numbers attached to χ as follows:

G̃(α)
n,χ,q = n

∫

X

χ (x) [x]n−1
qα dµ−q (x)

= lim
N→∞

n

[dpN ]−q

dpN−1∑

x=0

(−1)x qxχ (x) [x]n−1
qα

=
[d]n−1

qα

[d]−q

d−1∑

a=0

(−1)a qaχ (a)



n lim
N→∞

1

[pN ](−q)d

pN−1∑

x=0

(
−qd

)x [a
d

+ x
]n−1

qαd





=
[d]n−1

qα

[d]−q

d−1∑

a=0

(−1)a qaχ (a) G̃(α)
n,qd

(a

d

)
. (2.5)
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From (2.4) and (2.1), we can derive the following theorem.

Theorem 2.3. For each k ∈ N, we get
∫

X

χ (x) dµ(α)
k,q (x) = G̃(α)

k,χ,q.

Proof: For k ∈ N and by using (2.4) and (2.1), then

∫

X

χ (x) dµ(α)
k,q (x) = lim

N→∞

dpN−1∑

x=0

χ (x)µ(α)
k,q

(
x + dpNZp

)

= lim
N→∞

[
dpN

]k−1

qα

[dpN ]−q

dpN−1∑

x=0

χ (x) (−1)x qxG̃(α)

k,qdpN

(
x

dpN

)

=
[d]k−1

qα

[d]−q

d−1∑

a=0

(−1)a qaχ (a) lim
N→∞

[
pN
]k−1

qαd

[pN ](−q)d

pN−1∑

x=0

(−1)dx qdxG̃(α)

k,qdpN

( a
d

+ x

pN

)

=
[d]k−1

qα

[d]−q

d−1∑

a=0

(−1)a qaχ (a) G̃(α)
k,qd

(a

d

)

we obtain the desired result. !

Theorem 2.4. For each k ∈ N, we get

∫

pX

χ (x) dµ(α)
k,q (x) = χ (p)

[p]k−1
qα

[p]−q

G̃(α)
k,χ,qp .

Proof: From (2.4) and (2.1), Then

∫

pX

χ (x) dµ
(α)
k,q (x) = lim

N→∞

[
dpN+1

]k−1

qα

[dpN+1]
−q

dpN
−1∑

x=0

χ (px) (−1)px qpxG̃
(α)

k,qdpN+1

(
px

dpN+1

)

=
[p]k−1

qα

[p]
−q

[d]k−1
qαp

[d](−q)p

d−1∑

a=0

χ (pa)(−q)pa lim
N→∞

[
pN
]k−1

qdpα

[pN ](−q)dp

pN
−1∑

x=0

(−q)dpx G̃
(α)

k,qpdpN

(
dp
(
x + a

d

)

pdpN

)

=
[p]k−1

qα

[p]
−q

[d]k−1
qαp

[d](−q)p

d−1∑

a=0

(−1)a χ (p) χ (a) qpaG̃
(α)

k,qpd

(a

d

)

= χ (p)
[p]k−1

qα

[p]
−q

G̃
(α)
k,χ,qp .

Thus, we get the desired result. !

So, we get the following theorems with the same method of Theorem 2.2, The-
orem 2.3 and Theorem 2.4
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Theorem 2.5. For β ((= 1) ∈ X∗, we get

∫

pX

χ (x) dµ(α)

k,q
1
β

(βx) = χ

(
p

β

) [p]k−1

q
α
β

[p]
(−q)

1
β

G̃(α)

k,χ,q
p
β

Theorem 2.6. For β ((= 1) ∈ X∗, we get

∫

X

χ (x) dµ(α)

k,q
1
β

(βx) = χ

(
1

β

)
G̃(α)

k,χ,q
1
β

We can define the following equation,

µ(α)
k,β,q (U) = µ(α)

k,q (U) − β−1

[
β−1]k−1

qα

[
β−1]

−q

µ
k,q

1
β

(βU) (2.6)

Theorem 2.7. For β ((= 1) ∈ X∗, we get

∫

X∗

χ (x) dµ(α)
k,β,q (βx) = (1 − χp)

(
1 − β−1χβ−1

)
G̃(α)

k,χ,q.

Proof: By the definition of µ(α)
k,β,q, from Theorem 2.4, Theorem 2.5 and Theorem

2.6, we obtain

= G̃(α)
k,χ,q − χ (p)

[p]k−1
qα

[p]−q

G̃(α)
k,χ,qp −

1

β

[
1
β

]k−1

qα

[
1
β

]

−q

χ

(
1

β

)
G̃(α)

k,χ,q
1
β

+χ

(
p

β

)
[

p
β

]k−1

qα

[
p
β

]

−q

G̃(α)

k,χ,q
p
β

= (1 − χp)
(
1 − β−1χβ−1

)
G̃(α)

k,χ,q

where the operator χy = χy,k,α;q on f (q) defined by

χyf (q) = χy,k,α;qf (q) =
[y]k−1

qα

[y]−q

χ (y) f (qy) (2.7)
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From expression (2.7), we get

χx,k,α;q ◦ χy,k,α;qf (q) = χx,k,α;q
[y]k−1

qα

[y]−q

χ (y) f (qy)

=
[y]k−1

qα

[y]−q

χ (y)χ (x)
[y]k−1

qαy

[y](−q)y

χ (y) f (qxy)

=
[xy]k−1

qα

[xy]−q

χ (xy) f (qxy)

= χxy,k,α;qf (q)

= χxyf (q) .

Assume that define χx.χy = χx,k,α;q.χy,k,α;q. Then we have

χx.χy = χxy.

By the definition χx, we can simply derive the following equation:

(1 − χp)
(
1 − β−1χβ−1

)
= 1 − β−1χβ−1

− χp + β−1χpβ−1

Assume that f (q) = G̃(α)
k,χ,q. Then we get

(1 − χp)
(
1 − β−1χβ−1

)
G̃(α)

k,χ,q

Thus, we arrive at the desired result. !
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