

(3s.) **v. 31** 1 (2013): **193–204**. ISSN-00378712 IN PRESS doi:10.5269/bspm.v31i1.15264

Properties of Γ^2 defined by a modulus function

C.Murugesan and N.Subramanian

ABSTRACT: In this article, we introduces the generalized difference paranormed double sequence spaces $\Gamma^2(\Delta_{\gamma}^m, f, p, q, s)$ and $\Lambda^2(\Delta_{\gamma}^m, f, p, q, s)$ defined over a semi-normed sequence space (X, q).

Key Words: entire sequence, analytic sequence, modulus function, semi norm, difference sequence, double sequence, duals.

Contents

1	Introduction	193
2	Definitions and Preliminaries	196
3	Definitions	198
4	Main Results	199

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are due to Bromwich [4]. Later on, the double sequence spaces were studied by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$
$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn} - |^{t_{mn}} = 1 \text{ for some } \in \mathbb{C} \right\},$$
$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},$$

2000 Mathematics Subject Classification: 40A05,40C05,40D05

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat. C.MURUGESAN AND N.SUBRAMANIAN

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},\$$
$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \bigcap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \bigcap \mathcal{M}_{u}(t);$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}; \mathcal{M}_{u}(t), \mathcal{C}_{p}(t), \mathcal{C}_{0p}(t), \mathcal{L}_{u}(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [21,22] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha -, \beta -, \gamma -$ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zeltser [23] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [24] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Basar [27] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_{u}, \mathcal{M}_{u}(t), \mathcal{C}_{p}, \mathcal{C}_{bp}, \mathcal{C}_{r}$ and \mathcal{L}_{u} , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces BS, BV, CS_{bp} and the $\beta(\vartheta)$ – duals of the spaces \mathfrak{CS}_{bp} and \mathfrak{CS}_r of double series. Quite recently Basar and Sever [28] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [29] have studied the space $\chi^2_M(p,q,u)$ of double sequences and gave some inclusion relations. We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p \tag{1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n \in \mathbb{N})$ (see [1]).

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . By ϕ , we denote the set of all finite sequences.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence

is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \mathfrak{F}_{ij}$ for all $m, n \in \mathbb{N}$; where \mathfrak{F}_{ij} denotes the double sequence whose only non zero term is 1 in the $(i, j)^{th}$ place.

An FK-space(or a metric space) X is said to have AK property if (\mathfrak{S}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space (L^M) . Lindenstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p (1 \le p < \infty)$. subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3], Tripathy et al. [18], Rao and Subramanian [15], and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, non-decreasing, and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function M is replaced by subadditivity of M, then this function is called modulus function, defined by Nakano [12] and further discussed by Ruckle [16] and Maddox [8], and many others.

An Orlicz function M is said to satisfy the Δ_2 - condition for all values of u if there exists a constant K > 0 such that $M(2u) \leq KM(u) (u \geq 0)$. The Δ_2 - condition is equivalent to $M(\ell u) \leq K\ell M(u)$, for all values of u and for $\ell > 1$.

Lindenstrauss and Tzafriri^[7] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\},\$$

The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\},\$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p . If X is a sequence space, we give the following definitions:

(i)X' = the continuous dual of X;

(ii)
$$X^{\alpha} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \right\};$$

C.MURUGESAN AND N.SUBRAMANIAN

$$\begin{aligned} \text{(iii)} X^{\beta} &= \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convegent, for each } x \in X \right\};\\ \text{(iv)} X^{\gamma} &= \left\{ a = (a_{mn}) : \sup_{MN} \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, \text{ for each } x \in X \right\};\\ \text{(v)} let X \text{ bean} FK - \text{space } \supset \phi; \text{ then } X^{f} &= \left\{ f(\Im_{mn}) : f \in X' \right\};\\ \text{(vi)} X^{\delta} &= \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn} x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\}; \end{aligned}$$

 $X^{\alpha}.X^{\beta}, X^{\gamma}$ and X^{δ} are called $\alpha - (orK\"{o}the - Toeplitz)$ dual of $X, \beta - (orgeneralized - K\"{o}the - Toeplitz)$ dual of $X, \gamma -$ dual of $X, \delta -$ dual of X respectively. X^{α} is defined by Gupta and Kamptan [20]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\alpha} \subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference spaces of single sequences was introduced by Kizmaz [30] as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here w, c, c_0 and ℓ_{∞} denote the classes of all, convergent, null and bounded sclar valued single sequences respectively. The above difference spaces are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \right\}$$

where $Z = \Lambda^2, \Gamma^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$

2. Definitions and Preliminaries

 Γ_M^2 and Λ_M^2 denote the Pringscheim's sense of double Orlicz space of entire sequences and Pringscheim's sense of double Orlicz space of bounded sequences respectively.

The notion of a modulus function was introduced by Nakano [12]. We recall that a modulus f is a function from $[0, \infty) \to [0, \infty)$, such that

(1) f(x) = 0 if and only if x = 0

- (2) $f(x+y) \leq f(x) + f(y)$, for all $x \geq 0, y \geq 0$,
- (3) f is increasing,

(4) f is continuous from the right at 0. Since $|f(x) - f(y)| \le f(|x - y|)$, it follows from condition (4) that f is continuous on $[0, \infty)$.

Let $p = (p_{mn})$ be a sequence of strictly positive real numbers and $s \ge 0$. Let X be semi-normed space over the field \mathbb{C} of complex numbers with the semi-norm q. The symbol $w^2(X)$ denotes the space of all sequences defined over X. such that

 $p_{mn} > 0$ for all m, n and $sup_{mn}p_{mn} = H < \infty, v = (v_{mn})$ be any fixed sequence of non-zero complex numbers and $m \in \mathbb{N}$ be fixed. Define the sets :

$$\begin{split} \Gamma_M^2 &= \left\{ x \in w^2 : \left(M\left(\frac{\left(\left(|x_{mn}| \right)^{1/m+n}}{\rho} \right) \right) \to 0 \, as \, m, n \to \infty \, for \, some \, \rho > 0 \right\} \text{ and} \\ \Lambda_M^2 &= \left\{ x \in w^2 : sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn}|^{1/m+n}}{\rho} \right) \right) < \infty \, for \, some \, \rho > 0 \right\}. \end{split}$$

The space Γ_M^2 and Λ_M^2 is a metric space with the metric

$$d(x,y) = \inf\left\{\rho > 0 : \sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn} - y_{mn}|}{\rho}\right)\right)^{1/m+n} \le 1\right\}$$

Now we define the following sequence spaces:

$$\begin{split} &\Gamma^{2}\left(\Delta_{v}^{m}, f, p, q, s\right) = \\ &\left\{x \in w^{2}\left(X\right) : (mn)^{-s}\left(f\left(q\left(|\Delta_{v}^{m}x_{mn}|\right)^{1/m+n}\right)\right)^{p_{mn}} \to 0\left(m, n \to \infty\right), s \ge 0\right\} \\ &\Lambda^{2}\left(\Delta_{v}^{m}, f, p, q, s\right) = \left\{x \in w^{2}\left(X\right) : sup_{mn}\left(mn\right)^{-s}\left(f\left(q\left(|\Delta_{v}^{m}x_{mn}|\right)^{1/m+n}\right)\right)^{p_{mn}} < \infty, s \ge 0\right\} \\ &\text{where} \\ &\Delta_{v}^{0}x_{mn} = (v_{mn}x_{mn}), \Delta_{v}x_{mn} = (v_{mn}x_{mn} - v_{mn+1}x_{mn+1} - v_{m+1n}x_{m+1n} + v_{m+1n+1}x_{m+1n+1}) \end{split}$$

 $\begin{array}{l} \Delta_v^m x_{mn} = \Delta \Delta_v^{m-1} x_{mn} = \left(\Delta_v^{m-1} x_{mn} - \Delta_v^{m-1} x_{mn+1} - \Delta_v^{m-1} x_{m+1n} + \Delta_v^{m-1} x_{m+1n+1} \right) \\ \text{where } f \text{ is a modulus function. The following inequality will be used through this article. Let } p = (p_{mn}) \text{ be a sequence of positive real numbers with } 0 < p_{mn} \leq sup_{mn} p_{mn} = H, D = max \left(1, 2^{H-1} \right). \text{ Then, for } a_{mn}, b_{mn} \in \mathbb{C}, \text{ we have} \end{array}$

$$|a_{mn} + b_{mn}|^{p_{mn}} \le D\{|a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}}\}$$

Some well-known spaces are obtained by specializing f, s, q, v, and m.

(1) If
$$f(x) = x, m = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

with 1 in the upto $(m, n)^{th}$ position and zero other wise and q(x) = |x|, then $\Gamma^2(\Delta_v^m, f, p, q, s) = \Gamma^2(p, s)$ and $\Lambda^2(\Delta_v^m, f, p, q, s) = \Lambda^2(p, s)$.

,

(2) If
$$f(x) = x, m = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

with 1 in the upto $(m, n)^{th}$ position and zero other wise and q(x) = |x|, s = 0, then $\Gamma^2(\Delta_v^m, f, p, q, s) = \Gamma^2(p)$ and $\Lambda^2(\Delta_v^m, f, p, q, s) = \Lambda^2(p)$.

(3) If
$$m = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & \cdot \\ \cdot & & & & & \cdot \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

with 1 in the upto $(m, n)^{th}$ position and zero other wise and q(x) = |x|, then $\Gamma^2(\Delta_v^m, f, p, q, s) = \Gamma^2(p, f, s)$ and $\Lambda^2(\Delta_v^m, f, p, q, s) = \Lambda^2(p, f, s)$.

3. Definitions

Definition 3.1. Let p,q be semi norms on a vector space X. Then p is said to be stronger that q if (x_{mn}) is a sequence such that $p(x_{mn}) \to 0$, whenever $q(x_{mn}) \to 0$. If each is stronger than the other, then the p and q are said to be equivalent.

Lemma 3.2. Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \leq Mp(x)$ for all $x \in X$.

Definition 3.3. (1) A sequence space X is said to be solid or normal if $(\alpha_{mn}x_{mn}) \in X$ whenever $(x_{mn}) \in X$ and for all sequences of scalars (α_{mn}) with $|\alpha_{mn}| \leq 1$, for all $m, n \in \mathbb{N}$.

(2) Symmetric if $(x_{mn}) \in X$ implies $(x_{\pi(mn)}) \in X$, where $\pi(mn)$ is a permutation of $\mathbb{N} \times \mathbb{N}$;

(3) Sequence algebra if $x \cdot y \in X$ whenever $x, y \in X$.

Definition 3.4. A sequence space X is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark 3.5. From Definition 3.3 and 3.4, it is clear that if a sequence space X is solid then X is monotone.

Definition 3.6. A sequence space X is said to be convergence free if $(y_{mn}) \in X$ whenever $(x_{mn}) \in X$ and $x_{mn} = 0$ implies that $y_{mn} = 0$.

Properties of Γ^2 defined by a modulus function

4. Main Results

Theorem 4.1. Let $p = (p_{mn})$ be a analytic sequence. Then $\Gamma^2(\Delta_v^m, f, p, q, s)$ are linear spaces

Proof: Let $x, y \in \Gamma^2(\Delta_v^m, f, p, q, s)$. For $\lambda, \mu \in \mathbb{C}$, there exists positive integers M_{λ} and N_{μ} , such that $|\lambda| \leq M_{\lambda}$ and $|\mu| \leq N_{\mu}$. Since f is subadditive, q is a seminorm, and Δ_v^m is linear, we have

$$(mn)^{-s} \left[f\left(q\left(|\Delta_v^m\left(\lambda x_{mn} + \mu y_{mn}\right)|\right)^{\frac{1}{m+n}}\right) \right]^{pmn} \le D\left(max\left(1, |M_\lambda|^H\right)\right) (mn)^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{pmn} + D\left(max\left(1, |N_\mu|^H\right)\right) (mn)^{-s} \left[f\left(q\left(|\Delta_v^m y_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{pmn} \to 0 \text{ as } m, n \to \infty. \text{ This means that } \lambda x + \mu y \in \Gamma^2\left(\Delta_v^m, f, p, q, s\right). \text{ Hence, } \Gamma^2\left(\Delta_v^m, f, p, q, s\right) \text{ is a linear space.}$$

Theorem 4.2. The space $\Gamma^2(\Delta_v^m, f, p, q, s)$ is a paranormed space, paranormed by $g(x) = \sum_{i=1}^{\mu} \sum_{j=1}^{\eta} f(q(v_{ij}x_{ij})) + \sup_{mn} (mn)^{-s} \left[f\left(q(|\Delta_v^m x_{mn}|)^{\frac{1}{m+n}}\right) \right]^{p_{mn/M}}$ where $M = max(1, sup_{mn}p_{mn})$

Proof: Clearly g(x) = g(-x) for all $x \in \Gamma^2(\Delta_v^m, f, p, q, s)$. It is trivial that $(|\Delta_v^m(x_{mn})|)^{\frac{1}{m+n}} = \overline{\theta}$ for $x_{mn} = \overline{\theta}$,

where $\overline{\theta} = \begin{pmatrix} \theta, & \theta, & \dots \theta, & \theta, \dots \\ \theta, & \theta, & \dots \theta, & \theta, \dots \\ \vdots & & & \\ \theta, & \theta, & \theta, & \theta \end{pmatrix}$ and is the zero element of X. Since $q(\overline{\theta}) = 0$

and f(0) = 0, we get $g(\overline{\theta}) = 0$. Since $t_{mn} = p_{mn}/M \leq 1$, if a_{mn} and b_{mn} are complex numbers, then we have

$$|a_{mn} + b_{mn}|^{t_{mn}} \le D\left\{ |a_{mn}|^{t_{mn}} + |b_{mn}|^{t_{mn}} \right\}$$

Since $M \geq 1$, the above inequality implies that $\sum_{i=1}^{\mu} \sum_{j=1}^{\eta} f\left(q\left(v_{ij}x_{ij}+v_{ij}y_{ij}\right)\right)+sup_{mn}\left(mn\right)^{-s} \left[f\left(q\left(|\Delta_v^m\left(x_{mn}+y_{mn}\right)|\right)^{\frac{1}{m+n}}\right)\right]^{p_{mn/M}} \leq \sum_{i=1}^{\mu} \sum_{j=1}^{\eta} f\left(q\left(v_{ij}x_{ij}\right)\right)+sup_{mn}\left(mn\right)^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\right]^{p_{mn/M}} + \sum_{i=1}^{\mu} \sum_{j=1}^{\eta} f\left(q\left(v_{ij}y_{ij}\right)\right)+sup_{mn}\left(mn\right)^{-s} \left[f\left(q\left(|\Delta_v^m y_{mn}|\right)^{\frac{1}{m+n}}\right)\right]^{p_{mn/M}}$ Now, it follows that g is subadditive. Next, let λ be a non-zero scalar. The continuity of scalar multiplication follows from the inequality

$$g(\lambda x) \leq K_{\lambda} \sum_{i=1}^{\mu} \sum_{j=1}^{\eta} f(q(v_{ij}x_{ij})) + \sup_{mn} (mn)^{-s} \left(K_{\lambda}^{p_{mn}/M}\right) \left[f\left(q\left(|\Delta_{v}^{m}x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{p_{mn/M}} \leq max \left(1, K_{\lambda}^{H/M}\right) g(x),$$

where K_{λ} is an integer such that $|\lambda| < K_{\lambda}$. This completes the proof. \Box

Theorem 4.3. Let f, f_1 and f_2 be modulus functions, q, q_1 and q_2 be seminorms, and s, s_1 and $s_2 \ge 0$. Then, $(1)\Gamma^2(\Delta_v^m, f_1, p, q, s) \subseteq \Gamma^2(\Delta_v^m, f \circ f_1, p, q, s),$ $(2)\Gamma^2(\Delta_v^m, f_1, p, q, s) \cap \Gamma^2(\Delta_v^m, f_2, p, q, s) \subseteq \Gamma^2(\Delta_v^m, f_1 + f_2, p, q, s),$ $(3) \Gamma^2(\Delta_v^m, f, p, q_1, s) \cap \Gamma^2(\Delta_v^m, f, p, q_2, s) \subseteq \Gamma^2(\Delta_v^m, f, p, q_1 + q_2, s),$ $(4) If q_1 is stronger than q_2, then \Gamma^2(\Delta_v^m, f, p, q_1, s) \subseteq \Gamma^2(\Delta_v^m, f, p, q_2, s),$ $(5) If s_1 \le s_2, then \Gamma^2(\Delta_v^m, f, p, q, s_1) \subseteq \Gamma^2(\Delta_v^m, f, p, q, s_2),$

Proof: Let $S_{mn} = (mn)^{-s} \left[f_1 \left(q \left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \right) \right]^{p_{mn}} \to 0, (m, n \to \infty)$ Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 \le t \le \delta$. Now we write

$$I_1 = \left\{ (m,n) \in \mathbb{N} : f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \le \delta \right\},$$
$$I_2 = \left\{ (m,n) \in \mathbb{N} : f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) > \delta \right\},$$

If $x \in \Gamma^2(\Delta_v^m, f_1, p, q, s)$, then for $f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) > \delta$, $f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) < f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\delta^{-1} < 1 + \left[f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\delta^{-1}\right]$

where $m, n \in I_2$ and [u] denotes the integer part of u. Given $\epsilon > 0$, by the definition of f, we have for $f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) > \delta$, $f\left(f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\right) \le \left(1 + \left[f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \delta^{-1}\right]\right)f(1)$ $\le 2f(1)\left(f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\right)\delta^{-1}$ and hence,

$$(mn)^{-s} \left[f\left(f_1\left(q\left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \right) \right) \right]^{p_{mn}} \le \left[2f\left(1 \right) \delta^{-1} \right]^H S_{mn} < \epsilon, (m, n \in I_2)$$
(2)

and $m, n > m_2 n_2$.

If $x \in \Gamma^2(\Delta_v^m, f_1, p, q, s)$, for $\left(f_1\left(f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\right)\right) \leq \delta$, $\left(f\left(f_1\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)\right)\right) < \epsilon$, where $(m, n) \in I_1$. Therefore, given $\epsilon > 0$ if $m, n \in I_2$, we have

$$(mn)^{-s} \left[f\left(f_1\left(q\left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \right) \right) \right]^{p_{mn}} \le (mn)^{-s} \max\left(\epsilon^{infp_{mn}}, \epsilon^{sup_{mn}p_{mn}} \right) < \epsilon,$$
(3)

 $(m, n \in I_1), mn > m_1 n_1$

From (2) and (3) for every $m, n > max \{(m_1n_1), (m_2n_2)\},\$

 $(mn)^{-s} \left[f\left(f_1\left(q\left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \right) \right) \right]^{p_{mn}} < \epsilon.$

Hence, $x \in \Gamma^2(\Delta_v^m, f \circ f_1, p, q, s)$. Thus, $\Gamma^2(\Delta_v^m, f_1, p, q, s) \subseteq \Gamma^2(\Delta_v^m, f \circ f_1, p, q, s)$ (2) It follows from the inequality

$$(mn)^{-s} \Big[(f_1 + f_2) \Big((|\Delta_v^m x_{mn}|)^{\frac{1}{m+n}} \Big) \Big]^{p_{mn}} \leq D(mn)^{-s} \Big[f_1 \Big(q \left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \Big) \Big]^{p_{mn}} + D(mn)^{-s} \Big[f_2 \Big(q \left(|\Delta_v^m x_{mn}| \right)^{\frac{1}{m+n}} \Big) \Big]^{p_{mn}}.$$

Since (3),(4) and (5) can be established by the same way, we omit the detail. \Box

Proposition 4.4. The following inclusion relations hold: (1) $\Gamma^2(\Delta_v^m, p, q, s) \subseteq \Gamma^2(\Delta_v^m, f, p, q, s)$, (2) $\Gamma^2(\Delta_v^m, f, p, q) \subseteq \Gamma^2(\Delta_v^m, f, p, q, s)$, (3) $\Gamma^2(\Delta_v^m, p, q) \subseteq \Gamma^2(\Delta_v^m, p, q, s)$.

The proof of the inclusions in (1)-(3) is routine verification. So, we leave it to the reader.

Proposition 4.5. If $q_1 \cong q_2$, then $\Gamma^2(\Delta_v^m, f, p, q_1, s) = \Gamma^2(\Delta_v^m, f, p, q_2, s)$

Theorem 4.6. For any two sequences $p = (p_{mn})$ and $t = (t_{mn})$ of strictly positive real numbers and for any two semi norms q_1 and q_2 on X, the spaces $\Gamma^2(\Delta_v^m, f, p, q_1, s)$ and $\Gamma^2(\Delta_v^m, f, p, q_2, s)$ are not disjoint.

Proof: Since the zero element belongs to each of the above classes of double sequences, the intersection is non empty. $\hfill \Box$

Theorem 4.7. For any two sequences (p_{mn}) and (t_{mn}) , we have $\Gamma^2(\Delta_v^m, f, t, q) \subset \Gamma^2(\Delta_v^m, f, p, q)$ if and only if $\liminf \frac{p_{mn}}{t_{mn}} > 0$.

Proof: If we take
$$y_{mn} = f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right)$$
 for all $m, n \in \mathbb{N}$.

Theorem 4.8. For any two sequences (p_{mn}) and (t_{mn}) , the spaces $\Gamma^2(\Delta_v^m, f, t, q)$ and $\Gamma^2(\Delta_v^m, f, p, q)$ are identical if and only if $\liminf \frac{p_{mn}}{t_{mn}} > 0$ and if and only if $\liminf \frac{t_{mn}}{p_{mn}} > 0$.

Theorem 4.9. $\Gamma^2(\Delta_v^m, f, p, q, s)$ is not solid for m > 0To prove that the space $\Gamma^2(\Delta_v^m, f, p, q, s)$ is not solid, in general, we give the following counter-example: Let $X = \mathbb{C}, f(x) = x, q(x) = |x|, \alpha_{mn} = (-1)^{mn}, s = 0, v = (v_{mn})$ with $v = (v_{mn}) = p_{mn} = 1$ for all $m, n \in \mathbb{N}$. Then, $|x_{mn}|^{\frac{1}{m+n}} = (mn)^{m-1} \in \Gamma^2(\Delta_v^m, f, p, q, s),$ but $(\alpha_{mn}x_{mn}) \notin \Gamma^2(\Delta_v^m, f, p, q, s)$.

Theorem 4.10. $\Gamma^2(\Delta_v^m, f, p, q, s)$ is not sequence algebra

Proof: Let
$$q(x) = |x|, f(x) = x, s = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \dots & 1 \\ 1, & 1, & \dots & 1 \\ \cdot & & & & \\ \cdot & & & & \\ 1, & 1, & \dots & 1 \end{pmatrix}$$
 and

 $p_{mn} = 1$ for all $m, n \in \mathbb{N}$.

Consider $|x_{mn}|^{\frac{1}{m+n}} = (mn)^{m-1}$ and $|y_{mn}|^{\frac{1}{m+n}} = (mn)^{m-1}$, then $x, y \in \Gamma^2(\Delta_v^m, f, p, q, s)$ and $x \cdot y \notin \Gamma^2(\Delta_v^m, f, p, q, s)$.

Theorem 4.11. The space $\Gamma^2(\Delta_v^m, f, p, q, s)$ is not convergence free in general

Proof: To prove that the space $\chi^2(\Delta_v^m, f, p, q, s)$ is not convergence free, in general, we give the following counter-example: Consider the sequences $(\Delta_v^m x_{mn})$, $(\Delta_v^m y_{mn}) \in \Gamma^2(\Delta_v^m, f, p, q, s) \text{ defined by } (\Delta_v^m x_{mn}) = \left(\frac{1}{m+n}\right)^{m+n} \text{ and } (\Delta_v^m y_{mn}) = \left(\frac{m-n}{m+n}\right)^{m+n} \text{ for all } m, n \in \mathbb{N}. \text{ Then,}$ $\begin{pmatrix} \frac{m-n}{m+n} \end{pmatrix} \text{ for all } m, n \in \mathbb{N}. \text{ Then,}$ $(mn)^{-s} \left[f\left(q\left(\frac{1}{(m+n)}\right)\right) \right]^{p_{mn}} \to 0, \text{ as } m, n \to \infty, \text{ which implies that } (\Delta_v^m x_{mn}) \to 0, \text{ as } m, n \to \infty. \text{ Similarly, } (mn)^{-s} \left[f\left(q\left(\frac{m-n}{(m+n)}\right)\right) \right]^{p_{mn}} \to 0 \text{ as } m, n \to \infty. \text{ But,}$ $\{\Delta_v^m y_{mn}\} \text{ does not tends to zero, as } m, n \to \infty. \text{ This step completes the proof. } \Box$

Theorem 4.12. Let f be a modulus function. Then $\Gamma^2(\Delta_v^m, f, p, q, s) \subseteq \Lambda^2(\Delta_v^m, f, q, q, s)$ p,q,s) and the inclusions are strict

 $\begin{array}{l} \begin{array}{l} \textbf{(mn)}^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{p_{mn}} \leq D\left(mn\right)^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{p_{mn}} \\ \text{Then, there exists an integer } K \text{ such that} \\ (mn)^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{p_{mn}} \leq D\left(mn\right)^{-s} \left[f\left(q\left(|\Delta_v^m x_{mn}|\right)^{\frac{1}{m+n}}\right) \right]^{p_{mn}} + max \left[1, (K)^H\right]. \\ \text{Therefore, } x \in \Lambda^2 \left(\Delta_v^m, f, p, q, s\right). \end{array}$

Example 4.13. Let $q(x) = |x|, f(x) = 0, s = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \dots & 1 \\ 1, & 1, & \dots & 1 \\ \cdot & & & \\ \cdot & & & \\ \cdot & & & \\ 1, & 1, & \dots & 1 \end{pmatrix}$ and $p_{mn} = 1$ for all $m, n \in \mathbb{N}$. Then $x = (mn)^{m(m+n)} = (mn)^{m^2 + mn} \in \Lambda$ $p,q,s), but x \notin \Gamma^2(\Delta_v^m, f, p, q, s).$ Since $|\Delta_v^m(mn)^m|^{\frac{1}{m+n}} = (-1)^m \cdot m!.$

References

- 1. T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- 3. C.Bektas and Y.Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, *Indian J. Pure Appl. Math.*, **34(4)** (2003), 529-534.
- 4. T.J.I'A.Bromwich, An introduction to the theory of infinite series *Macmillan and Co.Ltd.*, New York, (1965).
- 5. G.H.Hardy, On the convergence of certain multiple series, *Proc. Camb. Phil. Soc.*, **19** (1917), 86-95.
- M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- 7. J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
- 9. F.Moricz, Extentions of the spaces c and c_0 from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129-136.
- F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- 11. M.Mursaleen, M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Math.*, Vol. XXXII (1999), 145-150.
- 12. H.Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- 13. W.Orlicz, Über Raume (L^M) Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
- S.D.Parashar and B.Choudhary, Sequence spaces defined by Orlicz functions, *Indian J. Pure Appl. Math.*, 25(4)(1994), 419-428.
- 15. K.Chandrasekhara Rao and N.Subramanian, The Orlicz space of entire sequences, *Int. J. Math. Math. Sci.*, **68**(2004), 3755-3764.
- W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, 25(1973), 973-978.
- B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
- B.C.Tripathy, M.Et and Y.Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. and Appl., 1(3)(2003), 175-192.
- A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
- P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- 21. A.Gökhan and R.Colak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., **157(2)**, (2004), 491-501.
- 22. A.Gökhan and R.Colak, Double sequence spaces ℓ_2^{∞} , *ibid.*, **160(1)**, (2005), 147-153.
- 23. M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- 24. M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.

- M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
- M.Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
- B.Altay and F.Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
- 28. F.Basar and Y.Sever, The space \mathcal{L}_p of double sequences, *Math. J. Okayama Univ*, **51**, (2009), 149-157.
- 29. N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, *Fasciculi Math.*, **46**, (2010).
- 30. H.Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.

C.Murugesan Department of Mathematics, SATHYABAMA University, Chennai-600 119, India. E-mail address: muruga23@sify.com

and

N.Subramanian Department of Mathematics, SASTRA University, Tanjore-613 401, India. E-mail address: nsmaths@yahoo.com