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Existence of solutions for a boundary problem involving

p(x)-biharmonic operator

Abdel Rachid El Amrouss and Anass Ourraoui

abstract: In this paper, we establish the existence of at least three solutions to a
boundary problem involving the p(x)-biharmonic operator. Our technical approach
is based on theorem obtained by B. Ricceri’s variational principle and local mountain
pass theorem without (Palais-Smale) condition.
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1. Introduction

The study of various mathematical problems with variable exponent have re-
ceived a lot of attention in recent years [1,14]. Fourth order equations appears in
many contexts. Some of these problems come from different areas of applied math-
ematics and physics such as Micro Electro-Mechanical systems, surface diffusion
on solids, flow in Hele-Shaw cells (see [9]). In addition, this type of equation can
describe the static from change of beam or the sport of rigid body, there are many
authors have pointed out that type of non linearity furnishes a model to study
traveling waves in suspension bridges (see [5,11]).

In this paper, we consider the following p(x)−biharmonic problem with a bound-
ary condition,

(P)

{
∆2

p(x)u + a(x) | u |p(x)−2 u = f(x, u) + λg(x, u) in Ω,

Bu = Tu = 0 on ∂Ω,

here Ω is a bounded open domain in R
N with smooth boundary ∂Ω, ∆2

p(x)u =

∆(| ∆u |p(x)−2 ∆u) is the p(x)−biharmonic with p ∈ C(Ω), p(x) > 1, λ ∈ R ,
a ∈ L∞(Ω) such that infx∈Ω a(x) = a− > 0.
Bu = Tu = 0 denotes the following boundary conditions:
(1) B = B1, T = T1, Navier boundary condition, i.e. B1u = ∆u = 0 and T1u =
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u = 0 on ∂Ω.
(2) B = B2, T = T2, Neumann boundary condition, i.e B2u = ∂u

∂ν
= 0 and T2u =

∂
∂ν

(| ∆u |p(x)−2 ∆u) = 0 on ∂Ω, where ν is the outward unit normal to ∂Ω.

Denote by F (x, t) =
∫ t

0
f(x, s)ds , G(x, t) =

∫ t

0
g(x, s)ds , p− := infx∈Ω p(x) and

p+ := supx∈Ω p(x). Throughout this paper, we suppose the following assumptions:

(F ) f, g ∈ C(Ω×R, R) such that | f(x, t) |, | g(x, t) |≤ C1 +C2 | t |q(x)−1 (1.1)

∀(x, t) ∈ Ω × R, where q ∈ C(Ω), C1, C2 > 0 and 1 ≤ q(x) < p∗(x) ∀x ∈ Ω,
with

p∗(x) :=

{
N−p(x)
N−2p(x) if p(x) < N

2 ,

+∞ if p(x) ≥ N
2 .

(F1) lim|t|→∞[F (x, t) − λ1

p(x) | t |p
−

] = −∞ uniformly for almost every x ∈ Ω.

(F2) There exist x0 ∈ Ω, r0 ∈]0, 1[ and t0 > 1 with B(x0, 2r0) ⊂ Ω such that
F (x, t) ≥ 0 for x ∈ B(x0, 2r0) ⊂ Ω and t ∈]0, t0],
F (x, t0) ≥ C0 for x ∈ B(x0, r0).

Where

C0 = [(
2

r0
)p+(B(x0,2r0))(2N − 1)+ | a |∞ 2N ]

| t0 |p
+(B(x0,2r0))

p−(B(x0, 2r0))
,

and

p−(B(x0, 2r0)) = inf
x∈B(x0,2r0)

p(x), p+(B(x0, 2r0)) = sup
x∈B(x0,2r0)

p(x).

(F ′
2) There exist ξ ∈ R such that

∫

Ω

F (x, ξ)dx >

∫

Ω

a(x)

p(x)
| ξ |p(x) dx.

(F3) There exist b0 > 0, δ > 0 such that
F (x, t) ≤ b0 | t |q0(x),∀x ∈ Ω, | t |< δ, where q0 ∈ C(Ω) with p+ < q0(x) < p∗(x)

for x ∈ Ω.
(G1) There exist an open ball B(x1, r1) ⊂ Ω, β ∈ C(B(x1, r1), R) with 1 ≤ β(x) ≤
β+(B(x1, r1)) ≤ p−(B(x1, r1)), b > 0 and γ > 0 such that

G(x, t) ≥ b | t |β
+(B(x1,r1)) for all x ∈ (B(x1, r1)) and | t |< γ.

With

β+(B(x1, r1)) = sup
x∈B(x1,r1)

β(x), β−(B(x1, r1) = inf
x∈B(x1,r1)

β(x).

(G2) lim sup
t→0

infx∈Ω G(x, t)

| t |p−
= +∞.

In the case B = B1 and T = T1, we claim the following theorem.
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Theorem 1.1. Suppose that assumptions (F1), (F2), (F3), (G1) and (F ) hold.
Then, there exists λ∗ > 0 such that for any λ ∈]0, λ∗[, the problem (P) admits at
least three weak solutions.

The case B = B2, T = T2, we have the following result.

Theorem 1.2. Under the assumptions (F1) ,(F ′
2) ,(F3) (G2) and (F ). Then, there

exists λ∗ > 0 such that for any λ ∈]0, λ∗[, the problem (P) has at least three weak
solutions.

Many authors consider the existence of multiple nontrivial solutions for some
fourth order problems [11,16]. In particular, Li and Tang [10] consider the p-
biharmonic equation. Using the modified three critical points theorem of B. Ricceri
they get at least three solutions. The p(x)−biharmonic operator possesses more
complicated nonlinearities than p−biharmonic, for example, it is inhomogeneous.
Recently, in [4] A. Ayoujil and A. R. El Amrouss interested to the spectrum of a
fourth order elliptic equation with variable exponent. They proved the existence
of infinitely many eigenvalue sequences and supΛ = +∞, where Λ is the set of all
eigenvalues. Moreover, they present some sufficient conditions for infΛ = 0.

The technical approach is based on the Ricceri’s variational principle and local
mountain pass theorem[3], without Palais- Smale condition. One of the first result
in this direction was obtained by Shao-Gao Deng [6] for the p(x)− laplacien, here,
we borrow some ideas from that work. The purpose of this work is to improve the
results of [6] and extend them to the case of p(x)-biharmonic equation with Navier
and Neumann condition.

This article consists of three sections. In section 2, we start with some prelim-
inary basic results on theory of Lesbegue-Sobolev spaces with variables exponent
(we refer to the book of Musielak [13] , Mihăilescu and Rădulescu [12]), we recall
Ricceri’s variational principle with some results which are needed later. In section
3, we give the proof of the main result.

2. Preliminaries

2.1. Variable exponent space and Sobolev Spaces

In order to deal with the problem (P), we need some theory of variable exponent
Sobolev Space. For convenience, we only recall some basic facts which will be used
later. Suppose that Ω ⊂ R

N be a bounded domain with smooth boundary ∂Ω.
Let C+(Ω) = {p ∈ C(Ω) such that infx∈Ω p(x) > 1}. For any p(x) ∈ C+(Ω),

denote by p∗k(x) =

{
N−p(x)
N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

Define the variable exponent Lebesgue space Lp(x)(Ω),
Lp(x)(Ω) = {u ∈ L1(Ω) :

∫
Ω
| u |p(x) dx < ∞} then Lp(x)(Ω) endowed with the

norm

‖ u ‖p(x)= inf{λ > 0 :

∫

Ω

|
u

λ
|p(x) dx ≤ 1}

becomes a Banach space separable and reflexive space.
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Proposition 2.1. Set, ρ(u) =
∫
Ω
| u |p(x) dx, if u ∈ Lp(x)(Ω) we have :

(1) ‖ u ‖p(x)≥ 1 ⇒‖ u ‖p−

p(x)≤ ρ(u) ≤‖ u ‖p+

p(x) .

(2) ‖ u ‖p(x)≤ 1 ⇒‖ u ‖p−

p(x)≥ ρ(u) ≥‖ u ‖p+

p(x) .

Define the variable exponent Sobolev space W k,p(x)(Ω) by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), | α |≤ k},

where Dαu = ∂|α|

∂α1x1...∂αN xN
with α = (α1, α2, ..., αN ) is a multi-index and | α |=

ΣN
i=1αi.

The space W k,p(x)(Ω) with the norm ‖ u ‖= Σ|α≤k| ‖ Dαu ‖p(x) is a Banach
separable and reflexive space.

Proposition 2.2. ( [2,7,13]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all
x ∈ Ω, there is a continuous and compact embedding

W k,p(x)(Ω) →֒ Lr(x)(Ω).

We denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω).

Remark 2.1. 1)(W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω), ‖ . ‖) is a Banach space separable and

reflexive space.
2) Define ‖ u ‖a= inf{λ > 0 :

∫
Ω
[| ∆u

λ
|p(x) +a(x) | u

λ
|p(x)]dx ≤ 1}, for all

u ∈ W 2,p(x)(Ω) or W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω) then ‖ u ‖a is a norm on W 2,p(x)(Ω)

and W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω), equivalent the usual one.

3) By the above remark and proposition 2.2 there is a continuous and compact

embedding of W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω) into Lr(x)(Ω), where r(x) < p∗(x) for all

x ∈ Ω.

Proposition 2.3. Set ρa(u) =
∫
Ω
[| ∆u |p(x) +a(x) | u |p(x)]dx. For u, un ∈

W 2,p(x)(Ω) we have,

(1) ‖ u ‖a≤ 1 ⇒‖ u ‖p+

a ≤ ρa(u) ≤‖ u ‖p−

a .

(2)‖ u ‖a≥ 1 ⇒‖ u ‖p+

a ≥ ρa(u) ≥‖ u ‖p−

a .
(3) ‖ un ‖a→ 0 ⇔ ρa(un) → 0.
(4) ‖ un ‖a→ +∞ ⇔ ρa(un) → +∞.

The proof is similar to proof in [7] [Theorem 3.1].

Proposition 2.4. ( [7]). For any u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω), we have

|

∫

Ω

uvdx |≤ (
1

p−
+

1

q−
) ‖ u ‖p(x)‖ v ‖q(x),

where 1
p(x) + 1

q(x) = 1.

We denote by X = W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω) when B = B1, T = T1 and X =

W 2,p(x)(Ω) if B = B2 and T = T2.
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Definition 2.1. Let u ∈ X, u is called weak solution of problem (P) if for all
v ∈ X,

∫

Ω

| ∆u |p(x)−2 ∆u∆vdx+

∫

Ω

a(x) | u |p(x−2) uvdx =

∫

Ω

f(x, u)vdx+λ

∫

Ω

g(x, u)vdx.

We define ,
I(u) =

∫
Ω

1
p(x) [| ∆u |p(x) +a(x) | u |p(x)]dx−

∫
Ω

F (x, u)dx and J(u) = −
∫
Ω

G(x, u)dx,

where F (x, t) =
∫ t

0
f(x, s)ds, G(x, t) =

∫ t

0
g(x, s)ds and ϕ = I + λJ, λ ∈ R.

The following proposition will be used later,

Proposition 2.5. (1) Let L(u) =
∫
Ω

1
p(x) [| ∆u |p(x) +a(x) | u |p(x)]dx. Then the

functional L : X → R is sequentially weakly lower semi continuous, L ∈ C1(X, R).
(2) the mapping L′ : X → X ′ is a strictly monotone, bounded homeomorphism and
is of type S+ , namely, un ⇀ u and lim supn→∞ L′(un)(un − u) ≤ 0 implies that
un → u, where → and ⇀ denote the strong and weak convergence respectively.

Proof: : (1) Since
∫
Ω

1
p(x) | u |p(x) dx ∈ C1(X, R) then L is well defined and L ∈

C1(X, R). By the continuity and convexity of L, we deduce that L is sequentially
weakly lower semi continuous .
(2) Since L′ is Fréchet derivative of L then L is continuous and bounded. We set

Up = {x ∈ Ω : p(x) ≥ 2},

Vp = {x ∈ Ω : 1 < p(x) < 2}.

By the elementary inequalities, we have ∀x, y ∈ R
N

| x − y |γ≤ 2γ(| x |γ−2 x− | y |γ−2 y).(x − y) if γ ≥ 2,

| x − y |2≤
1

γ − 1
(| x | + | y |)2−γ(| x |γ−2 x− | y |γ−2 y).(x − y) if 1 < γ < 2,

where x.y denotes the usual inner product in R
N . Then for all u, v ∈ X such that

u 6= v 〈L′(u) − L′(v), u − v〉 > 0, which means that L′ is strictly monotone. Let
(un)n be a sequence of X such that

un ⇀ u in X

and

lim sup
n→∞

〈L′(un), un − u〉 ≤ 0.

It suffices to show that
∫

Ω

(| ∆un − ∆u |p(x) +a(x) | un − u |p(x)) → 0, (2.1)
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by the monotonicity of L′ , we claim that

〈L′(un) − L′(u), un − u〉 ≥ 0.

Since un ⇀ u in X then

lim sup
n→∞

〈L(un) − L(u), un − u〉 = 0. (2.2)

Put
χn(x) = (| ∆u |p(x)−2 ∆un− | ∆u |p(x)−2 ∆u).(∆un − ∆u),

ξn(x) = (| un |p(x)−2 un− | u |p(x)−2 u).(un − u).

By the compact embedding of X into Lp(x)(Ω),

un → u in Lp(x)(Ω),

| un |p(x)−2 un →| u |p(x)−2 u in Lq(x)(Ω),

where 1
p(x) + 1

q(x) = 1 for all x ∈ Ω. It follows that,

∫

Ω

ξn(x)dx → 0, (2.3)

using (2.1) and (3.3), then we have

lim sup
n→∞

∫

Ω

χn(x)dx = 0. (2.4)

Thanks to the above inequalities,
∫

Up

| ∆un − ∆uk |p(x) dx ≤ 2p+

∫

Up

χn(x)dx,

∫

Up

| un − uk |p(x) dx ≤ 2p+

∫

Up

ξn(x)dx.

It results that
∫

Up

(| ∆un − ∆u |) |p(x) +a(x) | un − u |p(x) dx → 0 as n → ∞. (2.5)

Besides, in Vp, put δn =| ∆un | + | ∆u |, we have
∫

Vp

| ∆un − ∆u |p(x) dx ≤
1

p−1 − 1

∫

Vp

(χn)
p(x)

2 (δn)
p(x)

2 (2−p(x))dx.

By Young’s inequality,

d

∫

Vp

| ∆un − ∆u |p(x) dx ≤

∫

Vp

(dχn)
p(x)

2 (δn)
p(x)

2 (2−p(x))dx

≤

∫

Vp

χn(d)
2

p(x) dx +

∫

Vp

(δn)p(x)dx. (2.6)
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From (2.4) and since χn ≥ 0, one consider that

0 ≤

∫

Vp

χndx < 1.

If
∫

Vp
χndx = 0 then

∫
Vp

| ∆un − ∆u |p(x) dx = 0. Or else, we take d =

(
∫

Vp
χndx)

−1
2 > 1 and the fact that 2

p(x) < 2, inequality (2.6) becomes

∫

Vp

| ∆un − ∆u |p(x) dx ≤
1

d
(

∫

Vp

χnd2dx +

∫

Ω

δp(x)
n dx),

≤

∫

Vp

(χndx)
1
2 (1 +

∫

Ω

δp(x)
n dx).

Note that,
∫
Ω

δp(x)
n dx is bounded, which implies

∫

Vp

| ∆un − ∆u |p(x) dx → 0 as n → ∞.

Similarly we can have

∫

Vp

| un − u |p(x) dx → 0 as n → ∞.

Hence, it result that

∫

Vp

(| ∆un − ∆u |p(x) +a(x) | un − u |p(x))dx → 0 as n → ∞. (2.7)

Finally, (2.1) is given by combining (2.5) and (2.7). It remains to show that L′

is is a homeomorphism. In view of strict monotonicity of L′ which implies the
injectivity of L′. Moreover, L′ is a coercive. Indeed, since p−1 > 1, for each u ∈ X
such that u ≥ 1 we have

〈L′(u), u〉

‖ u ‖
=

ρa(u)

‖ u ‖
≥‖ u ‖p−−1→ ∞ as n → ∞.

Consequently, thanks to a Minty-Browder [15], L′ is surjective and admits an in-
verse mapping. It suffices to show the continuity of (L′)−1. Let (fn)n be a sequence
of X ′ such that fn → f in X ′. Let un and u in X such that

(L′)−1(fn) = un and (L′)−1(f) = u.

By the coercivity of L′, one deducts that the sequence (un) is bounded in the
reflexive space X. For a subsequence, we have un ⇀ û in X, which implies

lim
n→∞

〈L′(un) − L′(u), un − û〉 = lim
n→∞

〈fn − f, un − û〉 = 0.
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Since L′ is of (S+) type and continuous, it follows that

un → û in X and L′(un) → L′(û) = L(u) in X ′.

Moreover, since L′ is an injection, we deduce that u = û. 2

Proposition 2.6. let σ(u) =
∫
Ω

G(x, u)dx, then σ is a C1 in Lq(x)(Ω) and σ′ are
weakly-strongly continuous, i.e un ⇀ u implies σ′(un) → σ′(u).

Proof: : by (1.1) we have, G(x, t) ≤ A(x) + B | t |q(x), where A ∈ L1(Ω) , A(x) ≥
0, B ≥ 0. Then Nemytskii operator properties implies that σ is a C1 in Lq(x)(Ω).
By the continuous embedding of X into Lq(x)(Ω), we have σ is also C1 in X and
for u, v ∈ X

σ′(u)v =

∫

Ω

g(x, u)vdx.

Let (un)n ⊂ X be a sequence such that un ⇀ u. Since there is a compact embedding
of X into Lq(x)(Ω), there is a subsequence, noted also (un)n, such that un → u in
Lq(x)(Ω). According to the Krasnoselki’s theorem, the Nemytskii operator

Ng : Lq(x)(Ω) → L
q(x)

q(x)−1 (Ω)
u 7→ f(., u)

is continuous. Hence, Ng(un) → Ng(u) in L
q(x)

q(x)−1 (Ω). Using Holder’s inequality
and the continuous embedding of X into Lq(x)(Ω), we obtain

| 〈σ′(un) − σ′(u), v〉 | = |

∫

Ω

(g(x, un) − g(x, u))v(x)dx |

≤ 2 ‖ Ng(un) − Ng(u) ‖ q(x)
q(x)−1

‖ v(x) ‖q(x)

≤ C ‖ Ng(un) − Ng(u) ‖ q(x)
q(x)−1

‖ v ‖a .

Thus, σ′(un) → σ′(u).
2

2.2. Ricceri’s variational principle

Definition 2.2. Let G a bounded subset of X and ρ ∈ R. G is called a block of I

with type ρ if I(u) < ρ ∀x ∈ G and I(x) = ρ ∀x ∈ ∂G. Where ∂G = G
W
\G and

G
W

is the closure of G in X in the weak topology.

Definition 2.3. Let D a bounded open subset of X and c < b is called Ricceri

box of I with the type (c, d) if

c = inf
D

I < inf
∂D

I = b.
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Definition 2.4. Let Y be a Banach space, G0 and G be two bounded open subset
of Y with G0 ⊂ G and φ : Y → R a functional. (G0, G) is a valley box of φ if

sup
G0

φ < inf
∂G

φ.

Theorem 2.1. (see [6,8]) Assume that I, J : X → R are sequentially weakly
lower semi continuous and G is a Ricceri block of I with type ρ. Let

λ∗ = sup
x∈G

ρ − I(x)

J(x) − inf
G

W
J

then for each λ ∈]0, λ∗[ , the restriction of I + λJ to G
W

achieves its infimum at
some x∗ ∈ G, so x∗ is a local minimizer of I + λJ.

Remark 2.2. i) let u∗ ∈ X a strictly local minimizer of I, then for ǫ > 0 small
enough, we have inf∂B(u,ǫ) I > I(u∗) i.e B(u∗, ǫ) is a Recceri box of I.
ii) In fact, by proposition 2.6) in [8], I, J : X → R are sequentially weakly lower
semi continuous.

Proposition 2.7. [8] Suppose that G is a Ricceri box of I with type (c, b) and
I : X → R continuous. Then for every ρ ∈]c, b] we have I−1(] − ∞, ρ[) ∩ G is a
Ricceri block of I with type ρ.

By Proposition 2.5, Remark 2.2 and Theorem 2.1 we obtain the following result,

Proposition 2.8. [6] Suppose that I, J : X → R are continuous. For some r > 0,
u1 ∈ B(u0, r), I(u0) = infB(u0,r) I = c0; inf∂B(x0,r) I = b > c0 and u1 is a
strictly local minimizer of I and I(u1) = c1 > c0. Then for ǫ > 0 small enough
and ρ1 > c1, ρ0 ∈]c0,min{b, c1}[ and ∀λ ∈]0, λ∗[, I + λJ has at least two local
minima u∗

0, u
∗
1 in B(u0, r). Where u∗

0 ∈ I−1(] − ∞, ρ0[) ∩ B(u0, r), u
∗
0 6∈ B(u1, ǫ)

and u∗
1 ∈ I−1(] −∞, ρ1[) ∩ B(u1, r).

Theorem 2.2. [6] Let Y be a reflexive Banach space. Assume that
1) φ ∈ C1(Y, R), the mapping φ′ : Y → Y ∗ is of type S+.
2) (G0, G) is a valley box of φ with G0, G being connected and 0 ∈ G0.
3) There exist e ∈ G0 and r > 0 such that

‖ e ‖> r, inf
∂B(0,r)

φ > max{φ(0), φ(e)}.

Then, the functional φ has at least a critical point u0 ∈ G with φ(u0) = c, where
c = infγ∈Γ supt∈[0,1] φ(γ(t)) and Γ = {γ ∈ C([0, 1], G) : γ(0) = 0; γ(1) = e}.

Corollary 2.1. Under the same assumption as in previous theorem, furthermore,
if J : Y → R ∈ C1 and J ′ : Y → Y

′

are weakly strongly continuous. Then, for
each λ ∈]0, λ∗[, I + λJ has still a mountain pass type critical point u2 ∈ G.
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3. Proof of the main result

The critical point of the integral functional ϕ = I+λJ is solution of the problem
(P). Define

λ1 = inf
u∈X\{0}

∫
Ω

1
p(x) [| ∆u |p(x) +a(x) | u |p(x)]dx

∫
Ω

1
p(x) | u |p(x) dx

,

Proof: [proof of Theorem 1.1] The proof is divided into four steps,
step(1):

We show that v0 = 0 is strictly local minimizer of I. By (1.1) and assumption (F3),
we may find q1 ∈ C(Ω) with p+ < q−1 ≤ q1(x) < p∗(x) such that

F (x, t) ≤ c3 | t |q1(x), ∀x ∈ Ω, ∀t ∈ R. (3.1)

We can assume that ‖ u ‖a< 1 is small enough, thus

I(u) ≥

∫

Ω

1

p(x)
[| ∆u |p(x) +a(x) | u |p(x) dx] − c3

∫

Ω

| u |q1(x)

≥
1

p+
‖ u ‖p+

a −c4 ‖ u ‖
q−
1

a .

Since q−1 > p+ then there exists ǫ > 0 such that ∀u ∈ B(0, ǫ) \ 0 we have I(u) >
0 = I(v0).

step(2):
We show that the functional I has a global minimizer v1 6= 0. Set H(x, t) =

F (x, t)− λ1

p(x) | t |p
−

. Then, from (F1) we conclude that, for every M > 0, there is

RM > 0 such that

H(x, t) ≤ −M, ∀ | t |≥ RM , almost every x ∈ Ω. (3.2)

We have I is coercive, or else there exist K ∈ R and (u)n ⊂ X such that

‖ un ‖a→ ∞ and I(un) ≤ K.

Putting vn = un

‖un‖a
i.e ‖ vn ‖a= 1. Then for subsequence, we may assume that

for v ∈ X, we have vn ⇀ v in X, vn → v strongly in Lp(x)(Ω), vn(x) → v(x) for
almost every x ∈ Ω. Now, using 3.2, we obtain

K ≥ I(un) =

∫

Ω

1

p(x)
[| ∆u |p(x) +a(x) | un |p(x)]dx −

∫

Ω

F (x, un)dx.

≥

∫

Ω

1

p(x)
[| ∆un |p(x) +a(x) | un |p(x)]dx − λ1

∫

Ω

1

p(x)
| un |p

−

dx −

∫

Ω

H(x, un)dx

≥
1

p+
‖ un ‖p−

a −λ1

∫

Ω

1

p(x)
| un |p

−

dx + M1, (3.3)

where M1 ∈ R. Dividing 3.3 by ‖ un ‖p−

a and passing to the limit, we conclude

1

p+
− λ1

∫

Ω

| v |p
−

dx ≤ 0,
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hence, v 6≡ 0. Therefore | Ω8 |> 0 such that Ω8 = {x ∈ Ω \ v0(x) 6= 0}, then
| un(x) |→ +∞ for almost every x ∈ Ω8. On the other hand,

λ1

∫

[|u|≥1]

| u |p
−

p(x)
dx ≤ λ1

∫

[|u|≥1]

| u |p(x) dx

≤ λ1

∫

Ω

| u |p(x) dx

≤

∫

Ω

1

p(x)
[| ∆u |p(x) +a(x) | u |p(x)]dx. (3.4)

Where,

[| u |≥ 1] = {x ∈ Ω\ | u |≥ 1} ; [| u |< 1] = {x ∈ Ω\ | u |< 1}.

It is clear that
∫
[|un|<1]

1
p(x) | un |p(x) dx is bounded. From (F1) and the above

inequalities 3.4 we deduce

K ≥

∫

Ω

1

p(x)
[| ∆u |p(x) +a(x) | u |p(x)]dx −

∫

Ω

F (x, un)dx

=

∫

Ω

1

p(x)
[| ∆un |p(x) +a(x) | un |p(x)]dx − λ1

∫

Ω

| un |p
−

p(x)
dx −

∫

Ω

H(x, un)dx

=

∫

Ω

1

p(x)
[| ∆un |p(x) +a(x) | un |p(x)]dx − λ1

∫

[|un|≥1]

| un |p
−

p(x)
dx

−λ1

∫

[|un|<1]

| un |p
−

p(x)
dx −

∫

Ω

H(x, un)dx

≥ λ1

∫

[|un|<1]

| un |p
−

p(x)
dx −

∫

Ω8

H(x, un)dx +

∫

Ω\Ω8

H(x, un)dx → +∞,

which is a contradiction. Hence I is coercive and has a global minimizer v1. When
the assumption (F2) holds, taking ω1 ∈ C∞

0 (B(x0, 2r0)) such that 0 ≤ ω1 ≤ t0 for
all x ∈ B(x0, 2r0), ω1(x) ≡ t0 for x ∈ B(x0, r0) and | ∆ω1(x) |≤ 2t0

r0
then ω1 ∈ X.

On the other hand,

I(ω1) ≤

∫

B(x0,2r0)\B(x0,r0)

|
2t0

r0
| dx+ | a |∞

∫

B(x0,2r0)

1

p(x)
| t0 |p(x)

dx −

∫

Ω

F (x, ω1)dx

≤ C0 | B(x0, r0) | −

∫

Ω

F (x, ω1).dx

Since ∫

Ω

F (x, ω1)dx >

∫

B(x0,r0)

F (x, ω1)dx ≥ C0 | B(x0, r0) |,

we obtain I(ω1) < 0 then I(v1) < 0 = I(v0). So v1 6= 0.
step(3):

We show that ϕ has two local minima. Since I is coercive there is r0 > 0 large
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enough such that v0, v1 ∈ B(0, r0) and inf∂B(0,r0) I > I(v0) > I(v1). By
proposition 2.8, given any ǫ > 0, ρ1 ∈]I(v1), 0[ and ρ2 > 0 then ∀λ ∈]0, λ∗[, ϕ has
at least two local minima u0 ∈ B(0, ǫ) ∩ I−1(] −∞, ρ2[), u1 ∈ I−1(] −∞, ρ1[) and
u1 /∈ B(0, ǫ).
The minimizer u0 6= 0. In fact, when (G1) holds, taking ω ∈ C∞

0 (B(x1, r1)) such
that 0 ≤ ω ≤ 1 and ω(x) ≡ 1 for x ∈ B(x1,

r1

2 ), then, it is easy to see that for
λ ∈]0, λ∗[, when t > 0 is small enough, we get tω ∈ B(0, ǫ) ∩ I−(] − ∞, ρ2[) and
I(u0) + λJ(u0) ≤ I(tω) + λJ(tω) < 0. In particular, u0 6= 0.

step(4):
ϕ has a mountain pass type critical point ∀λ ∈]0, λ∗[. We take r1 > 0 such that
B(0, r1) ⊂ X and B(0, r1) ⊃ I−1(] − ∞, ρ1[) ∪ B(0, ǫ). Since I is coercive, there
exists r2 > r1 such that

inf
∂B(0,r2)

I > sup
B(0,r1)

I,

then (B(0, r1), B(0, r2)) is a valley box of I. Since I(v1) < 0 = I(v0) and by step
1), we have that for some ǫ0 > 0 with ǫ0 >‖ v1 ‖a , inf∂B(ǫ,0) I > 0. We apply the
Corollary 3.1, then ϕ admits a mountain pass point u2. Consequently, u0, u1 and
u2 are at least three nontrivial solutions of the problem (P). 2

Proof: [proof of Theorem 1.2] It was the same steps of the previous proof.
step(1):

To show that v0 = 0 is strictly local minimizer of I, we follow the same procedure
as in step (1) in the previous proof.

step(2):
We show that the functional I has a global minimizer v1 6= 0. Similarly in step(2)
in the last proof of Theorem 1.2, one shows the coercivity of I and then I has
a global minimizer v1. We use the condition (F ′

2), we obtain I(ξ) < 0 and then
I(v1) < 0 = I(v0). So v1 6= 0.

step(3):
We show that ϕ has two local minima. The same way as In step 3 in the last proof
of Theorem 1.2, ϕ has at least two local minima u0 and u1 6= 0. Moreover, the
minimizer u0 6= 0. Indeed, by assumption (G2), taking tn → 0 such that

infx∈Ω G(x, tn)

| tn |p− → +∞.

Let wn = tn( i.e wn(x) ∈ X). For all λ ∈]0, λ∗[, by 3.1, we get

ϕ(wn) ≤ | tn |p
−

∫

Ω

a(x)

p(x)
dx −

∫

Ω

F (x, tn)dx − λ

∫

Ω

G(x, tn)dx

≤ | tn |p
−

K1 + c3

∫

Ω

| tn |q1(x) −λ | tn |p
−

∫

Ω

G(x, tn)

| tn |p− dx

≤ | tn |p
−

K1+ | tn |q
−
1 K2 − λ | tn |p

−

∫

Ω

G(x, tn)

| tn |p− dx < 0, (3.5)
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and

wn ∈ B(0, ǫ) ∩ I−(] −∞, ρ2[).

Thus,

ϕ(u0) ≤ ϕ(wn) < 0 = ϕ(0), so u0 6= 0�

step(4):
As in step(4) of the theorem 1.1, ϕ has a mountain pass type critical point u2.
Consequently, u0, u1 and u2 are at least three nontrivial solutions of the problem
(P). 2
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