

(3s.) v. 31 1 (2013): 167-174. ISSN-00378712 in press doi:10.5269/bspm.v31i1.15414

On a Class of n-Normed Sequences Related to the $\ell_p\text{-}\mathbf{Space}$

Binod Chandra Tripathy and Stuti Borgohain¹

ABSTRACT: In this paper we introduce the class of n-normed sequences related to the *p*-absolutely summable sequence space. Some properties of this sequence space like solidness, symmetricity, convergence-free etc. are studied. We obtain some inclusion relations involving this sequence space.

Key Words: n-norm, n-Banach space, symmetricity, solidness, convergence free, completeness.

1	Introduction	167
2	Definitions and Background	168
3	Main Results	169

1. Introduction

The notion of *n*-normed space was studied at the initial stage by Gahler [8], Gunawan [9], Misiak [10] and many others from different aspects. Diminnie, Gahler and White [2,3] Diminnie and White [4], Gahler [8] and many others have investigated the notion of 2-normed spaces.

Let $n \in N$ and X be a real vector space. A real valued function on X^n satisfying the following four properties:

- 1. $||(z_1, z_2, ..., z_n)||_n = 0$ if and only if $z_1, z_2, ..., z_n$ are linearly dependent;
- 2. $||(z_1, z_2, ..., z_n)||_n$ is invariant under permutation;
- 3. $||(z_1, z_2, .., z_{n-1}, \alpha z_n)||_n = |\alpha| ||z_1, z_2, .., z_n||_n$, for all $\alpha \in R$;
- 4. $||(z_1, z_2, .., z_{n-1}, x+y)||_n \le ||(z_1, z_2, .., z_{n-1}, x)||_n + ||(z_1, z_2, .., z_{n-1}, y)||_n;$

is called an *n*-norm on X and the pair $(X, \|, .., .\|_n)$ is called an *n*-normed space.

Typeset by $\mathcal{B}^{s}\mathcal{D}_{M}$ style. © Soc. Paran. de Mat.

¹ The work of the second author is financially supported by the Department of Science and Technology (Govt.of India) project no. SR/WOS-A/MS-07/2008 2000 Mathematics Subject Classification: 40A05, 40A25, 40A30, 40C05

B. C. TRIPATHY AND S. BORGOHAIN

Sargent [12] introduced the sequence space $m(\phi)$ and studied some properties of this space. Later on it was studied from the sequence space point of view and some matrix classes were characterized with one member as $m(\phi)$ by Esi [5], Et, Altin and Altinok [6], Fistikci, Acikgoz and Esi [7], Rath and Tripathy [11], Tripathy [13], Tripathy and Sen [24], Tripathy and Mahanta [17] and many others. In this article we introduce the *n*-normed space $(m(\phi), \|...\|_n)$ and investigate its different algebraic and topological properties.

2. Definitions and Background

In the recent past different classes of sequences have been introduced and their different algebraic and topological properties have been investigated by Altin, Et and Tripathy [1], Tripathy [14], Tripathy and Dutta [15,16], Tripathy and Hazarika [17,18], Tripathy and Mahanta [20,21,22], Tripathy and Sarma [23], Tripathy and Sen [25] and many others.

A sequence (x_k) in an *n*-normed space is said to be convergent to $x \in X$ if,

$$\lim_{k \to \infty} \|(z_1, z_2, \dots z_{n-1}, x_k - x)\|_n = 0, \text{ for all } z_1, z_2, \dots, z_{n-1} \in X$$

A sequence (x_k) in an *n*-normed space is called Cauchy (with respect to *n*-norm) if,

$$\lim_{k,j\to\infty} \|(z_1, z_2, ... z_{n-1}, x_k - x_j)\|_n = 0, \text{for all } z_1, z_2 ... z_{n-1} \in X.$$

If every Cauchy sequence in X converges to an $x \in X$, then X is said to be complete (with respect to the *n*-norm). A complete *n*-normed space is called *n*-Banach space.

An *n*-normed sequence space E is said to be solid if $(y_k) \in E$, whenever $(x_k) \in E$ and $||z_1, z_2, ..., z_{n-1}, y_k||_n \le ||z_1, z_2, ..., z_{n-1}, x_k||_n$ for all $k \in N$.

Let $x = (x_k)$ be a sequence, then S(x) denotes the set of all permutations of the elements of (x_k) i.e. $S(x) = \{(x_{\pi(n)}) : \pi \text{ is a permutation of N}\}$. A sequence space E is said to be symmetric if $S(x) \subset E$ for all $x \in E$.

A sequence space E is said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ with $y_k = 0$ whenever $x_k = 0$.

A sequence space E is said to be monotone if E contains the canonical preimages of all its step spaces.

Lemma 2.1. A sequence space E is solid implies that E is monotone.

Let \wp_s be the class of all subsets of N those do not contain more than s number of elements.

Throughout $\{\phi_n\}$ is a non-decreasing sequence of positive real numbers such that $n\phi_{n+1} \leq (n+1)\phi_n$, for all $n \in N$.

The space $m(\phi)$ introduced by Sargent [12] is defined by,

$$m(\phi) = \left\{ (x_k) \in w : \parallel x \parallel_{m(\phi)} = \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \right\}.$$

In this article we introduce the following sequence space:

$$(m(\phi), \|...\|_n) = \left\{ (x_k) \in w : \|(x_k)\|_{n, m(\phi)} = \sup_{s \ge 1, \sigma \in \wp} \frac{1}{\phi_s} \sum_{k \in \sigma} \|(z_1, z_2, ... z_{n-1}, x_k)\|_n < \infty \right\}.$$

3. Main Results

Theorem 3.1. $(m(\phi), \|...\|_n)$ is an n- Banach space with respect to the n-norm defined by,

$$\|x\|_{n,m(\phi)} = \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \|(z_1, z_2, ..., z_{n-1}, x_k)\|_n$$

for all $z_1, z_2, ..., z_{n-1} \in X$ where X is a Banach space.

Proof: Let $(x^{(i)})$ be a Cauchy sequence in $(m(\phi), \|...\|_n)$ such that, $x^{(i)} = (x_k^{(i)})_{k=1}^{\infty}$.

Then we have for a given $\varepsilon > 0$, there exists a positive integer $n_0 = n_0(\varepsilon)$ such that,

$$\|(x^{(i)} - x^{(j)})\|_{n,m(\phi)} < \frac{\varepsilon}{\phi_1}, \text{ for all } i, j \ge n_0.$$

Which implies,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \| (z_1, z_2, ... z_{n-1}, (x_k^{(i)} - x_k^{(j)})) \|_n < \frac{\varepsilon}{\phi_1}, \text{ for all } i, j \ge n_0.$$

On taking s = 1 and varying σ over φ_s , we get,

$$\frac{1}{\phi_1} \sum_{k \in \sigma} \| (z_1, z_2, ... z_{n-1}, (x_k^{(i)} - x_k^{(j)})) \|_n < \frac{\varepsilon}{\phi_1}, \text{ for all } i, j \ge n_0.$$

B. C. TRIPATHY AND S. BORGOHAIN

$$\Rightarrow \|(z_1, z_2, ..z_{n-1}, (x_k^{(i)} - x_k^{(j)}))\|_n < \varepsilon, \text{ for all } i, j \ge n_0.$$
(1)

i.e. $(x_k^{(i)})$ is a Cauchy sequence in X. Since X is a Banach space, so $(x_k^{(i)})$ converges in X.

Let,

$$\lim_{k \to \infty} x_k^{(i)} = x_k, \text{ for each } k \in N.$$
(2)

We have to prove that, $\lim_{i \to \infty} x^{(i)} = x$ and $x \in (m(\phi), \|...\|_n)$.

Since $(x^{(i)})$ is a Cauchy sequence in $(m(\phi), \|...\|_n)$, so we get, for each $k \in N$, there exists a positive integer $n_0(\varepsilon)$ such that,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \| (z_1, z_2, ..z_{n-1}, (x_k^{(i)} - x_k^{(j)})) \|_n < \varepsilon, \text{ for all } i, j \ge n_0.$$

Taking limit as $j \to \infty$, we have,

$$\sup_{s \ge 1, \sigma \in \varphi_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \| (z_1, z_2, .. z_{n-1}, (x_k^{(i)} - x_k)) \|_n < \varepsilon, \text{ for all } i \ge n_0.$$

Which implies,

$$||(x^{(i)}-x)||_{n,m(\phi)} < \varepsilon$$
, for all $i \ge n_0$.

i.e. $\lim_{i \to \infty} x^{(i)} = x.$

Now we have for all $i \ge n_0$,

$$\begin{aligned} \|(x)\|_{n,m(\phi)} &\leq \|(x+x^{(i)}-x^{(i)})\|_{n,m(\phi)} \\ &\leq \|(x-x^{(i)})\|_{n,m(\phi)} + \|(x^{(i)})\|_{n,m(\phi)} \\ &< \varepsilon + M, \text{ for all } i \geq n_0. \end{aligned}$$

i.e. $||(x^{(i)})||_{n,m(\phi)} < \infty.$

Hence, $x \in (m(\phi), \|...\|_n)$.

Hence $(m(\phi), \|...\|_n)$ is an *n*-Banach space.

Theorem 3.2. The class of sequences $(m(\phi), \|..\|_n)$ is solid.

170

Proof: Let $(x_k) \in (m(\phi), \|...\|_n)$ and $(y_k) \in w$ be such that,

$$||(z_1, z_2, ..., z_{n-1}, y_k)||_n \le ||(z_1, z_2, ..., z_{n-1}, x_k)||_n.$$

Then,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \| (z_1, z_2, ... z_{n-1}, y_k) \|_n \le \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \| (z_1, z_2, ... z_{n-1}, x_k) \|_n$$

Thus we have, $||(y_k)||_{n,m(\phi)} \le ||(x_k)||_{n,m(\phi)} < \infty$.

Which implies $(y_k) \in (m(\phi), \|...\|_n)$.

Hence $(m(\phi), \|...\|_n)$ is solid.

We have the following result which follows from the Lemma 2.1 and Theorem 3.2.

Corollary 3.3. $(m(\phi), \|..\|_n)$ is monotone.

Theorem 3.4. The class of sequences $(m(\phi), \|...\|_n)$ is symmetric.

Proof: Let $(x_k) \in (m(\phi), \|...\|_n)$ and (y_k) be a rearrangement of (x_k) . Then $y_k = x_{m_k}$, for some $k \in N$.

We have, $||(x_k)||_{n,m(\phi)} = ||(x_{m_i})||_{n,m(\phi)} = ||(y_k)||_{n,m(\phi)}$.

Which implies that, $(y_{m_k}) \in (m(\phi), \|...\|_n)$.

Hence $(m(\phi), \|...\|_n)$ is symmetric.

Theorem 3.5. The class of sequences $(m(\phi), \|...\|_n)$ is not convergence free.

Proof: The proof follows from the following example:

Example 3.6.

Let $\phi_s = s$, for all $s \in N$ and n = 2.

Let $x_k = k^{-1}$, for all $k \in N$ and z = 2.

Then, we have, $\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} ||(z, x_k)||_2$, for all $z \in X$.

Where,

 $\begin{aligned} \|(z, x_k)\|_2 &= \text{ area of the rectangle with the vertices } (0, 0), (z, 0), (0, x_k) \text{ and } (z, x_k) \\ &= x_k \times z \\ &= k^{-1} \times 2, \text{ for all } k \in N. \end{aligned}$

Thus we have, $\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{s} \sum_{k \in \sigma} \|(z, x_k)\|_2 < \infty.$ Which implies $(x_k) \in (m(\phi), \|...\|_2)$.

Let us take another sequence (y_k) such that, $y_k = k$, for all $k \in N$.

Then we get,

 $\begin{aligned} \|(z, y_k)\|_2 &= \text{ area of the rectangle with the vertices } (0, 0), (z, 0), (0, y_k) \text{ and } (z, y_k) \\ &= y_k \times z \\ &= k \times 2, \text{ for all } k \in N. \end{aligned}$

Thus we have,
$$\begin{split} \sup_{s\geq 1,\sigma\in\wp_s} \frac{1}{s}\sum_{k\in\sigma} \|(z,y_k)\|_2 &=\infty. \end{split}$$
 i.e. $(y_k)\not\in (m(\phi),\|...\|_2). \end{split}$

Hence, $(m(\phi), \|...\|_n)$ is not convergence-free.

The proof of the following result is easy, so omitted.

 $\begin{array}{l} \textbf{Proposition 3.7.} \ (a) \ (\ell, \|...\|_n) \subseteq (m(\phi), \|...\|_n) \subseteq (\ell_{\infty}, \|...\|_n). \\ (b) \ (m(\phi), \|...\|_n) = (\ell, \|...\|_n) \ if \ and \ only \ if \ \lim_{s \to \infty} \phi_s < \infty. \\ (c) \ (m(\phi), \|...\|_n) = (\ell_{\infty}, \|...\|_n) \ if \ and \ only \ if \ \lim_{s \to \infty} \left(\frac{\phi_s}{s}\right) > 0. \end{array}$

References

- 1. Y. Altin, M. Et and B. C. Tripathy, The sequence space $|\overline{N}_p|(M, r, q, s)$ on seminormed spaces, Appl. Math. Comput., 154(2004), 423-430.
- C.R. Diminnie, S. Gahler, and A. White, 2-inner product spaces, *Demonstratio Math.*, 6(1973), 525-536.
- C.R. Diminnie, S. Gahler, and A. White, 2-inner product spaces II, *Demonstratio Math.*, 10(1977), 169-188.
- C.R. Diminnie and A. White, A characterization of 2-inner product spaces, *Math. Japon.*, 114(1983), 275-277.

- 5. A. Esi, On a class of new type difference sequence spaces related to the space ℓ_p , Far East J.Math. Sci., 13(2)(2004), 167-172.
- 6. M. Et, Y. Altin and H. Altinok, The sequence space $m(f, \phi, q)$ on seminormed spaces, Thai J. Math, 1(2)(2003), 121-127.
- N. Fistikci, M. Acikgoz and A. Esi, *I*-Lacunary generalized convergent sequences in *n*-normed spaces, *Jour. Math. Anal.*, 2(1)(2011), 18-24.
- 8. S. Gahler, Lineare 2-normierte räume, Math. Nachr., 28(1964), 1-43.
- H. Gunawan, On n-inner products, n-norms and the Cauchy-Schwarz inequality, Scientiae Math. Japonicae, 5(2001), 47-54.
- 10. A. Misiak, n-inner product spaces, Math. Nachr. 140(1989), 299-319.
- D. Rath and B.C. Tripathy, Characterization of certain matrix operators, J. Orissa Math. Soc., 8(1989), 121-134.
- 12. W.L.C. Sargent, Some sequence spaces related to ℓ_p spaces, J. Lond. Math. Soc., (35)(1960), 161-171.
- 13. B.C. Tripathy, A class of difference sequences related to the *p*-normed space ℓ_p , Demonstratio Math., (2003), 36(4),867-872.
- B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math., 35(5)(2004),655-663.
- 15. B.C. Tripathy and A. J. Dutta, On fuzzy real-valued double sequence spaces ℓ_F^p , Math. Comput. Model., 46(9-10)(2007), 1294-1299.
- B.C. Tripathy and A.J. Dutta, Bounded variation double sequence space of fuzzy real numbers, Comput. Math. Appl., 59(2)(2010), 1031-1037.
- B.C. Tripathy and B. Hazarika, *I*-convergent sequence spaces associated with multiplier sequence spaces, *Math. Ineq. Appl.*, 11(3)(2008), 543-548.
- B.C. Tripathy and B. Hazarika, Paranormed *I*-convergent sequences spaces, *Math. Slovaca*, 59(4)(2009), 485-494.
- 19. B.C. Tripathy and S. Mahanta, On a Class of Sequences Related to the ℓ_p space defined by Orlicz functions, *Soochow J. Math.*, 29(2003), 379-391.
- B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Appl. Sin., 20(2) (2004), 231-238.
- B.C. Triapthy and S. Mahanta, On a class of vector valued sequences associated with multiplier sequences, Acta Math. Appl. Sin., 20(3)(2004),487-494.
- B.C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, Jour. Franklin Inst., 347(2010), 591-598.
- B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca, 59(6)(2009), 767-776.
- B.C. Tripathy and M. Sen, On a class of sequences related to the *p*-normed space, Jour. Beijing Univ. Tech., (31)(2005),112-115.
- B.C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, *Tamkang Jour. Math.*, 37(2)(2006), 155-162.

B. C. TRIPATHY AND S. BORGOHAIN

Binod Chandra Tripathy Mathematical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon; Garchuk; GUWAHATI-781035; India. E-mail address: tripathybc@yahoo.com; tripathybc@rediffmail.com

and

Stuti Borgohain Department of Mathematics Indian Institute of Technology Powai; MUMBAI - 400076; India. E-mail address: stutiborgohain@rediffmail.com