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Morita context and generalized (α, β)−derivations
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abstract: Let R and S be rings of a semi-projective Morita context, and α, β

be automorphisms of R. An additive mapping F : R → R is called a generalized
(α, β)-derivation on R if there exists an (α, β)-derivation d: R → R such that
F (xy) = F (x)α(y)+β(x)d(y) holds for all x, y ∈ R. For any x, y ∈ R, set [x, y]α,β =
xα(y) − β(y)x and (x ◦ y)α,β = xα(y) + β(y)x. In the present paper, we shall show
that if the ring S is reduced then it is a commutative, in a compatible way with the
ring R. Also, we obtain some results on bi-algebras via Cauchy modules.

Key Words: Prime rings, (α, β)−Derivations and Generalized (α, β)− Deriva-
tions, algebras, coalgebras, Cauchy modules, Morita context

Contents

1 Introduction 153

2 Preliminaries Results 156

3 Centralizing in Generalized (α, β)-Derivations via Morita Context158

1. Introduction

A classical problem in ring theory is to study and generalized conditions
under which a ring becomes commutative. So far the best tools found for this pur-
pose are the derivations on rings and also on their modules. We can also achieve
this goal by comparing two rings and impose conditions on them. If one of the rings
is commutative, in compatible way, the other ring will also become commutative.
In order to explore these ideas Morita theory is found to be a suitable tool.

Unless otherwise stated the term rings with center Z(R) is used here for associa-
tive rings. We assume throughout that the datum K(R,S) = {R,S,M,N, µR, τS}
is said to be Morita context (or MC) in which R and S are rings, M and N are
(S,R) and (R,S) bimodules, respectively, µR : N⊗S M → R and τS : M⊗RN → S

are bimodule homomorphisms with associative condition

m1µR(n ⊗ m) = τS(m1 ⊗ n)m

and

µR(n ⊗ m)n1 = nτS(m ⊗ n1)
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where µR and τS are called Morita maps (or MC maps). The images µR := I

and τR := J are two-sided ideals of R and S, respectively, and are called the trace
ideals of the MC. If both MC maps are epimorphism, i.e. I = R and J = S, then
K(R,S) is said to be a projective Morita context (or PMC). If one of the MC maps
is an epimorphism, then K(R,S) is said to be semi-projective Morita context or
semi-PMC. If K(R,S) is PMC rings, then the rings R and S are said to be Morita
equivalent.

An algebra over R (or an R−algebra) is an (R,R)−bimodule M together
with module morphisms (we will also call them linear maps):

µ : M ⊗R M −→ M, and η : R −→ M,

such that

M ⊗R M ⊗R M
µ⊗1M

⇉
1M⊗µ

M ⊗R M
µ

−→M, (associativity)

with µ ◦ (µ ⊗ 1M ) = µ ◦ (1M ⊗ µ) and

R
η⊗1M

⇉
1M⊗η

M ⊗R M
µ

−→M, (unit)

with µ ◦ (η ⊗ 1M ) = 1M = µ ◦ (1M ⊗ η).
Let R be a commutative ring. An R−coalgebra is an (R,R)−bimodule C, with
R−linear maps:

∆ : C −→ C ⊗R C and ε : C −→ R,

such that

C
∆
−→C ⊗R C

1C⊗∆

⇉
∆⊗1C

C ⊗R C ⊗R C, (coassociativity)

with (1C ⊗ ∆) ◦ ∆ = (∆ ⊗ 1C) ◦ ∆ and

C
∆
−→C ⊗R C

1C⊗ε

⇉
ε⊗1C

R, (counit)

with (1C ⊗ ε) ◦ ∆ = 1C = (ε ⊗ 1C) ◦ ∆.

Now we combine the notions of R−algebras and R−coalgebras. An R−bialgebra
B is an R−module together with algebra and coalgebra structures.

Let R and S be rings and M an (R,S)−bimodule. Then the dual of M which
is denoted by M∗ = HomR(M,R) is an (S,R)−bimodule, and for every left R-
module L there is a canonical module morphism

ϕM
L : M∗ ⊗R L −→ HomR(M,L)

defined by

ϕM
L (m∗ ⊗ l)(m) = m∗(m)l ∈ L for all m ∈ M,m∗ ∈ M∗, l ∈ L.
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If ϕM
L is an isomorphism for each left R−module L, then RMS is called a Cauchy

module. (see [1] and [5]).

For each x, y ∈ R, denote the commutator xy − yx by [x, y] and the anti-
commutator xy + yx by x ◦ y. Recall that a ring R is prime if for any a, b ∈ R,
aRb = {0} implies that a = 0 or b = 0. By a derivation on R we mean the most
natural derivation d : R −→ R which is additive as well as satisfying the relation
d(xy) = d(x)y+xd(y) for all x, y ∈ R. In particular, for a fixed a ∈ R, the mapping
Ia : R −→ R given by Ia(x) = [x, a] is a derivation called an inner derivation of R.

To understand our results it is best to review some generalizations of the notion
of derivation in rings. Let α and β be the endomorphisms of R. An additive map
d : R −→ R is called an (α, β)-derivation if d(xy) = d(x)α(y) + β(x)d(y) holds
for all x, y ∈ R. A (1, 1)-derivation is called simply a derivation, where 1 is the
identity map on R. An example of an (α, β)-derivation, when R has a nontrivial
central idempotent e is to let d(x) = ex, α(x) = (1− e)x and β = 1 (or d). Here, d

is not a derivation because d(ee) = eee 6= 2eee = (ee)e + e(ee) = d(e)e + ed(e). In
any ring with endomorphism β, if we set d = 1 − β, then d is a (β, 1)-derivation,
but not a derivation when R is semiprime, unless β = 1. For a fixed a, the map
da : R −→ R given by da(x) = [a, x]α,β for all x ∈ R is an (α, β)-derivation which
is said to be an (α, β)-inner derivation. An additive mapping F : R −→ R is
called a generalized (α, β)-inner derivation if F (x) = aα(x)+β(x)b, for some fixed
a, b ∈ R and for all x ∈ R. A simple computation yields that if F is a generalized
(α, β)-inner derivation, then for all x, y ∈ R, we have

F (xy) = F (x)α(y) + β(x)d−b(y),

where d−b is an (α, β)-inner derivation. With this viewpoint, an additive map
F : R −→ R is called a generalized (α, β)-derivation associated with an (α, β)-
derivation d : R −→ R such that

F (xy) = F (x)α(y) + β(x)d(y) holds for all x, y ∈ R.

Clearly this notion includes those of (α, β)-derivation when F = d, of derivation
when F = d and α = β = 1, and of generalized derivation, when is the case
α = β = 1.

An additive subgroup L of R is said to be a Lie ideal of R if [L,R] ⊆ L. Clearly,
every ideal is a Lie ideal but the converse need not be true in general. A Lie ideal L

is said to be square closed if a2 ∈ L for all a ∈ L. In Section 2 we have established
one lemma by involving square closed Lie ideals and have used them to obtain the
main results in Section 3.

In the present paper our aim is to prove that if R and S are rings of a semi-
PMC, in which R admits generalized (α, β)−derivations F and G satisfying certain
differential identities in rings such that S is reduced, then S is commutative. Some
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results related to division rings, bi-algebras and Cauchy module are stated and
proved.

2. Preliminaries Results

Following are some useful identities which hold for every x, y, z ∈ R. We will
use them in the proof of our theorems.

• [xy, z]α,β = x[y, z]α,β + [x, β(z)]y = x[y, α(z)] + [x, z]α,βy;

• [x, yz]α,β = β(y)[x, z]α,β + [x, y]α,βα(z);

• (x ◦ (yz))α,β = (x ◦ y)α,βα(z) − β(y)[x, z]α,β = β(y)(x ◦ z)α,β + [x, y]α,βα(z);

• ((xy) ◦ z)α,β = x(y ◦ z)α,β − [x, β(z)]y = (x ◦ z)α,βy + x[y, α(z)].

Let us consider three important remarks.

Remark 2.1. Let R be a prime ring and H an additive subgroups of R. Let
f : H → R and g : H → R be additive functions such that f(s)Rg(s) = {0} for all
s ∈ H. Then either f(s) = 0 for all s ∈ H, or g(s) = 0 for all s ∈ H.

Remark 2.2. Let R and S be rings of an MC K(R,S) = {R,S,M,N, µR, τS} such
that R is commutative and R ∼= S, then M ⊗R N ∼= N ⊗R M and the datum
{R,M,N, µR} is MC where the map µR : M ⊗R N −→ R satisfies the associative
condition

µR(m ⊗ n)m1) = mµR(n ⊗ m1).

Remark 2.3. Let R be any ring and I be a nonzero ideal of R. If α : R → R is an
automorphism of R such that 0 6= z ∈ Z(R), then α(z) ∈ Z(R).

The proof of Remark 2.1 is rather elementary and is based on the fact that a
group cannot be written as the set-theoretic union of its two proper subgroups.
Also the proof of Remark 2.2 is clear by using elementary properties of bimodules
and the definition of MC. Similarly, Remark 2.3 can also be verified easily.

We begin our discussion with the following results. For the sake of interest,
Lemma 2.5 in this section is stated in more general setting, that is, in terms of Lie
ideals. Their application is restricted to ideals in the last section.

Lemma 2.4 ( [12], Lemma 2.1). Let R be a prime ring and I be a nonzero ideal
of R. If [x, y] ∈ Z(R) for all x, y ∈ I or if (x ◦ y) ∈ Z(R) for all x, y ∈ I, then R

is commutative.

Lemma 2.5 ( [8], Lemma 2.4). Let R be a prime ring with char(R) 6= 2, and I

be a nonzero square closed Lie ideal of R. Let α, β be automorphisms of R. If
[x, y]α,β = 0, for all x, y ∈ I, then I ⊆ Z(R).
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In view of Lemma 2.5 we get the following corollary:

Corollary 2.6. Let R be a prime ring with char(R) 6= 2, and I be a nonzero ideal
of R. Let α, β be automorphisms of R. If [x, y]α,β = 0, for all x, y ∈ I, then R is
commutative.

Lemma 2.7 ( [9], Theorem 2.1). Let R and S be rings of semi-PMC K(R,S) in
which τS epic. If R is commutative and S is reduced, then S is also commutative.

Lemma 2.8 ( [9], Corollary 2.4). Let K(R,S) be a PMC of rings in which R is
commutative. Then

(a) If S is a reduced ring, then R is also reduced and R ∼= S.

(b) If S is a domain, then both R and S become isomorphic integral domains.

(c) If S is a division ring, then both R and S are isomorphic field.

Lemma 2.9 ( [1], Theorem 3.7). Let R be a commutative ring, M and N Cauchy
R−modules. Then the datum {R,M,N, µR} is MC if and only if M ⊗R N is a
R−bialgebra.

Lemma 2.10. Let R be a prime ring of characteristic different from two and I be
a nonzero ideal of R. Let α, β be automorphisms of R. If [x, y]α,β ∈ Z(R) for all
x, y ∈ I, then R is commutative.

Proof: For any x, y ∈ I, we have

[x, y]α,β ∈ Z(R). (2.1)

Replacing x by xα(y) in (2.1), we get [x, y]α,βα(y) ∈ Z(R), this implies that
[[x, y]α,βα(y), r] = 0 for all x, y ∈ I, r ∈ R. Thus, as an application of (2.1),
we find that [x, y]α,β [α(y), r] = 0. Again replacing r by rα(m) and using the last
expression, we get [x, y]α,βR[α(y), α(m)] = {0}, for all x, y,m ∈ I. Thus, by Re-
mark 2.1, either α([y,m]) = 0 for all y,m ∈ I, or [x, y]α,β = 0 for all x, y ∈ I. In the
first case R is commutative by Lemma 2.4. In the second one, R is commutative
by Corollary 2.6. 2

Lemma 2.11. Let R be a prime ring of characteristic different from two and I be
a nonzero ideal of R. Let α, β be automorphisms of R. If (x ◦ y)α,β ∈ Z(R) for all
x, y ∈ I, then R is commutative.

Proof: For all x, y ∈ I, we have

(x ◦ y)α,β ∈ Z(R). (2.2)

Replacing x by β(y)x, we get β(y)(x ◦ y)α,β ∈ Z(R), which implies that
[β(y)(x ◦ y)α,β , r] = 0, for all r ∈ R. Hence, by (2.2), we get [β(y), r](x ◦ y)α,β =
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0, for all x, y ∈ I, and r ∈ R. Now replace r by β(m)r, to get [y,m]Rβ−1((x ◦
y)α,β) = {0}, for all x, y,m ∈ I. By Remark 2.1, we conclude that either [y,m] = 0
for all y,m ∈ I, or β−1((x ◦ y)α,β) = 0 for all x, y ∈ I. In the first case, R

is commutative by Lemma 2.4. On the other hand if β−1((x ◦ y)α,β) = 0 for
all x, y ∈ I, then (x ◦ y)α,β = 0. Replacing y by ym, and using the last ex-
pression, we get β(y)[x,m]α,β = 0. Again replace y by yr for all r ∈ R, to get
IRβ−1([x,m]α,β) = 0. Since I is nonzero ideal and R is prime which yields that
[x,m]α,β = 0 for all x,m ∈ I, and hence R is commutative by Lemma 2.10. 2

3. Centralizing in Generalized (α, β)-Derivations via Morita Context

Theorem 3.1. Let K(R,S) be a semi-PMC in which the trace ideal I is nonzero
and τS is epic. Suppose that α, β are automorphisms of R, and R admits a general-
ized (α, β)-derivation F with associated (α, β)-derivation d with {0} 6= d(Z(R)) ⊆
Z(R), such that either

(i) [F (x), x]α,β ∈ Z(R) for all x ∈ I, or

(ii) (F (x) ◦ x)α,β ∈ Z(R) for all x ∈ I.

Further, if R is a prime ring of characteristic different from two and S is
reduced, then S is commutative.

Proof: (i) For all x ∈ I, we have

[F (x), x]α,β ∈ Z(R). (3.1)

Linearizing (3.1), we get

[F (x), y]α,β + [F (y), x]α,β ∈ Z(R) for all x, y ∈ I. (3.2)

For any z ∈ Z(R), replacing y by yz in (3.2), using (3.2), and Remark 2.3, we get

β(y)[F (x), z]α,β + [β(y), x]α,βd(z) ∈ Z(R) for all x, y ∈ I.

Again, replacing y by my with m ∈ I and using the above expression, we get

β(m)β(y)[F (x), z]α,β + β(m)[β(y), x]α,βd(z) + β([m,x])β(y)d(z) ∈ Z(R).

Thus, in particular, we have

[β(m){β(y)[F (x), z]α,β + [β(y), x]α,βd(z)} + β([m,x])β(y)d(z), β(m)] = 0.

This gives

[β([m,x])β(y)d(z), β(m)] = 0 for all x, y,m ∈ I. (3.3)

Since R is prime and {0} 6= d(Z(R)) ⊆ Z(R), we find that β([[m,x]y,m]) = 0 for
all x, y,m ∈ I, that is [m,x][y,m] + [[m,x],m]y = 0. Again, replacing y by yx and
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using the above expression, we get [m,x]y[m,x] = 0, for all x, y,m ∈ I. That is
[m,x]I[m,x] = 0 for all m,x ∈ I. Thus, primeness of R forces that [m,x] = 0, and
hence R is commutative by Lemma 2.4. Since S is reduced, we get the required
result by Lemma 2.7.

(ii) For all x ∈ I, we have

(F (x) ◦ x)α,β ∈ Z(R). (3.4)

Linearizing (3.4), we get

(F (x) ◦ y)α,β + (F (y) ◦ x)α,β ∈ Z(R) for all x, y ∈ I.

For any nonzero z ∈ Z(R), replacing y by yz in the last expression and using
Remark 2.3, we get −β(y)[x, z]α,β + (β(y) ◦ x)α,βd(z) + β(y)[d(z), α(x)] ∈ Z(R).
Since {0} 6= d(Z(R)) ⊆ Z(R), then

−β(y)[x, z]α,β + (β(y) ◦ x)α,βd(z) ∈ Z(R).

Again replacing y by my, we get

β(m){−β(y)[x, z]α,β+(β(y)◦x)α,βd(z)}−[β(m), β(x)]β(y)d(z) ∈ Z(R) for all x, y, m ∈ I.

Thus, in particular, we have

[β(m){−β(y)[x, z]α,β + (β(y) ◦ x)α,βd(z)} − [β(m), β(x)]β(y)d(z), β(m)] = 0.

This gives
[[β(m), β(x)]β(y)d(z), β(m)] = 0 for all x, y,m ∈ I.

Now using similar arguments as used in the proof of (i) after equation (3.3), we
get the required result. 2

Theorem 3.2. Let K(R,S) be a semi-PMC in which the trace ideal I is nonzero
and τS is epic. Suppose that α, β are automorphisms of R, and R admits a general-
ized (α, β)-derivation F with associated (α, β)-derivation d with {0} 6= d(Z(R)) ⊆
Z(R), such that F = 0 or d 6= 0 and R satisfies any one of the following conditions

(i) F ([x, y]) − [x, y]α,β ∈ Z(R) for all x, y ∈ I,

(ii) F (x ◦ y) − (x ◦ y)α,β ∈ Z(R) for all x, y ∈ I,

(iii) F ([x, y]) − (x ◦ y)α,β ∈ Z(R) for all x, y ∈ I,

(iv) F (x ◦ y) − [x, y]α,β ∈ Z(R) for all x, y ∈ I,

(v) (F (x) ◦ F (y)) − [x, y]α,β ∈ Z(R) for all x, y ∈ I,

(vi) [F (x), d(y)] − [x, y]α,β ∈ Z(R) for all x, y ∈ I.
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Further, if R is a prime ring of characteristic different from two and S is reduced,
then S is commutative.

Proof: (i) For all x, y ∈ I, we have

F ([x, y]) − [x, y]α,β ∈ Z(R). (3.5)

If F = 0, then [x, y]α,β ∈ Z(R) for all x, y ∈ I, thus R is commutative by Lemma
2.10. Since S is reduced then by Lemma 2.7, S is commutative.

Therefore, we shall assume that d 6= 0. For any nonzero z ∈ Z(R), since
α(z) ∈ Z(R) by Remark 2.3, replacing y by yz in (3.5) and using (3.5), we get

β([x, y])d(z) − β(y)[x, z]α,β ∈ Z(R). (3.6)

Again, replacing y by my in (3.6), we find that

β(m){β([x, y])d(z) − β(y)[x, z]α,β} + β([x,m])β(y)d(z) ∈ Z(R) for all x, y,m ∈ I.

Thus, in particular

[β(m){β([x, y])d(z) − β(y)[x, z]α,β} + β([x,m])β(y)d(z), β(m)] = 0.

This implies that [β([x,m])β(y)d(z), β(m)] = 0 for all x, y,m ∈ I. Notice that the
arguments given in the last paragraph of the proof of Theorem 3.1 (i) are still valid
in the present situation, and hence repeating the same process, we get the required
result.

(ii) It is given that F is a generalized (α, β)- generalized derivation on R. If
F = 0, then (x ◦ y)α,β ∈ Z(R), thus R is commutative by Lemma 2.11. Since S is
reduced so we get the required result by Lemma 2.7.

Therefore, we shall assume that d 6= 0. Now for all x, y ∈ I, we have

F (x ◦ y) − (x ◦ y)α,β ∈ Z(R). (3.7)

For any nonzero z ∈ Z(R), replacing y by yz in (3.7) and using (3.7), we get

β(x ◦ y)d(z) − β(y)[x, z]α,β ∈ Z(R). (3.8)

Again replacing y by my in (3.8), we get

β(m){β(x ◦ y)d(z)−β(y)[x, z]α,β}+ β(([x,m])β(y)d(z) ∈ Z(R) for all x, y,m ∈ I.

Thus, in particular

[β(m){β(x ◦ y)d(z) − β(y)[x, z]α,β} + β(([x,m])β(y)d(z), β(m)] = 0.
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Hence, we obtain [β([x,m])β(y), β(m)]d(z) = 0 for all x, y,m ∈ I. Again since
0 6= d(z) ∈ Z(R) and R prime, we get β([[x,m]y,m]) = 0 and hence using the
similar arguments as used in the last paragraph of the proof of Theorem 3.1 (i) to
get the required result.

(iii) It is given that F is a generalized (α, β)-derivation on R. If F = 0, then
(x ◦ y)α,β ∈ Z(R), thus by Lemma 2.11 R is commutative. Since S is reduced so S

is commutative by Lemma 2.7.

Hence we shall assume that d 6= 0. Now for all x, y ∈ I, we have

F ([x, y]) − (x ◦ y)α,β ∈ Z(R). (3.9)

Replacing y by yz for any z ∈ Z(R) in (3.9), we get

β[x, y]d(z) + β(y)[x, z]α,β ∈ Z(R), for all x, y ∈ I.

Now, applying similar technique as used after (3.6) in the proof of (i) yields the
required result.

(iv) It is given that F is a generalized (α, β)-derivation. If F = 0, then
[x, y]α,β ∈ Z(R), for all x, y ∈ I, and hence R is commutative by Lemma 2.10.
Since S is reduced so S is commutative by Lemma 2.7.

Therefore, we shall assume that d 6= 0. For all x, y ∈ I, we have

F (x ◦ y) − [x, y]α,β ∈ Z(R). (3.10)

Replacing y by yz for any z ∈ Z(R) in (3.10), we get

β(x ◦ y)d(z) − β(y)[x, z]α,β ∈ Z(R), for all x, y ∈ I.

The last expression is the same as the equation (3.8) and hence the result follows.

(v) It is given that F is a generalized (α, β)-derivation. If F = 0, then
[x, y]α,β ∈ Z(R), for all x, y ∈ I, and hence R is commutative by Lemma 2.10.
Since S is reduce so we get the required result by Lemma 2.7.

Therefore, we shall assume that d 6= 0. Now for all x, y ∈ I, we have

(F (x) ◦ F (y)) − [x, y]α,β ∈ Z(R). (3.11)

Replace y by yz for any z ∈ Z(R), in (3.11), to get

(F (x) ◦ β(y))d(z) − β(y)[x, z]α,β ∈ Z(R).

Again replacing y by my with m ∈ I in the last expression, we get

β(m){(F (x) ◦ β(y))d(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)d(z) ∈ Z(R).
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Thus, in particular

[β(m){(F (x) ◦ β(y))d(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)d(z), β(m)] = 0,

and hence [[F (x), β(m)]β(y)d(z), β(m)] = 0 for all x, y,m ∈ I. This can be rewrit-
ten as [[F (x), β(m)]β(y), β(m)]d(z) = 0. Since 0 6= d(Z(R)) ⊆ Z(R) and R is prime
we find that [[F (x), β(m)], β(m)]β(y)+[F (x), β(m)][β(y), β(m)] = 0. Again replace
y by yt with t ∈ I in the last expression, we obtain [F (x), β(m)]β(y)β([t,m]) = 0
and hence β−1([F (x), β(m)])y[t,m] = 0. Thus, by Remark 2.1 either β−1([F (x),
β(m)]) = 0 for all x,m ∈ I or [t,m] = 0 for all t,m ∈ I. If [t,m] = 0, then R is
commutative by Lemma 2.4. Now, since S is reduced so we get the required result
by Lemma 2.7. On the other hand if β−1([F (x), β(m)]) = 0, then [F (x), β(m)] = 0
for all x,m ∈ I. Again replacing x by xz for any nonzero z ∈ Z(R), and using
Remark 2.3 we get β([x,m])d(z) = 0, for all x,m ∈ I. Since 0 6= d(z) ∈ Z(R) and
R is prime then, we get β([x,m]) = 0 for all x,m ∈ I, and hence R is commutative
by Lemma 2.4. Since S is reduced, we get the required result by Lemma 2.7.

(vi) It is given that F is a generalized (α, β)-derivation. If F = 0, then
[x, y]α,β ∈ Z(R), for all x, y ∈ I, and thus R is commutative by Lemma 2.10.
Since S is reduced, we get the required result by Lemma 2.7.

Therefore, we shall assume that d 6= 0. For all x, y ∈ I, we have

[F (x), d(y)] − [x, y]α,β ∈ Z(R). (3.12)

Replacing y by yz for any nonzero z ∈ Z(R) in (3.12), we get

[F (x), β(y)]d(z) − β(y)[x, z]α,β ∈ Z(R), for all x, y ∈ I.

Replacing y by my with m ∈ I in the last expression we find that

β(m){[F (x), β(y)]d(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)d(z) ∈ Z(R).

Hence, in particular

[β(m){[F (x), β(y)]d(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)d(z), β(m)] = 0.

This implies that [[F (x), β(m)]β(y)d(z), β(m)] = 0 for all x, y,m ∈ I. Now using
the same arguments as used in the last paragraph of (v), we get the required result.

2

Theorem 3.3. Let K(R,S) be a semi-PMC in which the trace ideal I is nonzero
and τS is epic. Suppose that α, β are automorphisms of R, and R admits a general-
ized (α, β)-derivation F with associated (α, β)-derivation d with {0} 6= d(Z(R)) ⊆
Z(R), such that

(i) [F (x), F (y)] ∈ Z(R) for all x, y ∈ I,
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(ii) F ([x, y]) − [F (x), y]α,β ∈ Z(R), for all x, y ∈ I,

(iii) F (x ◦ y) − (F (x) ◦ y)α,β ∈ Z(R) for all x, y ∈ I.

Further, if R is a prime ring of characteristic different from two and S is reduced,
then S is commutative.

Proof: (i) For all x, y ∈ I, we have

[F (x), F (y)] ∈ Z(R). (3.13)

Replacing y by yz for any nonzero z ∈ Z(R) in (3.13) using (3.13), we get

[F (x), β(y)]d(z) ∈ Z(R).

Since {0} 6= d(Z(R)) ⊆ Z(R) and R is prime then we have

[F (x), β(y)] ∈ Z(R), for all x, y ∈ I.

For any nonzero z ∈ Z(R), replacing x by xz in the above expression and using
Remark 2.3, we find that β([x, y])d(z) ∈ Z(R) for all x, y ∈ I. Again, since
{0} 6= d(Z(R)) ⊆ Z(R) and R is prime, we obtain β([x, y]) ∈ Z(R) that is,
[x, y] ∈ Z(R) for all x, y ∈ I, and hence R is commutative by Lemma 2.4. Since S

is reduced so by Lemma 2.7 we get the required result.

(ii) For all x, y ∈ I, we have

F [x, y] − [F (x), y]α,β ∈ Z(R). (3.14)

Replacing y by yz for any nonzero z ∈ Z(R) in (3.14)and using (3.14), we get

β([x, y])d(z) − β(y)[F (x), z]α,β ∈ Z(R), for all x, y ∈ I.

Notice that the arguments given in the proof of Theorem 3.2 (i) after equation
(3.6) are still valid in the present situation, and hence repeating the same process,
we get the required result.

(iii) For all x, y ∈ I, we have

F (x ◦ y) − (F (x) ◦ y)α,β ∈ Z(R). (3.15)

Replacing y by yz for any z ∈ Z(R) using (3.15), to get

β(x ◦ y)d(z) − β(y)[F (x), z]α,β ∈ Z(R).

Now using the similar arguments as used in the proof of Theorem 3.2 (ii) after
equation 3.8, we get the required result. 2
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Theorem 3.4. Let K(R,S) be a semi-PMC in which the trace ideal I is nonzero
and τS is epic. Suppose that α, β are automorphisms of R, and R admits a gen-
eralized (α, β)-derivations F and G with associated (α, β)-derivations d and g, re-
spectively, with {0} 6= g(Z(R)) ⊆ Z(R), such that F = 0 (or G = 0) or d 6= 0 (or
g 6= 0) and R satisfy the condition [F (x), G(y)] − [x, y]α,β ∈ Z(R) for all x, y ∈ I.

Further, if R is a prime ring of characteristic different from two and S is reduced,
then S is commutative.

Proof: It is given that F and G are generalized (α, β)−derivations on R. If F = 0
(or G = 0) then [x, y]α,β ∈ Z(R), for all x, y ∈ I, and hence by Lemma 2.10 R is
commutative. Since S is reduced so we get the required result by Lemma 2.7.

Now we shall assume that g 6= 0. Then for all x, y ∈ I, we have

[F (x), G(y)] − [x, y]α,β ∈ Z(R). (3.16)

Replacing y by yz for any nonzero z ∈ Z(R), in (3.16), using (3.16) and Remark
2.3, we get

[F (x), β(y)]g(z) − β(y)[x, z]α,β ∈ Z(R). (3.17)

Again, replacing y by my with m ∈ I in (3.17), we get

β(m){[F (x), β(y)]g(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)g(z) ∈ Z(R).

Thus, in particular

[β(m){[F (x), β(y)]g(z) − β(y)[x, z]α,β} + [F (x), β(m)]β(y)g(z), β(m)] = 0

and hence [[F (x), β(m)]β(y)g(z), β(m)] = 0 for all x, y,m ∈ I. Using the same
arguments as used in the last paragraph of Theorem 3.2 (v), yields the required
result.

2

In view of these results, we get the following corollaries:

Corollary 3.5. In each of the above, from Theorem 3.1 to Theorem 3.4, if K(R,S)
be a PMC in which M and N are Cauchy modules, then M⊗RN is an R−bialgebra
if and only if the datum K(R,S) is MC.

Proof: Suppose that M ⊗R N is an R−bialgebra, since R is commutative and
R ∼= S from the above theorems, then by Remark 2.2 and Lemma 2.9, respectively,
the datum {R,M,N, µR} is MC. On the other hand, if the datum K(R,S) is MC,
R is commutative and R ∼= S by the above theorems, then by Remark 2.2 the
datum {R,M,N, µR} is MC, thus by Lemma 2.9 M ⊗R N is an R−bialgebra. 2



Morita context and generalized (α, β)−derivations 165

Corollary 3.6. By the same argument as Corollary 3.5, in the cases, from Theo-
rem 3.1 to Theorem 3.4, if R and S are Morita equivalent rings, then by Lemma
2.8 (a), R is also reduced and Z(R) ∼= Z(S). Since R and S are commutative,
R = Z(R) and S = Z(S) and hence R ∼= S. If S is division ring then S is a field.
Since S is commutative division ring, by Lemma 2.8 (c), R and S are becomes
isomorphic fileds.

Corollary 3.7. Let K(R,S) be a PMC in which rings R and S are equipped with
multiplicative identity 1. Then Z(R) ∼= Z(S). If the conditions of either Theorem
3.1, or of Theorem 3.2, or of Theorem 3.3, or ofTheorem 3.4 are satisfied, then S
∼= Z(R). Hence R can be treated as an S−Algebra. Moreover in this case S becomes
prime, as being prime is a Morita invariant property.

Corollary 3.8. Let K(R,S) be a semi-PMC in which τS is epic. Then the gen-

eralized matrix ring T =

[

R M

N S

]

and S are Morita equivalent [10, Theorem

2.1]. Hence, trivially, in this case, if the conditions of either of the Theorems 3.1,
3.2, 3.3, or 3.4, are satisfied, then Z(T ) ∼= S.
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