On the Gauss Map of Ruled Surfaces of Type II in 3-Dimensional Pseudo-Galilean Space

Alper Osman Öğrenmiş and Mahmut Ergüt

Abstract: In this paper, ruled surfaces of type II in a three-dimensional Pseudo-Galilean space are given. By studying its Gauss map and Laplacian operator, we obtain a classification of ruled surfaces of type II in a three-dimensional Pseudo-Galilean space.

Key Words: Pseudo-Galilean Space, Ruled Surfaces, Gauss Map.

Contents

1 Introduction 145
2 Ruled Surfaces 146
3 Cylindrical Ruled Surfaces 148

1. Introduction

The classification of submanifold in Euclidean or Non-Euclidean spaces has been of particular interest for Geometers. In 1983, the authors classified spacelike ruled surfaces in a three-dimensional Minkowski space \(\mathbb{R}^3_1 \) [13], and De Woestijne [11] extended it to the Lorentz version in 1998. In late 1970s Chen [4,5] introduced the notion of Euclidean immersions of finite type. In a framework of theory of finite type, Chen and Piccinni [6] characterized the submanifold satisfying the condition \(\Delta G = \lambda G \) \((\lambda \in \mathbb{R})\), where \(\Delta \) in the Laplacian of the induced metric and \(G \) the Gauss map for submanifold. Submanifold of Euclidean and pseudo-Euclidean spaces with finite type Gauss map also studied by following geometers. (cf. [7,9,12,15,16], etc.) On the otherhand, for the Gauss map of a surface in a three-dimensional Euclidean space \(\mathbb{R}^3 \) the following theorem is proved by Boikoussis and Blair [8].

Theorem 1.1. The only ruled surfaces in \(\mathbb{R}^3 \) whose Gauss map \(\xi \) satisfies

\[
\Delta \xi = A \xi, \quad A \in \text{Mat}(3, \mathbb{R})
\]

are locally the plane and the circular cylinder.

Also, for the Lorentz version Choi [15] investigated ruled surfaces with non-null base curve satisfying the condition (1.1) in a three-dimensional Minkowski space \(\mathbb{R}^3_1 \).

2000 Mathematics Subject Classification: 53B30,53A35

Typeset by \(\LaTeX \) style.
It seems to be interesting to investigate the Pseudo-Galilean version of the above theorem. Now, let \(G^3_1 \) be a three-dimensional Pseudo-Galilean space with standard coordinate system \(\{X_A\} \). Let \(S^m_m \) (resp. \(H^m_m \)) be an \(m \)-dimensional de Sitter space (resp. a hyperbolic space) in a \(m+1 \)-dimensional Pseudo-Galilean space \(G^1_{m+1} \). We denote by \(X_m(\varepsilon) \) a de Sitter space \(S^1_m(1) \) or a hyperbolic space \(H^1_m(-1) \), according as \(\varepsilon = 1 \) or \(\varepsilon = -1 \). Let \(X \) be a surface in \(G^3_1 \) and \(\xi \) be a unit vector field normal to \(X \). Then, for any point \(\rho \) in \(X \), we can regard \(\xi(\rho) \) as a point in \(H^2_m(-1) \) or \(S^1_m(1) \) by translating parallelly to the origin in ambient space \(G^3_1 \), according as \(\varepsilon = \pm 1 \). The map \(\xi \) of \(X \) into \(X_{2}(\varepsilon) \) is called a Gauss map of \(X \) in \(G^3_1 \). Then we prove the following

Theorem 1.2. The only ruled surfaces of type II in \(G^3_1 \) whose Gauss map \(\xi : X \to X_{2}(\varepsilon) \) satisfies (1.1) are locally the following spaces:

1. \(G^2_1 \) and \(S^1_1 \times \mathbb{R} \) if \(\varepsilon = -1 \)
2. \(G^2_1 \) and \(H_1 \times \mathbb{R} \) if \(\varepsilon = -1 \).

The theorem is proved in section 3.

2. Ruled Surfaces

First of all, we recall fundamental properties in three-dimensional Pseudo-Galilean space.

Differential geometry of the Galilean space \(G^3_3 \) has been largely developed in O. Röschel’s paper \([14]\).

The Pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective signature \((0,0,+,-) \), explained in \([10]\). The absolute of the Pseudo-Galilean geometry is an ordered triple \(\{w,f,I\} \) where \(w \) is the ideal (absolute) plane, \(f \) is line in \(w \) and \(I \) is the fixed hyperbolic involution of points of \(f \).

The group of motions of \(G^3_1 \) is a six-parameter group given (in affine coordinates) by

\[
\begin{align*}
\bar{x} &= a + x \\
\bar{y} &= b + cx + ych\varphi + zsh\varphi \\
\bar{z} &= d + ex + ysh\varphi + zch\varphi.
\end{align*}
\]

As in \([1]\), Pseudo-Galilean scalar product \(g \) can be written as

\[
g(v_1, v_2) = \begin{cases}
 x_1 x_2 & \text{if } x_1 \neq 0 \lor x_2 \neq 0 \\
 y_1 y_2 - z_1 z_2 & \text{if } x_1 = 0 \land x_2 = 0
\end{cases}
\] (2.1)

where \(v_1 = (x_1, y_1, z_1) \), \(v_2 = (x_2, y_2, z_2) \).

It leaves invariant the Pseudo-Galilean norm of the vector \(v = (x, y, z) \) defined by

\[
\|v\| = \begin{cases}
 x, & x \neq 0 \\
 \sqrt{|y^2 - z^2|}, & x = 0
\end{cases} \quad [2].
\]

(2.2)
A vector \(\mathbf{v} = (x, y, z) \) is said to be non-isotropic if \(x \neq 0 \). All unit non-isotropic vectors are of the form \((1, y, z)\). For isotropic vectors \(x = 0 \) holds. There are four types of isotropic vectors: spacelike \((y^2 - z^2 > 0)\), timelike \((y^2 - z^2 < 0)\) and two types of lightlike \((y = \pm z)\) vectors. A non-lightlike isotropic vector is a unit vector if \(y^2 - z^2 = \pm 1 \) \([3]\).

A trihedron \((T_0; e_1, e_2, e_3)\), with a proper origin \(T_0 = (x_0, y_0, z_0) \), is orthonormal in Pseudo-Galilean sense if the vectors \(e_1, e_2, e_3 \) are of the following form:

\[
e_1 = (1, y_1, z_1), \quad e_2 = (0, y_2, z_2), \quad e_3 = (0, \varepsilon z_2, \varepsilon y_2),
\]

with \(y_2^2 - z_2^2 = \delta \), where \(\varepsilon, \delta \) is \(+1\) or \(-1\) \([3]\).

Such trihedron \((T_0; e_1, e_2, e_3)\) is called positively oriented if for its vectors \(\det(e_1, e_2, e_3) = 1 \) holds, i.e. if \(y_2^2 - z_2^2 = \varepsilon \) \([3]\).

Let \(\mathbf{X} \) be a ruled surface, \(r \geq 1 \), in \(G_1^3 \) given by its parametrization

\[
\mathbf{X}(u, v) = r(u) + v\mathbf{a}(u), \quad v \in \mathbb{R}
\]

(2.3)

where \(r \) is the directrix (parametrized by the Pseudo-Galilean arc length) and \(\mathbf{a} \) is a unit generator vector field. according to the position of the striction curve with respect to the absolute figure, we have three types of skew ruled surfaces in \(G_1^3 \).

Throughout this paper, we assume that all objects are smooth unless otherwise mentioned. Now, we define a ruled surface of type II in \(G_1^3 \).

A ruled surface of type II in \(G_1^3 \) is a surface parametrized by

\[
\begin{align*}
\mathbf{X}(u, v) &= r(u) + v\mathbf{a}(u), \\
y, z, a_2, a_3 &\in C^2, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R} \\
y'z' - z'a' &= 1, \quad y'a'_2 - z'a'_3 = 0.
\end{align*}
\]

(2.4)

It is a surface whose striction curve \(r(u) = (0, y(u), z(u)) \) lies in pseudo-Euclidean plane, \(u \) is the arc-length on the striction curve, and whose generators \(\mathbf{a}(u) = (1, a_2(u), a_3(u)) \) are non-isotropic. In particular, if \(\mathbf{a}(u) \) is constant, then it said to be cylindrical, and if it is not so, then the surface is said to be non-cylindrical. Since our discussion is local, we may assume that we always have \(\mathbf{a}'(u) \neq 0 \) in the non-cylindrical case. That is, the direction of the rulings is always changing. \([3]\)

The natural basis \(\{\mathbf{X}_u, \mathbf{X}_v\} \) along the coordinate curves are given by

\[
\begin{align*}
\mathbf{X}_u &= dx(\frac{\partial}{\partial u}) = r' + v\mathbf{a}' \\
\mathbf{X}_v &= dx(\frac{\partial}{\partial v}) = \mathbf{a}.
\end{align*}
\]
Accordingly we see

\[g(X_u, X_u) = g(r', r') + 2v g(r', a') + v^2 g(a', a') \]
\[g(X_u, X_v) = 0 \]
\[g(X_v, X_v) = g(a, a). \]

For the components \(g_{ij} \) of the Pseudo-Galilean metric \(g \) we denote \((g_{ij}) \) (resp. \(g \)) the inverse matrix (resp. the determinant) of matrix \((g_{ij}) \). Then the Laplacian \(\Delta \) is given by

\[\Delta = -\frac{1}{\sqrt{|g|}} \sum \frac{\partial}{\partial x^i} (\sqrt{|g|} g^{ij} \frac{\partial}{\partial x^j}). \quad (2.5) \]

3. Cylindrical Ruled Surfaces

In this section we are concerned with cylindrical ruled surfaces. Let \(X \) be a cylindrical ruled surface swept out by the vector field \(a \) along the base curve \(r \) in \(G_3 \). That is, \(r = r(u) \) is isotropic curve and \(a = a(u) \) is a non-isotropic unit constant vector along orthogonal to \(r \). Then the cylindrical ruled surface \(X \) is only or type II. And \(X \) is parametrized by

\[X(u, v) = r(u) + va(u), \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R}. \]

Then we get \(g(\xi, \xi) = \varepsilon (= \mp 1) \). Let \(X_2(\varepsilon) \) be a two-dimensional space form as follows:

\[X_2(\varepsilon) = \begin{cases} S_2(1) \text{ in } G_3^1 \text{ if } \varepsilon = -1 \\ H_2(-1) \text{ in } G_3^1 \text{ if } \varepsilon = 1. \end{cases} \]

Then, for any point \(x \) in \(X \), \(\xi(x) \) can be regarded as a point in \(X_2(\varepsilon) \) and the map \(\xi : X \to X_2(\varepsilon) \) is the Gauss map of \(X \) into \(X_2(\varepsilon) \).

We give here theorem of ruled surface of type II whose Gauss map satisfies

\[\Delta \xi = A\xi, \quad A \in \text{Mat}(3, \mathbb{R}). \quad (3.1) \]

Theorem 3.1. The only cylindrical ruled surface of type II in \(G_3^1 \) whose Gauss map satisfies the condition (3.1) are locally the plane and the hyperbolic cylinder (resp. the Pseudo-Galilean plane and Pseudo-Galilean circular cylinder).

Proof: Let \(X \) be a cylindrical ruled surface of type II in \(G_3^1 \) parametrized by

\[X(u, v) = r(u) + va(u) \]
\[y, z, a_2, a_3 \in C^2, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R} \]
\[\left| y'z'' - z'y'' \right| = 1, \quad y'a_2' - z'a_3' = 0 \quad (3.2) \]
where \(\mathbf{a} \) is a unit constant vector along the curve \(r \) orthogonal to it. That is, it satisfies \(g(r', \mathbf{a}) = 0, g(\mathbf{a}, \mathbf{a}) = 1 \). Acting a Pseudo-Galilean transformation, we may assume that \(\mathbf{a} = (1, 0, 0) \) without loss of generality. Then \(r \) may be regarded as the plane curve \(r(u) = (0, y(u), z(u)) \) parametrized by arc length:

\[
g(r', r') = y'^2 - z'^2 = \varepsilon \quad (\varepsilon = \mp 1).
\]

(3.3)

The Gauss map \(\xi \) is given by

\[
\begin{align*}
\xi^1 &= (0, \varepsilon z' \, u, \varepsilon y' \, u) \\
\xi^2 &= (a_{12} \varepsilon z' + a_{13} y', a_{22} \varepsilon z' + a_{23} y', a_{32} \varepsilon z' + a_{33} y').
\end{align*}
\]

where \(A = (a_{ij}) \) is the constant matrix.

Now, in order to prove this theorem we may solve this equation and obtain the solution \(y \) and \(z \). First we consider that \(\varepsilon = -1 \). So we get \(g(r', r') = y'^2 - z'^2 = -1 \). Accordingly we can parametrize as follows:

\[
\begin{align*}
y' &= \sinh \theta, \\
z' &= \cosh \theta
\end{align*}
\]

(3.5)

where \(\theta = \theta(u) \). Differentiating (3.5), we obtain

\[
\begin{align*}
y'' &= \theta' \cosh \theta, \\
y''' &= \theta'' \cosh \theta + (\theta')^2 \sinh \theta \\
z'' &= \theta' \sinh \theta, \\
z''' &= \theta'' \sinh \theta + (\theta')^2 \cosh \theta
\end{align*}
\]

(3.6)

By (3.4), (3.5) and (3.6) we have

\[
\begin{align*}
-\theta'' \sinh \theta - (\theta')^2 \cosh \theta &= a_{22} \cosh \theta + a_{23} \sinh \theta \\
-\theta' \cosh \theta - (\theta')^2 \sinh \theta &= a_{32} \cosh \theta + a_{33} \sinh \theta,
\end{align*}
\]

which give

\[
\begin{align*}
\theta'' &= (a_{22} - a_{33}) \cosh \theta \sinh \theta + a_{23} \sinh^2 \theta - a_{32} \cosh^2 \theta \\
(\theta')^2 &= (a_{32} - a_{23}) \cosh \theta \sinh \theta + a_{33} \sinh^2 \theta - a_{22} \cosh^2 \theta.
\end{align*}
\]

(3.7) (3.8)

Differentiating (3.8), we get

\[
2\theta' \theta''' = \theta' \{(a_{22} - a_{33})(\cosh^2 \theta + \sinh^2 \theta) + 2(a_{33} - a_{22}) \sinh \theta \cosh \theta\}.
\]

Substituting (3.7) into this equation, we get
\[\theta' \left\{ 4(a_{22} - a_{33}) \cosh \theta \sinh \theta + (a_{23} - 3a_{32}) \cosh^2 \theta + (3a_{23} - a_{32}) \sinh^2 \theta \right\} = 0. \] (3.9)

We suppose that \(\theta' \neq 0 \). By (3.4) and (3.9) we get

\[a_{22} = a_{33} \quad \text{and} \quad a_{12} = a_{13} = a_{23} = a_{32} = 0, \] (3.10)

because \(\sinh \theta \cosh \theta, \sinh^2 \theta \) and \(\cosh^2 \theta \) are linearly independent functions of \(\theta = \theta(u) \). Combining the above equations with (3.8) gives

\[\theta = \mp \frac{1}{r} u + c_0, \quad r \neq 0, \quad c_0 \in \mathbb{R} \]

where \(-\frac{1}{r^2} = a_{22} = a_{33} \). Accordingly we have

\[y = \mp r \sinh \theta + c_1, \quad c_1 \in \mathbb{R} \]
\[z = \mp r \cosh \theta + c_2, \quad c_2 \in \mathbb{R}. \]

This representation gives us to

\[(y - c_1)^2 - (z - c_2)^2 = r^2, \quad r \neq 0. \]

We denote by \(S^1_1 \left(r, (c_1, c_2) \right) \) the pseudo-circle centered at \((c_1, c_2) \) with radius \(r \) in the Pseudo-Galilean plane \(G^2_2 \) (the \(yz \)-plane). By the above equation the curve \(r \) is contained in \(S^1_1 \left(r, (c_1, c_2) \right) \) and hence the ruled surface \(X \) is contained in the Pseudo-Galilean circular cylinder \(S^1_1 \times \mathbb{R} \).

Now, we consider that \(\varepsilon = 1 \). So we get \(g(r', r') = y'^2 - z'^2 = 1 \). Accordingly we can parametrize as follows:

\[y' = \cosh \theta, \quad z' = \sinh \theta \]

where \(\theta = \theta(u) \). By similar discussion to that of the above \(\varepsilon = -1 \) we can get

\[\theta' \left\{ 4(a_{22} - a_{33}) \cosh \theta \sinh \theta + (a_{23} - 3a_{32}) \cosh^2 \theta + (a_{23} - 3a_{32}) \sinh^2 \theta \right\} = 0. \] (3.11)

We suppose that \(\theta' \neq 0 \). By (3.4) and (3.11) we get

\[a_{22} = a_{33} \quad \text{and} \quad a_{12} = a_{13} = a_{23} = a_{32} = 0, \]

which yields that

\[\theta = \mp \frac{1}{r} u + c_0, \quad r \neq 0, \quad c_0 \in \mathbb{R} \]

where \(\frac{1}{r^2} = a_{22} = a_{33} \). Accordingly we have

\[y = \mp r \sinh \theta + c_1, \quad c_1 \in \mathbb{R} \]
\[z = \mp r \cosh \theta + c_2, \quad c_2 \in \mathbb{R}. \]
This representation gives us to
\[(y - c_1)^2 - (z - c_2)^2 = -r^2, \quad r \neq 0.\]

We denote by \(H_1(r, (c_1, c_2))\) the hyperbolic circle centered at \((c_1, c_2)\) with radius \(r\) in the Pseudo-Galilean plane \(G^1_2\) (the \(yz\)-plane). By the above equation the curve \(r\) is contained in \(H_1(r, (c_1, c_2))\) and hence the ruled surface \(X\) is contained in the hyperbolic cylinder \(H_1 \times \mathbb{R}\).

Example 3.2. A Pseudo-Galilean circular cylinder
\[S^1_1 \times \mathbb{R} = \{(x, y, z) \in G^3_3 : y^2 - z^2 = r^2, \quad r \neq 0\}\]
is a cylindrical ruled surface of type II with base curve \(r(u) = (0, r \sinh \frac{u}{r}, r \cosh \frac{u}{r})\) and director curve \(a(u) = (1, 0, 0)\). The Gauss map is given by
\[\xi = (0, \cosh \frac{u}{r}, \sinh \frac{u}{r})\]
and the Laplacian \(\Delta \xi\) of the Gauss map \(\xi\) can be expressed as
\[\Delta \xi = -\frac{1}{r^2} \xi.\]

Hence the Pseudo-Galilean circular cylinder satisfies (3.1) with
\[A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & -\frac{1}{r^2} & 0 \\ a_{31} & 0 & -\frac{1}{r^2} \end{bmatrix}.\]

Example 3.3. A hyperbolic cylinder
\[H_1 \times \mathbb{R} = \{(x, y, z) \in G^3_3 : y^2 - z^2 = -r^2, \quad r \neq 0\}\]
is a cylindrical ruled surface of type II with base curve \(r(u) = (0, r \sinh \frac{u}{r}, r \cosh \frac{u}{r})\) and director curve \(a(u) = (1, 0, 0)\). The Gauss map is given by
\[\xi = (0, \sinh \frac{u}{r}, \cosh \frac{u}{r})\]
and the Laplacian \(\Delta \xi\) of the Gauss map \(\xi\) can be expressed as
\[\Delta \xi = \frac{1}{r^2} \xi.\]

Hence the hyperbolic cylinder satisfies (3.1) with
\[A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & \frac{1}{r^2} & 0 \\ a_{31} & 0 & \frac{1}{r^2} \end{bmatrix}.\]
References

Alper Osman Öğrenmiş
Fırat University,
Faculty of Science,
Department of Mathematics,
23119 Elazığ, Turkey
E-mail address: ogrenmisalper@gmail.com

and

Mahmut Ergüt
Fırat University,
Faculty of Science,
Department of Mathematics,
23119 Elazığ, Turkey
E-mail address: mergut@firat.edu.tr