The Reilly's Integral Formula on Semi-Riemannian Manifolds with Nondegenerate Boundary

Mahmut Ergüt and Mihriban Külahcı
ABSTRACT: In this paper, we obtained the Reilly's integral Formula on semiRiemannian manifolds with nondegenerate boundary.

Key Words: Semi-Riemannian manifold, Nondegenerate boundary, Reilly's formula.

Contents

1 Introduction

2 Basic Notions and Terminologies
3 Reilly's Formula

1. Introduction

In Riemannian geometry, integral formulas have been studied by many mathematicians [1] and their use many beatiful global results have been obtained. Perhaps the Reilly's formula is one of the most well known integral formula in Riemannian geometry as well as a very powerful tool for obtaining global results. Nonetheless, a Reilly's Formula in semi-Riemannian geometry has not been available. The main difficulty in stating an integral formula for semi-Riemannian manifolds is that the boundary may become degenerate at some points and hence there exists no well-defined unit outward normal at such points. Consequently there is no well defined induced volume form on the boundary.

Duggal was the first one who studied semi-Riemannian manifolds with boundary in one of his works on integral formulas in semi-Riemannian geometry [2]. In [2], Duggal defined a semi-Riemannian manifold to be regular if the usual form of integral formulas remains valid on it. In [3], Ünal defined nondegenerate boundary of a semi-Riemannian manifold and by making use of the volume form on the nondegenerate boundary, he obtained integral formulas.

In this paper, we define two type semi-Riemannian inner product. Using this definition we classify the boundaries. We define nondegenerate boundary of a semiRiemannian manifold and we get Reilly's formula on the nondegenerate boundary. Of course, the validity of the Reilly's formula depends on some restrictions, namely, the degenerate part of the boundary must have measure zero. Finally, we obtain different results from Riemannian geometry.

[^0]
2. Basic Notions and Terminologies

Let R^{n} be n-dimensional real vector space. Semi-Riemannian inner product for n-dimensional real vector space R^{n} is defined as follows [4]:

$$
\begin{align*}
\langle,\rangle_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} & \rightarrow \mathbb{R} \tag{2.1}\\
(\vec{X}, \vec{Y}) & \rightarrow\langle\vec{X}, \vec{Y}\rangle_{1}=\sum_{i=1}^{v} x_{i} y_{i}-\sum_{j=v+1}^{n} x_{j} y_{j}
\end{align*}
$$

or

$$
\begin{align*}
\langle,\rangle_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} & \rightarrow \mathbb{R} \tag{2.2}\\
(\vec{X}, \vec{Y}) & \rightarrow\langle\vec{X}, \vec{Y}\rangle_{2}=-\sum_{i=1}^{v} x_{i} y_{i}+\sum_{j=v+1}^{n} x_{j} y_{j}
\end{align*}
$$

In addition, β_{i} and ε_{i} are defined as follows:

$$
\beta_{i}=\left\{\begin{array}{ccc}
1 & , & \text { if } \quad 1 \leq i \leq v \tag{2.3}\\
-1 & , & \text { if } \quad v+1 \leq i \leq n
\end{array}\right.
$$

and

$$
\varepsilon_{i}=\left\{\begin{array}{cll}
-1 & , & \text { if } \quad 1 \leq i \leq v \tag{2.4}\\
1, & \text { if } \quad v+1 \leq i \leq n
\end{array}\right.
$$

Considering β_{i} and ε_{i} in Eq. (2.1) and Eq. (2.2), respectively, we get

$$
\begin{equation*}
\langle\vec{X}, \vec{Y}\rangle_{1}=\sum_{i=1}^{n} \beta_{i} x_{i} y_{i} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\vec{X}, \vec{Y}\rangle_{2}=\sum_{i=1}^{n} \varepsilon_{i} x_{i} y_{i} \tag{2.6}
\end{equation*}
$$

Here the functions of \langle,\rangle_{1} and \langle,\rangle_{2} are semi-Riemannian inner product in R^{n} and R_{v}^{n} is semi-Riemannian space which is united with the functions of \langle,\rangle_{1} and \langle,\rangle_{2}.

For the sake of shortness, let's unite both of semi-Riemannian inner product definition and let's express this definition as follows:

If is written as the following,

$$
\gamma_{i}=\left\{\begin{array}{llll}
\beta_{i} & , & \text { if } & \langle,\rangle_{1} \\
\varepsilon_{i} & , & \text { if } & \langle,\rangle_{2}
\end{array}\right.
$$

then semi-Riemannian inner product is as follows:

$$
\begin{equation*}
\langle\vec{X}, \vec{Y}\rangle=\sum_{i=1}^{n} \gamma_{i} x_{i} y_{i} \tag{2.7}
\end{equation*}
$$

Throughout this paper, let M denote an n-dimensional semi-Riemannian manifold with metric \langle,$\rangle of index 0 \leq v \leq n$ and boundary ∂M. Then the open submanifold $\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}$of ∂M is called the nondegenerate boundary of $(M,\langle\rangle$,$) . A vector 0 \neq v \in T M$ is respectively called spacelike, timelike and null if $\langle\rangle>0,,\langle\rangle<0,,\langle\rangle=$,0 . We will also assume that M is oriented and ∂M is oriented by the induced orientation. Also let $d v$ be the semi-Riemannian volume element on M, that is, $d v$ is an exterior n-form on M with

$$
\begin{equation*}
d v=\sqrt{|g|} d x_{1} \wedge \ldots \wedge d x_{n} \tag{2.8}
\end{equation*}
$$

for semi-Riemannian orthonormal basis $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ of $\chi(U)$ on $a \in U \subset$ M, where $g=\operatorname{det}\left(g_{i j}\right)$ [5] and let e_{n} be the unit outward normal vector field on the nondegenerate boundary ∂M^{\prime} of $(M,\langle\rangle$,$) .$

Let M be an n-dimensional semi-Riemannian manifold, $\wedge^{k}(M)$ be k-forms set defined on M and $d v$ be volume element. Hence,

$$
*: \wedge^{k}(M) \rightarrow \wedge^{n-k}(M)
$$

If "*" isomorphism holds the following equality for $\forall \alpha, \beta \in \wedge^{k}(M)$,

$$
\begin{equation*}
\alpha \wedge * \beta=\langle\alpha, \beta\rangle d v \tag{2.9}
\end{equation*}
$$

then this transformation is called Hodge-star operator [6].
For n-dimensional semi-Riemannian manifold M, gradf denotes the gradient of f and we define as [7]

$$
\begin{equation*}
\operatorname{gradf}=\sum_{i=1}^{n} \gamma_{i} \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \tag{2.10}
\end{equation*}
$$

In addition we define the Laplace operator on M as [7]

$$
\begin{equation*}
\Delta(f)=\sum_{i=1}^{n} \gamma_{i} f_{i i} \tag{2.11}
\end{equation*}
$$

and also we define Hessian form of differentiable function f on M as [7]

$$
\begin{equation*}
H_{f}(u, v)=\left\langle\nabla_{u} g r a d f, v\right\rangle \tag{2.12}
\end{equation*}
$$

where $H_{f}\left(e_{i}, e_{j}\right)=f_{i j}$.
In addition, we define the second fundamental form of vector fields U and V of nondegenerate boundary $\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}$as follows:

$$
I I(U, V)=\left\langle\nabla_{U} e_{n}, V\right\rangle
$$

Definition 2.1. Let M be an n-dimensional semi-Riemannian manifold and R be a Riemannian curvature tensor of M. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a semi-Riemannian orthonormal basis of $T_{p}(M)$. Thus, one can write the following:

$$
\begin{align*}
\text { Ric }: \quad T_{p}(M) \times T_{p}(M) & \rightarrow I R \\
(U, V) & \rightarrow \operatorname{Ric}(U, V)=\sum_{i=1}^{n} \gamma_{i}\left\langle R\left(e_{i}, V\right) U, e_{i}\right\rangle \tag{2.13}
\end{align*}
$$

where the curvature tensor field Ric is called Ricci curvature tensor field and also the value of $\operatorname{Ric}(U, V)$ on $p \in M$ is called Ricci curvature of M [7].

Taking U and V as follows in (2.13)

$$
U=\sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}, \quad V=\sum_{j=1}^{n} v_{j} \frac{\partial}{\partial x_{j}} \epsilon \chi(M)
$$

and defining Rij as follows

$$
\begin{equation*}
R_{i j}=\sum_{k=1}^{n} R_{i k j}^{k} \tag{2.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{Ric}(U, V)=\sum_{i, j=1}^{n} R_{i j} u_{i} v_{j} \tag{2.15}
\end{equation*}
$$

Definition 2.2. Let M be an n-dimensional semi-Riemannian manifold and $f \epsilon C^{\infty}(M, \mathbb{R})$. Hence the differential of f can be defined as follows:

$$
\begin{aligned}
d f_{\mid p}: \quad T_{p}(M) & \rightarrow \mathbb{R} \\
\vec{X}_{p} & \rightarrow d f_{\mid p}\left(\vec{X}_{p}\right)=\vec{X}_{p}[f]
\end{aligned}
$$

If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is local coordinate system on point p, then $\left\{d x_{1 \mid p}, d x_{2 \mid p}, \ldots, d x_{n \mid p}\right\}$ will be basis on $T_{p}^{*}(M)$. In addition there is the following relation among the components of the basis $\left\{d x_{1}, d x_{2}, \ldots, d x_{n}\right\}$

$$
\begin{equation*}
g^{i j}=\gamma_{i} \delta_{i j}=\left\langle d x_{i}, d x_{j}\right\rangle, \quad 1 \leq i, j \leq n, \tag{2.16}
\end{equation*}
$$

where $\left\{d x_{1}, d x_{2}, \ldots, d x_{n}\right\}$ is the dual basis of $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ and also $g^{i j}$ is the inverse matrix of $g_{i j}[7]$.
Definition 2.3. Let M be an n-dimensional semi-Riemannian manifold with boundary ∂M. Then the open subset ∂M_{+}is called nondegenerate space-like boundary where unit outward normal is timelike and index of the induced nondegenerate metric is $v-1$ on ∂M_{+}.

Definition 2.4. Let M be an n-dimensional semi-Riemannian manifold with boundary ∂M. Then the open subset ∂M_{-}is called nondegenerate time-like boundary where unit outward normal is spacelike and index of the induced nondegenerate metric is v on ∂M_{-}.

Remark 1. Note that $\partial M=\partial M_{+} \cup \partial M_{-} \cup \partial M_{0}$ and $\partial M_{+}, \partial M_{-}, \partial M_{0}$ are pairwise disjoint subsets of ∂M. Also notice that ∂M_{+}and ∂M_{-}are open submanifolds of ∂M and $\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}$can be considered as the nondegenerate boundary of M.

Definition 2.5. Let M be an n-dimensional semi-Riemannian manifold with nondegenerate space-like boundary and time-like unit outward normal. In addition let $\left\{u_{1}, \ldots, u_{n-1}\right\}$ be an orthonormal basis of $T_{a} \partial M_{+}$and $D=\left(n_{1}, \ldots, n_{n}\right)$ be a time-like unit outward normal of ∂M_{+}. Then

$$
w_{\partial M_{+}}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right)=\operatorname{det}\left[\begin{array}{c}
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
u_{n-1} \\
D
\end{array}\right]=\left\langle u_{1} \wedge u_{2} \wedge \ldots \wedge u_{n-1}, D\right\rangle_{1}
$$

the equality defined in the above is called volume element of ∂M_{+}.
Definition 2.6. Let M be an n-dimensional semi-Riemannian manifold with nondegenerate time-like boundary and space-like unit outward normal. In addition let $\left\{u_{1}, \ldots, u_{n-1}\right\}$ be an orthonormal basis of $T_{a} \partial M_{-}$and $D=\left(n_{1}, \ldots, n_{n}\right)$ be a spacelike unit outward normal of ∂M_{-}. Then

$$
w_{\partial M_{-}}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right)=\operatorname{det}\left[\begin{array}{c}
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
u_{n-1} \\
D
\end{array}\right]=\left\langle u_{1} \wedge u_{2} \wedge \ldots \wedge u_{n-1}, D\right\rangle_{2}
$$

the equality defined in the above is called volume element of ∂M_{-}.
Definition 2.7. Let U be an open set of semi-Riemannian manifold M and w_{1}, w_{2}, \ldots, w_{n} be 1 -forms on U. In addition, let w_{j}^{i} be connection coefficients. E. Cartan structure equations are defined as follows:

1. E. Cartan Structure Equation;

$$
\begin{equation*}
d w_{i}=\sum_{j=1}^{n} \gamma_{i} w_{j}^{i} \wedge w_{j}, \quad w_{j}^{i}+w_{i}^{j}=0 \tag{2.17}
\end{equation*}
$$

and
2. E. Cartan Structure Equation;

$$
\begin{equation*}
d w_{j}^{i}=\sum_{k=1}^{n} \gamma_{k} w_{k}^{i} \wedge w_{j}^{k}+\frac{1}{2} \sum_{k, l=1}^{n} \gamma_{k} \gamma_{l} R_{i j k l} w_{k} \wedge w_{l} \tag{2.18}
\end{equation*}
$$

where $R_{i j k l}$ is the component of the Riemannian-Christoffel curvature tensor [8].
Lemma 2.8. (Cartan's Lemma) Let M be an n-dimensional manifold and w_{i} be 1 -forms on M for $i=1,2, \ldots, n$. In addition, let λ_{i} be the other 1 -forms. Suppose that λ_{i} and w_{i} are linearly independent. Then

$$
\sum_{i=1}^{n} w_{i} \wedge \lambda_{i}=0
$$

Hence, for $1 \leq i, j \leq n, a_{i j}=a_{j i}$ and $a_{i j} \epsilon C^{\infty}(M, \mathbb{R})$, one can write the following [6]

$$
\lambda_{i}=\sum_{j=1}^{n} a_{i j} w_{j}
$$

Theorem 2.9. Let M be an n-dimensional semi-Riemannian manifold and U be open subset of M. In addition, let $w_{1}, w_{2}, \ldots, w_{n}$ be 1 -forms on $U \subset M$ and f be any differentiable function. Then

$$
\begin{equation*}
f_{i j k}-f_{i k j}=\sum_{l=1}^{n} \gamma_{i} \gamma_{j} R_{j i l}^{k} f_{l} \tag{2.19}
\end{equation*}
$$

where $i, j, k=1, \ldots, n$.
Proof: Suppose that, $f \in C^{\infty}(M, \mathbb{R}), w_{i} \in \chi^{*}(M)$. The differential of f is as follows:

$$
d f=\sum_{i=1}^{n} f_{i} w_{i}
$$

Here, by using exterior differential, we get

$$
d f_{i} \wedge w_{i}-\sum_{j=1}^{n} f_{j} d w_{j}=0
$$

Considering (2.18) equality here and making routine calculations, we have

$$
\sum_{i=1}^{n}\left[d f_{i}-\sum_{j=1}^{n} \gamma_{i} f_{j} d w_{i}^{j}\right] \wedge w_{i}=0
$$

In addition, from Lemma 2.8, there are $f_{i j}$ functions on an open subset U of M. Hence, from $f_{i j}=f_{j i}$, the above equality can be written as follows:

$$
\begin{equation*}
d f_{i}-\sum_{j=1}^{n} \gamma_{i} f_{j} d w_{i}^{j}=\sum_{j=1}^{n} f_{i j} w_{j} \tag{2.20}
\end{equation*}
$$

Using exterior differential for the (2.20) equality, we obtain

$$
\begin{align*}
& \sum_{j=1}^{n}\left(d f_{i j}-\sum_{k=1}^{n} \gamma_{i} f_{k j} d w_{i}^{k}-\sum_{k=1}^{n} \gamma_{i} f_{i k} d w_{j}^{k}\right) \wedge w_{j} \tag{2.21}\\
& \quad=\frac{1}{2} \sum_{l, k, j=1}^{n} \gamma_{i} \gamma_{l} R_{l i j}^{k} w_{k} \wedge w_{l}
\end{align*}
$$

From Lemma 2.8, there are $f_{i j k}$ functions on an open subset U of M. Then we have

$$
\begin{equation*}
d f_{i j}-\sum_{k=1}^{n} \gamma_{i} f_{k j} w_{i}^{k}-\sum_{k=1}^{n} \gamma_{i} f_{i k} w_{j}^{k}=\sum_{k=1}^{n} f_{i j k} w_{k} \tag{2.22}
\end{equation*}
$$

On the other hand, let

$$
\begin{equation*}
f_{i j k}=f_{j i k} \tag{2.23}
\end{equation*}
$$

Here writing the similar equality of Eq. (2.22) for $f_{i j k}$ and considering Eq. (2.21), we get

$$
f_{i j k}-f_{i k j}=\sum_{l=1}^{n} \gamma_{i} \gamma_{j} R_{j i l}^{k} f_{l}
$$

This completes the proof of theorem.

Definition 2.10. Let M be an n-dimensional semi-Riemannian manifold and N be a semi-Riemannian submanifold with index $(v-1)$. Let's consider the following isometric immersion

$$
\tau: N \rightarrow M
$$

Owing to this immersion, local semi-Riemannian orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ in the coordinate neighbourhood U of N transforms a local semiRiemannian orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. (Here, e_{n} is the time-like unit outward normal of N). In addition, 1-forms $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ which are the dual basis of local semi-Riemannian orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ transform dual 1-forms which are defined as follows of N, under this immersion,

$$
\begin{equation*}
\theta_{i}=\tau^{*}\left(w_{i}\right), \quad 1 \leq i \leq n \tag{2.24}
\end{equation*}
$$

and connection coefficients $w_{j}^{i}, 1 \leq i, j \leq n$ also transform dual connection coefficients θ_{j}^{i} of N which are defined as follows

$$
\begin{equation*}
\theta_{j}^{i}=\tau^{*}\left(w_{j}^{i}\right), \quad 1 \leq i, j \leq n \tag{2.25}
\end{equation*}
$$

That is, 1-forms $w_{i}, 1 \leq i \leq n$ under the transformation of τ transform 1-forms $\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}$ on N, where

$$
\begin{equation*}
\theta_{n}=0 \tag{2.26}
\end{equation*}
$$

This 1-forms are shortly called co-frame.
On the other hand, using exterior differential for (2.26), we have $d \theta_{n}=0$. In addition, let $I I_{i j}=I I_{j i}$ that are the components of second fundamental form of N. This 1-forms are defined as follows [1]:

$$
\begin{equation*}
\theta_{i}^{n}=-\sum_{j=1}^{n-1} I I_{i j} \theta_{j} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
d \theta_{i}=\sum_{j=1}^{n-1} \beta_{j} \theta_{j}^{i} \wedge \theta_{j} \quad, \quad \theta_{j}^{i}=-\theta_{i}^{j} \tag{2.28}
\end{equation*}
$$

Definition 2.11. Let M and \bar{M} be an n-dimensional and (n-1)-dimensional semiRiemannian manifold, respectively. Let's consider the following isometric immersion

$$
\tau: \bar{M} \rightarrow M
$$

Owing to this isometric immersion, local semi-Riemannian orthonormal basis $\left\{e_{1}\right.$, $\left.e_{2}, \ldots, e_{n-1}\right\}$ in the coordinate neighbourhood U of \bar{M} transforms a local semiRiemannian orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of M. (Here, e_{n} is the space-like unit outward normal of \bar{M}). In addition, 1-forms $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ which are the dual basis of local semi-Riemannian orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ transform dual 1-forms θ_{i} which are defined as follows of \bar{M}, under this immersion,

$$
\begin{equation*}
\theta_{i}=\tau^{*}\left(w_{i}\right), \quad 1 \leq i \leq n \tag{2.29}
\end{equation*}
$$

and connection coefficients $w_{j}^{i}, 1 \leq i, j \leq n$, also transform dual connection coefficients θ_{j}^{i} of \bar{M} which are defined as follows

$$
\begin{equation*}
\theta_{j}^{i}=\tau^{*}\left(w_{j}^{i}\right), \quad 1 \leq i, j \leq n \tag{2.30}
\end{equation*}
$$

That is, 1-forms $w_{i}, 1 \leq i \leq n$, under the transformation of τ transform 1-forms $\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}$ on \bar{M}, where

$$
\begin{equation*}
\theta_{n}=0 \tag{2.31}
\end{equation*}
$$

This 1-forms are called semi-Riemannian co-frame.
On the other hand, using exterior differential for (2.31), we have $d \theta_{n}=0$. In addition, let $I I_{i j}=I I_{j i}$ that are the components of second fundamental form of \bar{M}. This 1-forms are defined as follows:

$$
\begin{equation*}
\theta_{i}^{n}=-\sum_{j=1}^{n} I I_{i j} \theta_{j} \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
d \theta_{i}=\sum_{j=1}^{n-1} \varepsilon_{j} \theta_{j}^{i} \wedge \theta_{j} \quad \quad \theta_{j}^{i}=-\theta_{i}^{j} \tag{2.33}
\end{equation*}
$$

Definition 2.12. Let M be an n-dimensional semi-Riemannian manifold with nondegenerate space-like boundary ∂M_{+}. Let $\left\{e_{1}, \ldots, e_{n-1}\right\}$ be local semi-Riemannian orthonormal frame of ∂M_{+}and e_{n} be a time-like unit outward normal of ∂M_{+}. Thus $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local semi-Riemannian orthonormal frame of M. Let $\left\{w_{1}, \ldots\right.$, $\left.w_{n}\right\}$ be dual co-frame of this local semi-Riemannian orthonormal frame and f be a differentiable function on M.

Now, getting ∂M_{+}instead of N in definition 2.10 let's study the covariant derivative of function f. Firstly, let's compute $f_{i}, f_{i j}, f_{n i}$ on a point of ∂M_{+}.

Hence let's take

$$
z=\tau^{*}(f)
$$

such that τ is inclusion transformation as follows:

$$
\tau: \partial M_{+} \rightarrow M
$$

Thus, we can write the following:

$$
\begin{equation*}
d z=\tau^{*}(d f)=\left.\sum_{i=1}^{n-1} f_{i}\right|_{\partial M_{+}} \theta_{i} \tag{2.34}
\end{equation*}
$$

Here, if

$$
\begin{equation*}
z_{i}=\left.f_{i}\right|_{\partial M_{+}} \tag{2.35}
\end{equation*}
$$

then

$$
\begin{equation*}
d z=\sum_{i=1}^{n-1} f_{i} \theta_{i} \tag{2.36}
\end{equation*}
$$

Using exterior differential for (2.36), we get

$$
\begin{aligned}
\sum_{j=1}^{n-1} z_{i j} \theta_{j} & =d z_{i}-\sum_{j=1}^{n-1} \beta_{j} z_{j} \theta_{i}^{j} \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n-1} \beta_{j} f_{j} w_{i}^{j}\right) \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n} \beta_{j} f_{j} w_{i}^{j}-f_{n} w_{i}^{n}\right) \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n} \beta_{j} f_{j} w_{i}^{j}\right)-f_{n} \tau^{*}\left(w_{i}^{n}\right)
\end{aligned}
$$

Here, getting u instead of f_{n} and using (2.22) and (2.25), we get

$$
\begin{equation*}
=\tau^{*}\left(\sum_{j=1}^{n} f_{i j} w_{j}\right)-u \theta_{i}^{n} \tag{2.37}
\end{equation*}
$$

In the last equality, considering (2.24) and (2.27), we have

$$
\sum_{j=1}^{n-1} z_{i j} \theta_{j}=\left.\sum_{j=1}^{n-1} f_{i j}\right|_{\partial M_{+}} \theta_{j}+\left.u \sum_{j=1}^{n-1} I I_{i j}\right|_{\partial M_{+}} \theta_{j}
$$

or

$$
\begin{equation*}
\left.f_{i j}\right|_{\partial M_{+}}=z_{i j}-u I I_{i j} \tag{2.38}
\end{equation*}
$$

Let's consider (2.34) equality for computing $f_{n i}$. According to this, we get

$$
\begin{aligned}
\sum_{i=1}^{n-1} f_{n i} \mid \quad \partial M_{+} \theta_{i} & =\tau^{*}\left(\sum_{i=1}^{n} f_{n i} w_{i}\right) \\
& =\tau^{*}\left(d f_{n}-\sum_{i=1}^{n} \beta_{i} f_{i} w_{n}^{i}\right) \\
& =\tau^{*}\left(d f_{n}\right)-\tau^{*}\left(\sum_{i=1}^{n} \beta_{i} f_{i} w_{n}^{i}\right) \\
& =d u-\sum_{i=1}^{n-1} z_{i} \tau^{*}\left(w_{n}^{i}\right) \\
& =d u-\sum_{i=1}^{n-1} z_{i} \theta_{n}^{i}, \quad \theta_{n}^{i}=-\theta_{i}^{n} \\
& =d u+\sum_{i=1}^{n-1} z_{i} \theta_{i}^{n}
\end{aligned}
$$

Using (2.27) in the last equality, we obtain

$$
\left.\sum_{i=1}^{n-1} f_{n i}\right|_{\partial M_{+}} \theta_{i}=d u-\sum_{i, j=1}^{n-1} \beta_{i} z_{i} I I_{i j} \theta_{j}
$$

or

$$
\begin{equation*}
\left.f_{n i}\right|_{\partial M_{+}}=u_{i}-\sum_{j=1}^{n-1} \beta_{j} z_{j} I I_{i j} \tag{2.39}
\end{equation*}
$$

Thus, the covariant derivatives of $f_{i}, f_{i j}, f_{n i}$ are obtained for semiRiemannian manifold with nondegenerate spacelike boundary ∂M_{+}.

Definition 2.13. Let M be an n-dimensional semi-Riemannian manifold with nondegenerate time-like boundary ∂M_{-}. Let $\left\{e_{1}, \ldots, e_{n-1}\right\}$ be local semi-Riemannian orthonormal frame of ∂M_{-}and e_{n} be a space-like unit outward normal of ∂M_{-}. Thus $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local semi-Riemannian orthonormal frame of M. Let $\left\{w_{1}, \ldots\right.$, $\left.w_{n}\right\}$ be dual co-frame of this local semi-Riemannian orthonormal frame and f be a differentiable function on M.

Now, getting ∂M_{-}instead of \bar{M} in definition 2.11 let's study the covariant derivative of function f. Firstly, let's compute $f_{i}, f_{i j}, f_{n i}$ on a point of ∂M_{-}.

Hence let's take

$$
z=\tau^{*}(f)
$$

such that τ is inclusion transformation as follows:

$$
\tau: \partial M_{-} \rightarrow M
$$

Thus, we can write the following:

$$
\begin{equation*}
d z=\tau^{*}(d f)=\left.\sum_{i=1}^{n-1} f_{i}\right|_{\partial M_{-}} \theta_{i} \tag{2.40}
\end{equation*}
$$

Here, if

$$
\begin{equation*}
z_{i}=\left.f_{i}\right|_{\partial M_{-}} \tag{2.41}
\end{equation*}
$$

then

$$
\begin{equation*}
d z=\sum_{i=1}^{n-1} f_{i} \theta_{i} \tag{2.42}
\end{equation*}
$$

Using exterior differential for (2.42), we get

$$
\begin{aligned}
\sum_{j=1}^{n-1} z_{i j} \theta_{j} & =d z_{i}-\sum_{j=1}^{n-1} \varepsilon_{j} z_{j} \theta_{i}^{j} \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n-1} \varepsilon_{j} f_{j} w_{i}^{j}\right) \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n} \varepsilon_{j} f_{j} w_{i}^{j}+f_{n} w_{i}^{n}\right) \\
& =\tau^{*}\left(d f_{i}-\sum_{j=1}^{n} \varepsilon_{j} f_{j} w_{i}^{j}\right)+f_{n} \tau^{*}\left(w_{i}^{n}\right)
\end{aligned}
$$

Here, getting u instead of f_{n} and considering (2.22), (2.29) and (2.30), we obtain

$$
=\left.\sum_{j=1}^{n-1} f_{i j}\right|_{\partial M_{-}} \theta_{j}+u \theta_{i}^{n}
$$

and using (2.32), we get

$$
=\left.\sum_{j=1}^{n-1} f_{i j}\right|_{\partial M_{-}} \theta_{j}-u \sum_{j=1}^{n-1} I I_{i j} \theta_{j}
$$

or

$$
\begin{equation*}
\left.f_{i j}\right|_{\partial M_{-}}=z_{i j}+u I I_{i j} \tag{2.43}
\end{equation*}
$$

Now, let's consider (2.40) equality for computing $f_{n i}$. According to this, we have

$$
\begin{aligned}
\sum_{i=1}^{n-1} f_{n i} \mid \partial M_{-} \theta_{i} & =\tau^{*}\left(\sum_{i=1}^{n} f_{n i} w_{i}\right) \\
& =\tau^{*}\left(d f_{n}-\sum_{i=1}^{n} \varepsilon_{i} f_{i} w_{n}^{i}\right) \\
& =\tau^{*}\left(d f_{n}\right)-\tau^{*}\left(\sum_{i=1}^{n} \varepsilon_{i} f_{i} w_{n}^{i}\right) \\
& =d u+\sum_{i=1}^{n-1} \varepsilon_{i} z_{i} \theta_{i}^{n}
\end{aligned}
$$

Using (2.32) in the last equality, we obtain

$$
=d u-\sum_{i, j=1}^{n-1} \varepsilon_{i} z_{i} I I_{i j} \theta_{j}
$$

or

$$
\begin{equation*}
\left.f_{n i}\right|_{\partial M_{-}}=u_{i}-\sum_{j=1}^{n-1} \varepsilon_{j} z_{j} I I_{i j} . \tag{2.44}
\end{equation*}
$$

Theorem 2.14. Let M be an n-dimensional semi-Riemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}\right)$. In addition, let $D=\left(n_{1}, \ldots, n_{n}\right)$ be unit outward normal and $\left\{x_{1}, \ldots, x_{n}\right\}$ be semi-Riemannian coordinate system of M [4].
i) If M has ∂M_{+}space-like boundary and D time-like unit outward normal, $w_{\partial M_{+}}$volume element of ∂M_{+}is as follows:

$$
\begin{equation*}
w_{\partial M_{+}}=\sum_{j=1}^{n}(-1)^{j-1} n_{j} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n} \tag{2.45}
\end{equation*}
$$

or

$$
\begin{equation*}
-\beta_{j} \cdot n_{j} \cdot w_{\partial M_{+}}=(-1)^{j-1} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n}, 1 \leq j \leq n \tag{2.46}
\end{equation*}
$$

where β_{j} is as (2.3).
ii) If M has ∂M_{-}time-like boundary and D space-like unit outward normal, $w_{\partial M_{-}}$volume element of ∂M_{-}is as follows:

$$
\begin{equation*}
w_{\partial M_{-}}=\sum_{j=1}^{n}(-1)^{j-1} n_{j} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n} \tag{2.47}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon_{j} \cdot n_{j} \cdot w_{\partial M_{-}}=(-1)^{j-1} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n}, 1 \leq j \leq n \tag{2.48}
\end{equation*}
$$

where ε_{j} is as Eq. (2.4).
Theorem 2.15. (Stokes Theorem) Let M be an n-dimensional compact, orientable semi-Riemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\right.$ $\left.\partial M_{+} \cup \partial M_{-}\right)$. If $\alpha \epsilon \wedge^{n-1}(M)$, then [4]

$$
\begin{equation*}
\int_{M} d \alpha=-\int_{\partial M_{+}} \alpha-\int_{\partial M_{-}} \alpha \tag{2.49}
\end{equation*}
$$

Theorem 2.16. (Green Formula) Let M be an n-dimensional compact, orientable semi-Riemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\right.$ $\partial M_{+} \cup \partial M_{-}$) and let f and h be two differentiable functions on M. Then [4],

$$
\begin{equation*}
\int_{M}(\langle g r a d f, g r a d h\rangle+f \Delta h) d v=\int_{\partial M_{+}} f h_{n} w_{\partial M_{+}}-\int_{\partial M_{-}} f h_{n} w_{\partial M_{-}} \tag{2.50}
\end{equation*}
$$

where $d v, w_{\partial M_{+}}, w_{\partial M_{-}}$are the volume elements on $M, \partial M_{+}, \partial M_{-}$, respectively.

3. Reilly's Formula

Let M be an n-dimensional compact, orientable semi-Riemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}\right)$. Thus, for $w \epsilon \wedge^{1}(M)$ we can write the following from Stokes theorem

$$
\begin{equation*}
-\int_{\partial M_{+}} * w-\int_{\partial M_{-}} * w=\int_{M} d * w \tag{3.1}
\end{equation*}
$$

where $*$ is the Hodge-star operator. Throughout this paper, Δ_{1} is the Laplace operator on ∂M_{+}and Δ_{2} is the Laplace operator on ∂M_{-}.

Theorem 3.1. Let M be an n-dimensional compact orientable semiRiemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}\right)$. Let f be a differentiable function on semi-Riemannian manifold M and $d v$ be a volume element of M. Then

$$
\begin{align*}
\int_{M} & {[\text { Ric }(\text { gradf, gradf })+\langle\text { gradf, grad } \Delta f\rangle+\text { Hessf.Hessf }] d v } \tag{3.2}\\
= & -\int_{\partial M_{+}} \sum_{i, j=1}^{n} \beta_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x}_{i} \wedge \ldots \wedge d x_{n} \\
& -\int_{\partial M_{-}} \sum_{i, j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n}
\end{align*}
$$

Proof: i) Let's choose 1-form $w \epsilon \wedge^{1}(M)$ as follows:

$$
w=\sum_{i, j=1}^{n} \beta_{j}\left(f_{j} f_{j i}\right) d x_{i}
$$

Here, considering the property of Hodge-star operator, we have

$$
\begin{equation*}
* w=\sum_{i, j=1}^{n} \beta_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x}_{i} \wedge \ldots \wedge d x_{n} \tag{3.3}
\end{equation*}
$$

Using exterior differential for (3.3) and using (2.16) and (2.8), we have

$$
\begin{equation*}
d * w=\left[\sum_{i, j=1}^{n} \beta_{i} \beta_{j} f_{j i} f_{j i}+\sum_{i, j=1}^{n} \beta_{i} \beta_{j} f_{j} f_{j i i}\right] d v \tag{3.4}
\end{equation*}
$$

Considering (2.12), (2.23) and (2.19) in (3.4), respectively, we get

$$
\begin{equation*}
d * w=\left[\text { Hessf.Hessf }+\sum_{i, j=1}^{n} R_{j i j}^{i} f_{j} f_{j}+\sum_{i, j=1}^{n} \beta_{i} \beta_{j}\right] d v \tag{3.5}
\end{equation*}
$$

Using (2.14) and (2.15) in the second term of (3.5) and using (2.10), (2.11) and (2.7) in the last term of (3.5), we obtain

$$
\begin{equation*}
d * w=[\text { Hessf.Hessf }+\operatorname{Ric}(\operatorname{gradf}, \operatorname{gradf})+\langle\operatorname{gradf}, \operatorname{grad} \Delta f\rangle] d v \tag{3.6}
\end{equation*}
$$

Consequently, considering (3.3) and (3.6) in (3.1), we have

$$
\begin{align*}
& \int_{M}[\text { Ric }(\text { gradf }, \text { gradf })+\langle\text { gradf }, \text { grad } \Delta f\rangle+\text { Hessf.Hess } f] d v \tag{3.7}\\
& \quad=-\int_{\partial M_{+}} \sum_{i, j=1}^{n} \beta_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n}
\end{align*}
$$

ii) Suppose that $w \epsilon \wedge^{1}(M)$

$$
w=\sum_{i, j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j i}\right) d x_{i}
$$

Here, considering the property of Hodge-star operator, we have

$$
\begin{equation*}
* w=\sum_{i, j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n} \tag{3.8}
\end{equation*}
$$

Using exterior differential for (3.8) and using (2.16) and (2.8), we have

$$
\begin{equation*}
d * w=\left[\sum_{i, j=1}^{n} \varepsilon_{i} \varepsilon_{j} f_{j i} f_{j i}+\sum_{i, j=1}^{n} \varepsilon_{i} \varepsilon_{j} f_{j} f_{j i i}\right] d v \tag{3.9}
\end{equation*}
$$

Writing (2.12) in the first term on the right hand of (3.9), we get

$$
d * w=\left[\text { Hessf.Hessf }+\sum_{i, j=1}^{n} \varepsilon_{i} \varepsilon_{j} f_{j} f_{j i i}\right] d v
$$

Using (2.23) and (2.19) in the second term of the above equality, we have

$$
\begin{equation*}
d * w=\left[\text { Hessf.Hessf }+\sum_{i, j=1}^{n} R_{j i j}^{i} f_{j} f_{j}+\sum_{i, j=1}^{n} \varepsilon_{i} \varepsilon_{j} f_{j} f_{i i j}\right] d v \tag{3.10}
\end{equation*}
$$

Considering (2.14) and (2.15) in the second term of (3.10) and (2.10), (2.11) and (2.7) in the last term of (3.10), we obtain

$$
d * w=[\text { Hessf.Hessf }+\operatorname{Ric}(\operatorname{gradf}, \operatorname{gradf})+\langle\operatorname{gradf}, \operatorname{grad} \Delta f\rangle] d v
$$

Consequently, substituting the above equality and (3.8) in (3.1), we get

$$
\begin{align*}
& \int_{M}[\text { Ric }(\text { gradf }, \text { gradf })+\langle\text { gradf }, \text { grad } \Delta f\rangle+\text { Hessf.Hessf }] d v \tag{3.11}\\
& =-\int_{\partial M_{-}} \sum_{i, j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j i}\right)(-1)^{i-1} \sqrt{|g|} g^{i i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n}
\end{align*}
$$

Because of the fact that $\partial M=\partial M_{+} \cup \partial M_{-}$, considering (3.7) and (3.11) together, we have (3.2). This completes the proof of theorem.

Theorem 3.2. Let M be an n-dimensional compact orientable semiRiemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\partial M_{+} \cup \partial M_{-}\right)$. Let f be a differentiable function on semi-Riemannian manifold M and $d v, w_{\partial M_{+}}$, $w_{\partial M_{-}}$be the volume elements of $M, \partial M_{+}, \partial M_{-}$respectively. Then,

$$
\begin{align*}
& \int_{M}[\text { Ric }(\text { gradf }, \text { gradf })+\langle\text { gradf }, \text { grad } \Delta f\rangle+\text { Hessf.Hessf }] d v \\
& =\int_{\partial M_{+}} \sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j n}\right) w_{\partial M_{+}}-\int_{\partial M_{-}} \sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j n}\right) w_{\partial M_{-}} \tag{3.12}
\end{align*}
$$

Proof: i) Using the first term on the right hand of (3.2) in Theorem 3.1, for $i=1,2, \ldots, n$, we have

$$
\begin{align*}
* w= & \sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j 1}\right)(-1)^{1-1} g^{11} \sqrt{|g|} \widehat{d x_{1}} \wedge d x_{2} \wedge \ldots \wedge d x_{n} \\
& +\sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j 2}\right)(-1)^{2-1} g^{22} \sqrt{|g|} d x_{1} \wedge \widehat{d x_{2}} \wedge \ldots \wedge d x_{n} \\
& \cdot \tag{3.13}\\
& \cdot \\
& +\sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j n}\right)(-1)^{n-1} g^{n n} \sqrt{|g|} d x_{1} \wedge d x_{2} \wedge \ldots \wedge \widehat{d x_{n}}
\end{align*}
$$

Considering (2.45) and (2.46) in (3.13), we get

$$
\begin{equation*}
* w=\sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j n}\right) g^{n n} \sqrt{|g|} w_{\partial M_{+}} \tag{3.14}
\end{equation*}
$$

From (2.46), considering $\sqrt{|g|}=1$ and $g^{n n}=-1$, we obtain

$$
\begin{equation*}
* w=-\sum_{j=1}^{n} \beta_{j}\left(f_{j} f_{j n}\right) w_{\partial M_{+}} \tag{3.15}
\end{equation*}
$$

ii) Using the second term on the right hand of (3.2) in Theorem 3.1, for $i=$ $1,2, \ldots, n$ we get

$$
\begin{align*}
* w= & \sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j 1}\right)(-1)^{1-1} g^{11} \sqrt{|g|} \widehat{d x_{1}} \wedge d x_{2} \wedge \ldots \wedge d x_{n} \\
& +\sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j 2}\right)(-1)^{2-1} g^{22} \sqrt{|g|} d x_{1} \wedge \widehat{d x_{2}} \wedge \ldots \wedge d x_{n} \\
& \cdot \tag{3.16}\\
& \cdot \\
& +\sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j n}\right)(-1)^{n-1} g^{n n} \sqrt{|g|} d x_{1} \wedge d x_{2} \wedge \ldots \wedge \widehat{d x_{n}}
\end{align*}
$$

Substituting (2.48) in (3.16), we have

$$
\begin{equation*}
* w=\sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j n}\right) g^{n n} \sqrt{|g|} w_{\partial M_{-}} \tag{3.17}
\end{equation*}
$$

Here, considering $\sqrt{|g|}=1$ and $g^{n n}=1$, we obtain

$$
\begin{equation*}
* w=\sum_{j=1}^{n} \varepsilon_{j}\left(f_{j} f_{j n}\right) w_{\partial M_{-}} \tag{3.18}
\end{equation*}
$$

Substituting (3.15) and (3.18) on the right hand of (3.2), we get (3.12).
This completes the proof of theorem.

Theorem 3.3. (Reilly's Formula) Let M be an n-dimensional compact orientable semi-Riemannian manifold with nondegenerate boundary $\partial M^{\prime}\left(\partial M^{\prime}=\right.$ $\left.\partial M_{+} \cup \partial M_{-}\right)$. Let f be a differentiable function on semi-Riemannian manifold M. We define the following:

$$
\begin{equation*}
z_{1}=\left.f\right|_{\partial M_{+}}, \quad u_{1}=f_{n}, \quad H_{1}=\frac{1}{n-1} \sum_{i=1}^{n-1} \beta_{i} I I_{i i} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{2}=\left.f\right|_{\partial M_{-}}, \quad u_{2}=f_{n}, \quad H_{2}=\frac{1}{n-1} \sum_{i=1}^{n-1} \varepsilon_{i} I I_{i i} \tag{3.20}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\int_{M} & {\left[(\Delta f)^{2}-\text { Ric }(\text { gradf }, \text { gradf })-\text { Hessf.Hessf }\right] d v } \\
= & \left\{\int _ { \partial M _ { + } } \left[\left(\Delta_{1} z\right) u-(n-1) H u^{2}-\langle g r a d z, g r a d u\rangle_{1}\right.\right. \\
& \left.+I I(\text { gradz, gradz })] w_{\partial M_{+}}\right\} \\
& -\left\{\int _ { \partial M _ { - } } \left[\left(\Delta_{2} z\right) u+(n-1) H u^{2}-\langle g r a d z, g r a d u\rangle_{2}\right.\right. \\
& \left.+I I(\operatorname{gradz}, \operatorname{gradz})] w_{\partial M_{-}}\right\}
\end{aligned}
$$

where $w_{\partial M_{+}}, w_{\partial M_{-}}, d v$ are the volume elements of $\partial M_{+}, \partial M_{-}$and M, respectively.
Proof: Considering (2.50) in (3.12) and making routine calculations, we have

$$
\begin{align*}
& \int_{M}\left[(\Delta f)^{2}-\operatorname{Ric}(\text { gradf, gradf })-\text { Hessf.Hessf }\right] d v \\
& =\int_{\partial M_{+}}\left[f_{n} \sum_{i=1}^{n-1} \beta_{i} f_{i i}-\sum_{i=1}^{n-1} \beta_{i} f_{i} f_{i n}\right] w_{\partial M_{+}} \tag{3.21}\\
& \quad-\int_{\partial M_{-}}\left[f_{n} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i i}-\sum_{i=1}^{n-1} \varepsilon_{i} f_{i} f_{i n}\right] w_{\partial M_{-}}
\end{align*}
$$

Writing the value of $f_{i i}$ from (2.38), we have

$$
f_{i i}=z_{i i}-u I I_{i i}
$$

Summing up the last equality over $i=1,2, \ldots, n-1$ and multiplying it with β_{i} and f_{n}, we obtain

$$
\begin{equation*}
f_{n} \sum_{i=1}^{n-1} \beta_{i} f_{i i}=\left(\sum_{i=1}^{n-1} \beta_{i} z_{i i}-u \sum_{i=1}^{n-1} \beta_{i} I I_{i i}\right) f_{n} \tag{3.22}
\end{equation*}
$$

Considering (2.11) and (3.19) in (3.22), we have

$$
\begin{equation*}
f_{n} \sum_{i=1}^{n-1} \beta_{i} f_{i i}=\left(\Delta_{1} z-(n-1) H u\right) u \tag{3.23}
\end{equation*}
$$

Now, let's compute the second term on the right hand of (3.21). Multiplying (2.39) with $\beta_{i} f_{i}$ and summing up it for $i=1,2, \ldots, n-1$, we get

$$
\sum_{i=1}^{n-1} \beta_{i} f_{i} f_{n i}=\sum_{i=1}^{n-1} \beta_{i} u_{i} f_{i}-\sum_{i, j=1}^{n-1} \beta_{i} \beta_{j} I I_{i j} z_{j} f_{i}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n-1} f_{i} f_{n i}=\langle\operatorname{grad} z, \operatorname{grad} u\rangle_{1}-I I(\operatorname{grad} z, \operatorname{grad} z) \tag{3.24}
\end{equation*}
$$

Also, in the third term on the right hand of (3.21), the value of $f_{i i}$ can be written as the following from (2.43),

$$
\begin{equation*}
f_{i i}=z_{i i}+u I I_{i i} \tag{3.25}
\end{equation*}
$$

Multiplying (3.25) with ε_{i} and summing up it over $i=1,2, \ldots, n-1$, we have

$$
\sum_{i=1}^{n-1} \varepsilon_{i} f_{i i}=\sum_{i=1}^{n-1} \varepsilon_{i} z_{i i}+u \sum_{i=1}^{n-1} \varepsilon_{i} I I_{i i}
$$

Here, considering (2.11) and (3.20), we get

$$
\begin{equation*}
f_{n} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i i}=\left(\Delta_{2} z+(n-1) H u\right) u \tag{3.26}
\end{equation*}
$$

Finally, the fourth term on the right hand of (3.21) can be written as the following from (2.44),

$$
f_{n i}=u_{i}-\sum_{j=1}^{n-1} \varepsilon_{j} z_{j} I I_{i j}
$$

Multiplying the last equality with $\varepsilon_{i} f_{i}$ and summing up it over $i=1,2, \ldots, n-1$, we obtain

$$
\sum_{i=1}^{n-1} \varepsilon_{i} f_{i} f_{n i}=\sum_{i=1}^{n-1} \varepsilon_{i} f_{i} u_{i}-u \sum_{i, j=1}^{n-1} \varepsilon_{i} \varepsilon_{j} f_{i} z_{j} I I_{i j}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n-1} \varepsilon_{i} f_{i} f_{n i}=\langle g r a d z, \operatorname{grad} u\rangle_{2}-I I(\operatorname{grad} z, \operatorname{grad} z) \tag{3.27}
\end{equation*}
$$

Thus, substituting (3.23), (3.24), (3.27) and (3.26) in (3.21), we obtain

$$
\begin{aligned}
& \int_{M}\left[(\Delta f)^{2}-\text { Ric }(\text { gradf, gradf })-\text { Hessf.Hessf }\right] d v \\
&=\left\{\int _ { \partial M _ { + } } \left[\left(\Delta_{1} z\right) u-(n-1) H u^{2}-\langle g r a d z, g r a d u\rangle_{1}\right.\right. \\
&\left.+I I(\text { gradz, gradz })] w_{\partial M_{+}}\right\} \\
&-\left\{\int _ { \partial M _ { - } } \left[\left(\Delta_{2} z\right) u+(n-1) H u^{2}-\langle g r a d z, g r a d u\rangle_{2}\right.\right. \\
&\left.+I I(\text { gradz, gradz })] w_{\partial M_{-}}\right\}
\end{aligned}
$$

This completes the proof of theorem.

References

1. Al-Medhadi, N.S., and Marzouk, M.D., 1992, An Integral Formula and Applications, Bull. Cal. Math. Soc., 84, 137-144.
2. Duggal, K.L., 1991, Affine Conformal Vector Fields in Semi-Riemannian Manifolds, Acta Applicandae Mathematicae 23, 275-294.
3. Ünal, B., 1995, Divergence Theorems in Semi-Riemannian Geometry, Acta Applicandae Mathematicae 40, 173-178. 1995 Kluwer Academic Publishers. Printed in the Netherlands
4. Külahcı, M., 2008, Integral Formulas In Semi-Riemannian Geometry, PhD Thesis, University of Firat, Institute of Basic and Applied Sciences, Elazig, Turkey.
5. Curtis, W.D., and Miller, F.R., 1985, Differential Manifolds and Theoretical Physics, Academic Press Inc., London.
6. Martin, D. , 1991, Manifolds Theory, Ellis Horwood Lmt., West Sussex, PO191EB, England.
7. O'neill, B., 1983, Semi-Riemannian Geometry, Academic Press. New York.
8. Yano, K., and Kon M., 1984, Structure on Manifolds, World Scientific Publishing, Singapore.
[^1]
[^0]: 2000 Mathematics Subject Classification: 53C65, 58C35

[^1]: Mahmut Ergüt
 Firat University,
 Department of Mathematics, 23119 Elazuğ, Turkey
 E-mail address: mergut@firat.edu.tr
 and
 Mihriban Külahcı
 Firat University,
 Department of Mathematics, 23119 Elazığ, Turkey
 E-mail address: malyamac@firat.edu.tr

