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abstract: In this paper, we study general helices in the Sol3. We characterize
the general helices in terms of their curvature and torsion. Finally, we find out their
explicit parametric equations in the Sol3
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1. Introduction

A curve of constant slope or general helix is defined by the property that the
tangent makes a constant angle with a fixed straight line (the axis of the helix).
A classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint
Venant in 1845 (see [9,12] for details) is: A necessary and sufficient condition that
a curve be a helix is that the ratio of curvature to torsion be constant.

Helices arise in nanosprings, carbon nanotubes, α-helices, DNA double and col-
lagen triple helix, the double helix shape is commonly associated with DNA, since
the double helix is structure of DNA. They constructed a molecular model of DNA
in which there were two complementary, antiparallel (side-by-side in opposite di-
rections) strands of the bases guanine, adenine, thymine and cytosine, covalently
linked through phosphodiester bonds. Each strand forms a helix and two helices
are held together through hydrogen bonds, ionic forces, hydrophobic interactions
and van der Waals forces forming a double helix, lipid bilayers, bacterial flagella in
Salmonella and E. coli, aerial hyphae in actynomycetes, bacterial shape in spiro-
chetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells.

In this article, we study general helices in the Sol3. We characterize the general
helices in terms of their curvature and torsion. Finally, we find out their explicit
parametric equations in the Sol3.
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2. Riemannian Structure of Sol Space Sol3

Sol space, one of Thurston’s eight 3-dimensional geometries, can be viewed as
R

3 provided with Riemannian metric

gSol3 = e2zdx2 + e−2zdy2 + dz2, (2.1)

where (x, y, z) are the standard coordinates in R
3.

Note that the Sol metric can also be written as:

gSol3 =

3
∑

i=1

ω
i ⊗ ω

i, (2.2)

where
ω

1 = ezdx, ω
2 = e−zdy, ω

3 = dz, (2.3)

and the orthonormal basis dual to the 1-forms is

e1 = e−z ∂

∂x
, e2 = ez ∂

∂y
, e3 =

∂

∂z
. (2.4)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric gSol3 defined above the following is true:

∇ =





−e3 0 e1

0 e3 −e2

0 0 0



 , (2.5)

where the (i, j)-element in the table above equals ∇ei
ej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

Lie brackets can be easily computed as:

[e1, e2] = 0, [e2, e3] = −e2, [e1, e3] = e1.

The isometry group of Sol3 has dimension 3. The connected component of the
identity is generated by the following three families of isometries:

(x, y, z) → (x + c, y, z) ,

(x, y, z) → (x, y + c, z) ,

(x, y, z) →
(

e−cx, ecy, z + c
)

.

3. General Helices in Sol Space Sol3

Assume that {T,N,B} be the Frenet frame field along γ. Then, the Frenet
frame satisfies the following Frenet–Serret equations:

∇TT = κN,

∇TN = −κT + τB, (3.1)

∇TB = −τN,
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where κ is the curvature of γ and τ its torsion and

gSol3 (T,T) = 1, gSol3 (N,N) = 1, gSol3 (B,B) = 1, (3.2)

gSol3 (T,N) = gSol3 (T,B) = gSol3 (N,B) = 0.

With respect to the orthonormal basis {e1, e2, e3}, we can write

T = T1e1 + T2e2 + T3e3,

N = N1e1 + N2e2 + N3e3, (3.3)

B = T × N = B1e1 + B2e2 + B3e3.

Theorem 3.1. Let γ : I −→ Sol3 be a unit speed non-geodesic general helix. Then,
the parametric equations of γ are

x (s) =
sin Pe− cos Ps−C3

C2
1 + cos2 P

[− cos P cos [C1s + C2] + C1 sin [C1s + C2]] + C4,

y (s) =
sin Pecos Ps+C3

C2
1 + cos2 P

[−C1 cos [C1s + C2] + cos P sin [C1s + C2]] + C5, (3.4)

z (s) = cos Ps + C3,

where C1,C2,C3,C4,C5 are constants of integration.

Proof: Assume that γ a unit speed non-geodesic general helix. So, without loss
of generality, we take the axis of γ is parallel to the vector e3. Then,

gsol3 (T, e3) = T3 = cos P,

where P is constant angle.
The tangent vector can be written in the following form

T = T1e1 + T2e2 + T3e3. (3.5)

On the other hand the tangent vector T is a unit vector, so the following
condition is satisfied

T 2
1 + T 2

2 = 1 − cos2 P.

Noting that cos2 P + sin2 P = 1, we have

T 2
1 + T 2

2 = sin2 P. (3.6)

The general solution of (3.6) can be written in the following form

T1 = sin P cos D,

T2 = sin P sin D.
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So, substituting the components T1, T2 and T3 in the equation (3.5), we have
the following equation

T = sin P cos De1 + sinP sin De2 + cos ℘e3. (3.7)

Also, without loss of generality, we take

D = C1s + C2, (3.8)

where C1,C2 ∈ R.
Thus (3.7) and (3.8), imply

T = sinP cos [C1s + C2] e1 + sinP sin [C1s + C2] e2 + cos Pe3. (3.9)

Using (2.4) in (3.9), we obtain

T = (sin P cos [C1s + C2] e
−z, sin P sin [C1s + C2] e

z, cos P).

Firstly, we have
dz

ds
= cos P,

Integrating both sides, we have

z (s) = cos Ps + C3,

where C3 is constant of integration.
Secondly, we have

dx

ds
= sinP cos [C1s + C2] e

− cos Ps−C3 .

Also, integrating both sides, we have

x (s) =
sin Pe− cos Ps−C3

C2
1 + cos2 P

[− cos P cos [C1s + C2] + C1 sin [C1s + C2]] + C4,

where C4 is constant of integration.
Finallly, we obtain

dy

ds
= sinP sin [C1s + C2] e

cos Ps+C3 .

Since

y (s) =
sinPecos Ps+C3

C2
1 + cos2 P

[−C1 cos [C1s + C2] + cos P sin [C1s + C2]] + C5,

where C5 is constant of integration. This proves our assertion. Thus, the proof of
theorem is completed. 2

In terms of Eqs. (2.4) and (3.4), we may give:
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Theorem 3.2. Let γ : I −→ Sol3 be a unit speed non-geodesic general helix. Then,
the equation of γ is

γ (s) = [
sin P

C2
1 + cos2 P

[− cos P cos [C1s + C2] + C1 sin [C1s + C2]] + C4e
cos Ps+C3 ]e1

+[
sin P

C2
1 + cos2 P

[−C1 cos [C1s + C2] + cos P sin [C1s + C2]] + C5e
− cos Ps−C3 ]e2

+[cos Ps + C3]e3, (3.10)

where C1, C2, C3, C4, C5 are constants of integration.

Proof: Suppose that γ be a unit speed non-geodesic general helix. Using orthonor-
mal basis of Sol3, we have

∂

∂x
= ez

e1,
∂

∂y
= e−z

e2,
∂

∂z
= e3. (3.11)

Substituting (3.11) to (3.4), we have (3.10) as desired. This completes the proof.
2

We can use Mathematica in Theorem 3.1, yields
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