
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 63–69.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.14304

The Rate of Sectional entire sequence spaces

N. Gurumoorthy and K. Chandrasekhara Rao

abstract: The space (Γs)π is introduced. This paper deveoted a study of the
general properties of sectional rate space (Γs)π of Γ.
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1. Introduction

A complex sequence, whose kth terms xk is denoted by {xk} or simply x. Let
φ be the set of all finite sequence. A sequence x = {xk} is said to be analytic if

supk |xk|
1/k

< ∞. A vector space of all analytic sequence will be denoted by Λ.

A sequence x = {xk} is called entire if limk→∞ |xk|
1/k

= 0. The vector space of
entire sequence denoted by Γ. Kizmaz [22] defined the following difference squence
spaces

Z (∆) = {x = (xk) : ∆x ∈ Z}

for Z = ℓ∞, c, c0, where ∆x = (∆x)
∞
k=1 = (xk − xk+1)

∞
k=1 and showed that these

are Banach space with norm ‖x‖ = |x1| + ‖∆x‖∞ . Later on Et and Colak [23]
generalized the notion as follows :
Let m ∈ N, Z (∆m) = {x = (xk) : ∆mx ∈ Z} for Z = ℓ∞, c, c0 where m ∈ N,
∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx = (∆mxk)

∞
k=1 =

(

∆m−1xk − ∆m−1xk+1

)∞

k=1
.

The generalized differences has the following binomial representation:

∆mxk =
∑m

γ=0 (−1)
γ

(

m
γ

)

xk+γ ,

They proved that these are Banach spaces with the norm

‖x‖∆ =
∑m

i=1 |xi| + ‖∆mx‖∞
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Given a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0, ...}
δ(n) = (0, 0, ..., 1, 0, 0, ...) , 1 in the nth place and zero’s else where and
sk = {0, 0, 0, · · · , 1,−1, 0, 0, · · · } , 1 in the nth place and -1 in the (n + 1)th place
and zero’s else where.
If X is a sequence space, we define
(i)X

′

= the continuous dual of X.
(ii)Xα = {a = (ak) :

∑∞
k=1 |akxk| < ∞, foreachx ∈ X} ;

(iii)Xβ = {a = (ak) :
∑∞

k=1 akxk is convergent, foreachx ∈ X} ;

(iv)Xγ =
{

a = (ak) :
sup
n |

∑n
k=1 akxk| < ∞, foreachx ∈ X

}

;

(v)Let X be an FK-space⊃ φ. Then Xf =
{

f(δ(n)) : f ∈ X
′

}

.

Xα,Xβ ,Xγ are called the α−(or Kö the-T öeplitz)dual of X, β− (or generalized
Kö the-T öeplitz)dual of X, γ−dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y
then Y µ ⊂ Xµ, for µ = α, β, or γ.
An FK-space(Frechet coordinate space) is a Frechet space which is made up of
numerical sequences and has the property that the coordinate functionals pk(x) =
xk (k = 1, 2, ...) are continuous. We recall the following definitions[see [14]]. An
FK-space is a locally convex Frechet space which is made up of sequences and has
the property that coodinate projections are continuous. An metric space (X, d)
is said to have AK (or sectional convergence) if and only if d

(

x(n), x
)

→ 0 as
n → ∞[see [17]]. The space is said to have AD or be an AD space if φ is dense in
X. We note that AK implies AD by [14].

2. Definitions and Preliminaries

Throughout the paper w,Γ and Λ denote the spaces of all entire and bounded

sequence respectively. Let t denote the sequence with t = |xk|
1/k

for all k ∈ N.
Define the sets: Γ = {x ∈ w : tk → 0ask → ∞} and Λ = {x ∈ w : supktk < ∞} .
The spaces Γ and Λ are metric space with the metric

d (x, y) = supk

{

|xk − yk|
1/k

: k = 1, 2, 3, · · ·
}

Let (Γs)π =
{

x = (xk) ∈ w : ξ =
(

ξk

πk

)

∈ Γ
}

; where ξk = x1 + x2 + · · · + xk. Let

(Λs)π =
{

x = (xk) ∈ w : η =
(

ηk

πk

)

∈ Λ
}

; where ηk = y1+y2+ · · ·+yk. The spaces

(Γs)π and (Λs)π are metric space with the metric

d (x, y) = supk

{

∣

∣

∣

ξk−ηk

πk

∣

∣

∣

1/k

: k = 1, 2, 3, · · ·

}

Let σ (Γ) denote the vector space of all sequences x = (xk) such that
(

ξk

k

)

is entire

sequence. We recall that cs0 denotes the vector space of all sequences x = (xk)
such that (ξk) is a null sequence.

Lemma 2.1 (see ( [17], Theorem 7.2.7)) Let X be an FK-space⊃ φ. Then (i)
Xγ ⊂ Xf . (ii) If X has AK, Xβ = Xf . (iii) If X has AD, Xβ = Xγ .
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Remark 2.2 x = (xk) ∈ σ (Γs) ⇔
(

ξk

πkk

)

∈ Γ ⇔
∣

∣

∣

ξk

πkk

∣

∣

∣

1/k

→ 0ask → ∞ ⇔
∣

∣

∣

ξk

πk

∣

∣

∣

1/k

→ 0ask → ∞, because k1/k → 1ask → ∞ ⇔ x = (xk) ∈ (Γs)π . Hence

(Γs)π = σ (Γs) , the cesàro space of order 1.

3. Main Results

Proposition 3.1 (Γs)π ⊂ Γπ

Proof: Let x ∈ (Γs)π

⇒ ξ ∈ Γπ
∣

∣

∣

∣

ξk

πk

∣

∣

∣

∣

1/k

→ 0ask → ∞ (3.1)

But xk

πk

= ξk

πk

− ξk−1

πk−1
.

∣

∣

∣

xk

πk

∣

∣

∣

1/k

≤
∣

∣

∣

ξk

πk

− ξk−1

πk−1

∣

∣

∣

1/k

≤
∣

∣

∣

ξk

πk

∣

∣

∣

1/k

+
∣

∣

∣

ξk−1

πk−1

∣

∣

∣

1/k

→ 0ask → ∞ by using (3.1)

Therefore
∣

∣

∣

xk

πk

∣

∣

∣

1/k

→ 0ask → ∞

⇒ x ∈ Γπ. Hence (Γs)π ⊂ Γπ.
Note: The above inclusions is strict. Take the sequence δ(1) ∈ Γπ. We have
(

ξ1

π1

)

= 1
(

ξ2

π2

)

= 1 + 0 = 1
(

ξ3

π3

)

= 1 + 0 + 0 = 1

...
(

ξk

πk

)

= 1 + 0 + 0 + · · ·+ = 1

→ k − terms →

and so on. Now

(

∣

∣

∣

ξk

πk

∣

∣

∣

1/k
)

= 1 for all k. Hence

{

∣

∣

∣

ξk

πk

∣

∣

∣

1/k
}

does not tend to zero as

k → ∞. So δ(1) /∈ (Γs)π . Thus the inclusion (Γs)π ⊂ Γπ is strict. This completes
the proof. 2

Proposition 3.2 (Γs)π is a linear space over the field C of complex numbers.

Proof: It is easy. Therefore omit the proof. 2

Proposition 3.3 Λπ ⊂ (Γs)π ⊂ Λπ (∆)

Proof: Step 1. By Proposition 3.1, we have (Γs)π ⊂ Γπ. Hence (Γπ)
β
⊂ [(Γs)π]

β
.

But (Γπ)
β

= Λπ. Therefore

Λπ ⊂ [(Γs)π]
β

(3.2)
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Step2: Let y = (yk) ∈ [(Γs)π]
β

. Consider f (x) =
∑∞

k=1 xkyk with x ∈ (Γs)π .
Take x = δn − δn+1 = (0, 0, 0, · · · , π,−π, 0, 0, · · · )

nth(n + 1)thplace
where, for each fixed n = 1, 2, 3, · · · ; δ(n) = (0, 0, · · ·π, 0, · · · ) , π in the nth place
and zero’s elsewhere. Then f

(

δn − δn+1
)

= yn − yn+1. Hence
∣

∣

∣

yn

πn

− yn+1

πn+1

∣

∣

∣
=

∣

∣f
(

δn − δn+1
)∣

∣ ≤ ‖f‖ d
((

δn − δn+1
)

, 0
)

≤ ‖f‖ · 1.

So,
∣

∣

∣

yn

πn

− yn+1

πn+1

∣

∣

∣
is bounded. Consequently

∣

∣

∣

yn

πn

− yn+1

πn+1

∣

∣

∣
∈ Λπ That is

(

yn

πn

)

∈

Λπ (∆) . But y = (yn) is originally in [(Γs)π]
β

. Therefore

[(Γs)π]
β
⊂ Λπ (∆) (3.3)

From (3.2) and (3.3) we conclude that Λπ ⊂ [(Γs)π]
β
⊂ Λπ (∆) . This completes

the proof. 2

Proposition 3.4 The β− dual space of (Γs)π is Λπ

Proof: Step1. Let y = (yk) be an arbitray point in [(Γs)π]
β

. If y is not in Λπ,
then for each natural number n, we can find an index k(n) such that

(

∣

∣

∣

yk(n)

πk(n)

∣

∣

∣

1/k(n)
)

> 1
n , (n = 1, 2, 3, · · · )

Define x = (xk) by
(

xk

πk

)

= 1/nk, for k = k(n);and
(

xk

πk

)

= 0 otherwise

Then x is in Γπ, but for infinitely many k,
(

xkyk

πk

)

> 1 (3.4)

Consider the sequence z = {zk}, where z1 = x1

π1
− s with s =

∑ xk

πk

; and zk =

xk

πk

(k = 2, 3, · · · ) Then z is a point of Γπ. Also
(

xk

πk

)

= 0 Hence z is in (Γs)π . But

by the equation(3.4),
∑

(

zkxk

πk

)

does not converge. Thus the sequence y would not

to be in [(Γs)π]
β

. This contradiction proves that

[(Γs)π]
β
⊂ Λπ (3.5)

Step2. By (3.2) of Proposition 3.3, we have

Λπ ⊂ [(Γs)π]
β

(3.6)
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From (3.5) and (3.6) it follows that the β− dual space of [(Γs)π]
β

is Λπ This
completes the proof. 2

Proposition 3.5 Suppose that x ∈ Γπ, then x ∈ [(Γs)π] ⇔
∑∞

k=1
xk

πk

= 0

Proof: Let
∞
∑

k=1

xk

πk
= 0 (3.7)

Note that x ∈ Γπ implies that the sum on the left hand side of (3.7)

must exists. Denote the sum by s. Clearly
(

ǫk

πk

)

→ sask → ∞. Hence it follows

that if s 6= 0 then x /∈ Γπ. Assume that s = 0 then

(

ǫk

πk

)

= −
∞
∑

γ=k+1

(

xν

πν

)

(3.8)

Let ǫ > 0 be given with ǫ < 1/2. There is a k0 such that
(

xν

πν

)1/ν

< ǫ for all ν ≥ k0

equation (3.8) gives us the results for k ≥ k0. Now
∣

∣

∣

ǫk

πk

∣

∣

∣
<

∑∞
ν=k+1 ǫν = ǫk+1

1−ǫ < ǫk,

since ǫ < 1/2. Thus
∣

∣

∣

ǫk

πk

∣

∣

∣

1/k

< ǫ. Consequently x ∈ [(Γs)π] . This completes the

proof. 2

Proposition 3.6 [(Γs)π] is closed in Γπ in the metric toplogy of Γπ

Proof: If x ∈ Γπ − [(Γs)π] then s = 0. Let ǫ > 0 be given. If d (x, y) < ǫ, then
∣

∣

∣

∑∞
k=1

xk

πk

−
∑∞

k=1
yk

πk

∣

∣

∣
≤

∑∞
k=1

∣

∣

∣

xk

πk

− yk

πk

∣

∣

∣
≤ ǫk = ǫ

1−ǫ .

This can be made arbitrary small by the choice of ǫ. Thus however
d (x, y) is sufficiently small, we have

∑∞
k=1

yk

πk

6= 0.

So that by Theorem 3.5 y /∈ [(Γs)π] . Accordingly y ∈ Γπ − [(Γs)π] for each y in the
open ball B (x, ǫ) with centre x and radius ǫ. Hence x ∈ B (x, ǫ) ⊂ Γπ − [(Γs)π] .
Therefore each point x of Γπ − [(Γs)π] is an interior point Γπ − [(Γs)π] . In other
words Γπ−[(Γs)π] is open in Γ. Consequently [(Γs)π] is closed in Γπ. This completes
the proof. 2

Proposition 3.7 [(Γs)π] is a complete metric space

Proof: The metric d for Γπ is given by d (x, y) . The metric d for Γπ may be
restricted to [(Γs)π] then [(Γs)π , d] is a metric space. Where
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d (x, y) = supk

{

∣

∣

∣

xk−yk

πk

∣

∣

∣

1/k

: k = 1, 2, 3, · · ·

}

But by Theorem (3.5), [(Γs)π , d] is a closed subspace of Γπ. Also Γπ is a complete
metric space [see [1]]. Hence (Γs)π is a complete metric space. 2

Proposition 3.8 [(Γs)π , d] is separable.

Proof: Write
δ1 = {π, 0, 0 · · · , } ;
δ2 = {0, π, 0, · · · , } ;

...
δk = {0, 0, 0 · · · , π} ;π in the kth place and 0 elsewhere. Where π is the constant
sequence {π, π, · · · , } with π > 0.

Then A =
{

σ1, σ2, · · ·
}

is a Schauder basis for Γπ correspondingly we have,
ρ1 = {π,−π, 0, · · · , } ;
ρ2 = {0, π,−π, 0, · · · , } ;

...
ρk = {0, 0, 0 · · · , π,−π} ;π in the kth place and −π in the (k + 1)

th
place and

zero elsewhere. Then B =
{

ρ1, ρ2, ρ3, · · · ,
}

is Schauder basis in [(Γs)π , d] . Hence
[(Γs)π , d] is separable. This completes the proof. 2
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