Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) **v. 30** 2 (2012): 57–62. ISSN-00378712 in press doi:10.5269/bspm.v30i2.14007

Asymptotically Lacunary Statistical Equivalent Sequences of Fuzzy Numbers

Ayhan Esi and Necdet Çatalbaş

ABSTRACT: In this article we present the following definition which is natural combination of the definition for asymptotically equivalent and lacunary statistical convergence of fuzzy numbers. Let $\theta = (k_r)$ be a lacunary sequence. The two sequences $X = (X_k)$ and $Y = (Y_k)$ of fuzzy numbers are said to be asymptotically lacunary statistical equivalent to multiple L provided that for every $\varepsilon > 0$

$$\lim_r \frac{1}{h_r} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \geq \varepsilon \right\} \right| = 0.$$

Key Words: Asymptotically equivalent, lacunary sequence, fuzzy numbers.

Contents

1 Introduction572 Definitions and Notations58

3 Main Results

1. Introduction

In 1993, Marouf [2] presented definitions for asymptotically equivalent sequences of real numbers. In 2003, Patterson [4] extended these definitions by presenting on asymptotically statistical equivalent analog of these definitions. For sequences of fuzzy numbers Savaş [5] introduced and studied asymptotically λ -statistical equivalent sequences. Later Esi and Esi [1] studied Δ -asymptotically equivalent sequences of fuzzy numbers. The goal of this paper is to extended the idea to apply to asymptotically equivalent and lacunary statistical convergence of fuzzy numbers.

By a lacunary sequence $\theta = (k_r)$; r = 0, 1, 2, 3, ... where $k_0 = 0$, we shall mean an increasing sequence of nonnegative integers with $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$. the ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r .

Let D denote the set of all closed and bounded intervals on R , the real line. For $X,Y\in D$ we define

$$d(X,Y) = max(|a_1 - b_1|, |a_2 - b_2|)$$

where $X = [a_1, a_2]$ and $Y = [b_1, b_2]$. It is known that (D, d) is a complete metric space. A fuzzy real number X is a fuzzy set on R, i.e. a mapping $X : R \to I$ (= [0, 1]) associating each real number t with its grade of membership X(t).

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

59

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 40C05, 46D25

Ayhan Esi and Necdet Çatalbaş

The set of all upper - semi continuus, normal, convex fuzzy real numbers is denoted by R(I). Throughout the paper, by a fuzzy real number X, we mean that $X \in R(I)$.

The α - cut or α - level set $[X]^{\alpha}$ of the fuzzy real number X, for $0 < \alpha \leq 1$ defined by $[X]^{\alpha} = \{t \in R : X(t) \geq \alpha\}$; for $\alpha = 0$, it is the closure of the strong 0-cut, i.e. closure of the set $\{t \in R : X(t) > 0\}$. The linear structure of R(I) induces addition X + Y and scalar multipliction μX , $\mu \in R$, in terms of α - level set, by $[X + Y]^{\alpha} = [X]^{\alpha} + [Y]^{\alpha}$, $[\mu X]^{\alpha} = \mu [X]^{\alpha}$ for each $\alpha \in [0, 1]$.

Let

$$\overline{d}:R\left(I\right)\times R\left(I\right)\to R$$

be defined by

$$\overline{d}\left(X,Y\right) = \sup_{\alpha \in (0,1]} d\left(\left[X\right]^{\alpha}, \left[Y\right]^{\alpha}\right).$$

Then \overline{d} defines a metric on R(I). It is well known that R(I) is complete with respect to \overline{d} .

A sequence (X_k) of fuzzy real numbers is said to be convergent to the fuzzy real numbers X_0 , if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(X_k, X_0) < \varepsilon$ for all $k \ge n_0$. Nuray and Savaş [3] defined the notion of statistical convergence for sequences of fuzzy numbers as follows : A sequence of fuzzy numbers is said to be statistically convergent to the fuzzy real number X_0 , if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \overline{d} \left(X_k, X_0 \right) \ge \varepsilon \right\} \right| = 0.$$

2. Definitions and Notations

Definition 2.1 Let $\theta = (k_r)$ be lacunary sequence. The two sequences $X = (X_k)$ and $Y = (Y_k)$ of fuzzy numbers are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every $\varepsilon \succ 0$,

$$\lim_{r} \frac{1}{h_{r}} \left| \left\{ k \in I_{r} : \overline{d} \left(\frac{X_{k}}{Y_{k}}, L \right) \geq \varepsilon \right\} \right| = 0$$

$$\left(\text{denoted by } X \overset{S^{L}_{\theta}(F)}{\sim} Y \right)$$

and simply asymptotically lacunary statistical equivalent if $L = \overline{1}$ (where $\overline{1}$ is unity element for addition in R(I)). Furthermore, let $S^L_{\theta}(F)$ denotes the set of $X = (X_k)$ and $Y = (Y_k)$ of fuzzy numbers such that $X \stackrel{S^L_{\theta}(F)}{\sim} Y$.

Definition 2.2 Let $\theta = (k_r)$ be lacunary sequence. The two sequences $X = (X_k)$ and $Y = (Y_k)$ of fuzzy numbers are strong asymptotically lacunary statistical equivalent of multiple L provided that

$$\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} \overline{d}\left(\frac{X_k}{Y_k}, L\right) = 0,$$

58

 $\left(denoted \ by \ X \overset{N_{\theta}^{L}(F)}{\sim} Y \right)$ and simply strong asymptotically lacunary statistical equivalent if $L = \overline{1}$. In addition, let $N_{\theta}^{L}(F)$ denotes the set of $X = (X_k)$ and $Y = (Y_k)$ of fuzzy numbers such that $X \overset{N_{\theta}^{L}(F)}{\sim} Y$.

3. Main Results

Theorem 3.1 Let $\theta = (k_r)$ be lacunary sequence. Then (a) If $X \stackrel{N_{\theta}^{L}(F)}{\sim} Y$ then $X \stackrel{S_{\theta}^{L}(F)}{\sim} Y$, (b) if $X \in \ell_{\infty}(F)$ and $X \stackrel{S_{\theta}^{L}(F)}{\sim} Y$ then $X \stackrel{N_{\theta}^{L}(F)}{\sim} Y$, (c) $S_{\theta}^{L}(F) \cap \ell_{\infty}(F) = N_{\theta}^{L}(F) \cap \ell_{\infty}(F)$ where $\ell_{\infty}(F)$ the set of all bounded sequences of fuzzy numbers.

Proof: (a) If $\varepsilon > 0$ and $X \overset{N^L_{\theta}(F)}{\sim} Y$, then

$$\sum_{k \in I_r} \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \sum_{k \in I_r \& \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon} \overline{d} \left(\frac{X_k}{Y_k}, L \right)$$
$$\ge \varepsilon. \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right|$$

Therefore $X \overset{S^L_{\theta}(F)}{\sim} Y$.

(b) Suppose that $X = (X_k)$ and $Y = (Y_k) \in \ell_{\infty}(F)$ and $X \stackrel{S^L_{\theta}(F)}{\sim} Y$. Then we can assume that $\overline{d}\left(\frac{X_k}{Y_k}, L\right) \leq T$ for all k. Given $\varepsilon > 0$

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} \overline{d} \left(\frac{X_k}{Y_k}, L \right) &= \frac{1}{h_r} \sum_{k \in I_r \ \& \ \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon} \overline{d} \left(\frac{X_k}{Y_k}, L \right) + \frac{1}{h_r} \sum_{k \in I_r \ \& \ \overline{d} \left(\frac{X_k}{Y_k}, L \right) < \varepsilon} \overline{d} \left(\frac{X_k}{Y_k}, L \right) \\ &\leq \frac{T}{h_r} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| + \varepsilon \end{split}$$

Therefore $X \stackrel{N^L_{\theta}(F)}{\sim} Y$. (c) It follows from (a) and (b).

Theorem 3.2 Let $\theta = (k_r)$ be lacunary sequence with $\liminf_r q_r > 1$, then $X \overset{S_L(F)}{\sim} Y$ implies $X \overset{S_{\theta}^L(F)}{\sim} Y$,

where $S^{L}(F)$ (see [5]) the set of $X = (X_{k})$ and $Y = (Y_{k})$ of fuzzy numbers such that

$$\lim_{n} \frac{1}{n} \left| \left\{ k \le n : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| = 0.$$

Proof: Suppose that $\liminf_r q_r > 1$, then there exists a $\delta > 0$ such that $q_r \ge 1 + \delta$ for sufficiently large r, which implies

$$\frac{h_r}{k_r} \geq \frac{\delta}{1+\delta}$$

if $X \stackrel{S^L(F)}{\sim} Y$, then for every $\varepsilon > 0$ and for sufficiently large r, we have

$$\frac{1}{k_r} \left| \left\{ k \le k_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \ge \frac{1}{k_r} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ \ge \frac{\delta}{1+\delta} \cdot \frac{1}{h_r} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right|.$$

This complete the proof.

Theorem 3.3 Let $\theta = (k_r)$ be lacunary sequence with $\limsup_r q_r < \infty$, then $X \stackrel{S^L_{\theta}(F)}{\sim} Y$ implies $X \stackrel{S_L(F)}{\sim} Y$.

Proof: If $\limsup_r q_r < \infty$, then there exists B > 0 such that $q_r < C$ for all $r \ge 1$. Let $X \stackrel{S^L_{\theta}(F)}{\sim} Y$ and $\varepsilon > 0$. There exists B > 0 such that for every $j \ge B$

$$A_J = \frac{1}{h_j} \left| \left\{ k \in I_j : \overline{d}\left(\frac{X_k}{Y_k}, L\right) \ge \varepsilon \right\} \right| < \varepsilon.$$

we can also find K > 0 such that $A_j < K$ for all j = 1, 2, 3, ... Now let n be any integer with $k_{r-1} < n < k_r$, where $r \ge B$. Then

$$\frac{1}{n} \left| \left\{ k \le n : \overline{d}\left(\frac{X_k}{Y_k}, L\right) \ge \varepsilon \right\} \right| \le \frac{1}{k_{r-1}} \left| \left\{ k \le k_r : \overline{d}\left(\frac{X_k}{Y_k}, L\right) \ge \varepsilon \right\} \right|$$

Fuzzy Numbers

$$\begin{split} &= \frac{1}{k_{r-1}} \left| \left\{ k \in I_1 : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| + \frac{1}{k_{r-1}} \left| \left\{ k \in I_2 : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ &+ \ldots + \frac{1}{k_{r-1}} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ &= \frac{k_1}{k_{r-1}k_1} \left| \left\{ k \in I_1 : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| + \frac{k_2 - k_1}{k_{r-1}(k_2 - k_1)} \left| \left\{ k \in I_2 : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ &+ \ldots + \frac{k_B - k_{B-1}}{k_{r-1}(k_B - k_{B-1})} \left| \left\{ k \in I_B : d \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ &+ \ldots + \frac{k_r - k_{r-1}}{k_{r-1}(k_r - k_{r-1})} \left| \left\{ k \in I_r : \overline{d} \left(\frac{X_k}{Y_k}, L \right) \ge \varepsilon \right\} \right| \\ &= \frac{k_1}{k_{r-1}} A_1 + \frac{k_2 - k_1}{k_{r-1}} A_2 + \ldots + \frac{k_B - k_{B-1}}{k_{r-1}} A_B + \ldots + \frac{k_r - k_{r-1}}{k_{r-1}} A_r \\ &\leq \left\{ \sup_{j \ge 1} A_j \right\} \frac{k_B}{k_{r-1}} + \left\{ \sup_{j \ge B} A_j \right\} \frac{k_r - k_B}{k_{r-1}} \end{split}$$

This complete the proof.

Theorem 3.4 Let $\theta = (k_r)$ be lacunary sequence $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then $X \overset{S_L(F)}{\sim} Y \Leftrightarrow X \overset{S_{\theta}^L(F)}{\sim} Y$.

Proof: The result follow from Theorem 3.2 and Theorem 3.3.

References

- 1. Esi, A. and Esi, A., On Δ -asymptotically equivalent sequences of fuzzy numbers, International Journal of Mathematics and Computation, 1(8)(2008), 29-35.
- 2. Marouf, M., Asymptotic equivalence and summability, Inf. J. Math.Sci., 16 (1993), 755 762.
- 3. Nuray, F. and Savaş, E., Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca , ${\bf 45}(3)$ (1995), 269 -273.
- Patterson , R.F., On asymptotically statistically equivalent sequences, Demonstratio Math., 36 (1) (2003), 149 -153.
- 5. Savaş , E ., On asymptotically $\lambda-{\rm statistical}$ equivalent sequence of fuzzy numbers, New Mathematics and Natural Computation, ${\bf 3}(3)$ (2007), 301 -306.

Ayhan Esi and Necdet Çatalbaş

Ayhan Esi Adiyaman University, Science and Art Faculty Department of Mathematics 02040,Adiyaman,Turkey. E-mail address: aesi23@hotmail.com

and

Necdet Çatalbaş Firat University, Science and Art Faculty Department of Mathematics 23199, Elazığ, Turkey. E-mail address: ncatalbas@firat.edu.tr

62