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abstract: In this paper, with the help of orthogonal polynomials especially
Chybeshev polynomials of first and second kind, number theory and linear algebra
intertwined to yield factorization of balancing and Lucas-balancing numbers.
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1. Introduction

As usual, see [1], the balancing number n is defined by the solution of the
Diophantine equation

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r),

where r is the balancer corresponding to the balancing number n. The first few
balancing numbers are 1, 6, 35 with corresponding balancers 0, 2, 14. If Bn is the
nth balancing number, the recurrence relation for balancing numbers is given by

Bn+1 = 6Bn − Bn−1, n ≥ 2, (1.1)

with B1 = 1, B2 = 6.
In [1] it is shown that, if n is a balancing number, n2 is a triangular number, that
is, 8n2 + 1 is a perfect square and for all n,

√
8n2 + 1 generates a sequence called

as the sequence of Lucas-balancing numbers [5], whose first few terms are given by
1, 3 and 17 and if Cn is the nth Lucas-balancing number, its recurrence relation is
given by

Cn+1 = 6Cn − Cn−1, n ≥ 2, (1.2)

with C1 = 3, C2 = 17.
In the recent years many number theorists from all over the world are taking interest
in this beautiful number system. Liptai [2] proved that the only Fibonacci number
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in the sequence of balancing numbers is 1. In [3], he also proved that there is no
Lucas number in the sequence of balancing numbers. Balancing numbers and its
related sequences are available in the literature. Interested reader may follow [4],
[6], [7].
In this paper, we observe that, with the help of orthogonal polynomials, number
theory and linear algebra intertwined to yield factorization of balancing and Lucas-
balancing numbers. In section 2 and 3 we derive the following factorization of these
numbers:

Bn =
∏

1≤k≤n−1

(6 − 2 cos
kπ

n
) (1.3)

Cn =
1

2
[

∏

1≤k≤n

(6 − 2 cos
(2k − 1)π

2n
)] (1.4)

In order to derive (1.3) and (1.4) we present the following theorem whose proof is
included for completeness.

Theorem 1.1 If the sequence of tridiagonal matrices {An, n = 1, 2, · · · } is of the

form

An =

















A11 A12

A21 A22 A23

A32 A33
. . .

. . .
. . . A(n−1)n

An(n−1) Ann

















,

then the successive determinant of An are given by the recursive formulas:

det(A1) = A11

det(A2) = A11A22 − A12A21

det(An) = Ann det(An−1) − A(n−1)nAn(n−1) det(An−2).

Proof. Using Induction one can easily check that the theorem is true for n = 1, 2
and 3 and assume that it is true for all k, 3 ≤ k ≤ n, that is

det(Ak) = Akk det(Ak−1) − A(k−1)kAk(k−1) det(Ak−2).
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Now,

det(Ak+1) = det

















A11 A12

A21 A22 A23

A32 A33
. . .

. . .
. . . Ak(k+1)

A(k+1)k A(k+1)(k+1)

















= A(k+1)(k+1) det(Ak) − Ak(k+1) det

















A11 A12

A21 A22 A23

A32 A33
. . .

. . .
. . . A(k−1)k

Ak(k−1) A(k+1)k

















= A(k+1)(k+1) det(Ak) − Ak(k+1)A(k+1)k det(Ak−1).

Thus the theorem is true for all natural number n.

2. Factorization of Balancing Numbers

In order to derive the factorization of balancing numbers (1.3), let us introduce
the sequence of matrices {Dn, n = 1, 2, · · · } where Dn is am n × n tridiagonal
matrix with entries dkk = 6, 1 ≤ k ≤ n and d(k−1)k = −i, dk(k−1) = i, 2 ≤ k ≤ n,

where i =
√
−1. That is

Dn =

















6 −i

i 6 −i

i 6
. . .

. . .
. . . −i

i 6

















,

By virtue of Theorem 1.1, we find

det(D1) = 6

det(D2) = 36 + i2 = 35

det(Dn) = 6 det(Dn−1) − det(Dn−2),

which is nothing but the sequence of balancing numbers starting with B2. Thus,

Bn = det(Dn−1), n ≥ 2. (2.1)

Since the determinant of a matrix can be found by taking the product of its eigen-
values, we will now find the spectrum of Dn in order to find an alternate formulation
for det(Dn).
Let us introduce another sequence of matrices {Sn, n = 1, 2, · · · } where Sn is
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an n × n tridiagonal matrix with entries skk = 0, 1 ≤ k ≤ n and s(k−1)k =
−i, sk(k−1) = i, 2 ≤ k ≤ n. That is,

Sn =

















0 −i

i 0 −i

i 0
. . .

. . .
. . . −i

i 0

















.

Clearly Dn = 6I + Sn, where I be the identity matrix same order as Sn. Let
λk, k = 1, 2, 3 · · · , n, be the eigenvalues of Sn with corresponding eigenvectors Xk.
Then for each j,

DnXj = [6I + Sn]Xj

= 6IXj + SnXj

= 6Xj + λjXj

= (6 + λj)Xj .

Thus δk = 6 + λk, k = 1, 2, · · · , n, be the eigenvalues of Dn. Therefore,

det(Dn) =
∏

1≤k≤n

(6 + λk), n ≥ 1. (2.2)

In order to find λk, k = 1, 2 · · · , n, we recall that each λk is zero of the characteristic
polynomial pn(λ) = det(Sn − λI).
Since Sn − λI is a tridiagonal matrix we have,

Sn − λI =

















−λ −i

i −λ −i

i −λ
. . .

. . .
. . . −i

i −λ

















.

Using Theorem 1.1, we get the following recursive formula for the characteristic
polynomials:

p1(λ) = −λ

p2(λ) = λ2 − 1

pn(λ) = −λpn−1(λ) − pn−2)(λ).

This family of polynomials can be transformed into another family {Mn, n ≥ 1}
by the transformation λ = −2x to get,

M1(x) = 2x

M2(x) = 4x2 − 1

Mn(x) = 2xMn−1(x) − Mn−2(x).
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We observe that the family {Mn, n ≥ 1} is the set of Chebyshev polynomials of
second kind. It is well known that for x = cos θ, the Chebyshev polynomials of the
second kind can be written as

Mn(x) =
sin[(n + 1)θ]

sin θ

which when equal to zero gives

θk =
πk

n + 1
, k = 1, 2, · · ·n.

Thus,

xk = cos θk

= cos
πk

n + 1
, k = 1, 2, · · ·n.

Now applying the transformation λ = −2x, the eigenvalues of Sn are given by

λk = −2 cos
πk

n + 1
, k = 1, 2, · · ·n. (2.3)

Combining (2.1), (2.2) and (2.3), we get

Bn+1 = det(Dn) =
∏

1≤k≤n

(6 − 2 cos
kπ

n
), n ≥ 1,

which is identical to the factorization (1.3).

3. Factorization of Lucas-Balancing Numbers

In a similar manner we can derive (1.4) by considering the sequence of matrices
{En, n = 1, 2, · · · } where En is an n × n tridiagonal matrix with entries e11 =
3, ekk = 6, 2 ≤ k ≤ n and e(k−1)k = −i, sk(k−1) = i, 2 ≤ k ≤ n. That is,

En =

















3 −i

i 6 −i

i 6
. . .

. . .
. . . −i

i 6

















.

Again using Theorem 1.1, we obtain

det(E1) = 3

det(E2) = 18 + i2 = 17

det(En) = 6 det(En−1) − det(En−2).
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We observe that each member in this sequence is a Lucas-balancing number. Thus,
we get

Cn = det(En), n ≥ 1. (3.1)

If ej is the jth column of the identity matrix I, we see that det(I + e1e
T
1 ) = 2.

Therefore,we may write

det(En) =
1

2
det[(I + e1e

T
1 )En]. (3.2)

Also we observe that the right hand side of (3.2) can be expressed as

1

2
det[(I + e1e

T
1 )En] =

1

2
det[6I + Sn − ie1e

T
2 ]

where Sn is the matrix defined earlier.
If αk, k = 1, 2, 3 · · · , n, be the eigenvalues of Sn − ie1e

T
2 with corresponding

eigenvectors Yk, then for each j,

[6I + Sn − ie1e
T
2 ]Yj = 6IYj + (Sn − ie1e

T
2 )Yj

= 6Yj + αjYj

= (6 + αj)Yj .

Therefore,
1

2
det[6I + Sn − ie1e

T
2 ] =

1

2

∏

1≤k≤n

(6 + αk), n ≥ 1. (3.3)

In order to find α
′

ks, we recall that each αk is a zero of the characteristic polynomial
qn(α) = det(Sn − ie1e

T
2 − αI). Since det(I − 1

2e1e
T
1 ) = 1

2 , we can express the
characteristic polynomial as

qn(α) = 2det[(I − 1

2
e1e

T
1 )(Sn − ie1e

T
2 − αI)]

= 2det

















−α
2 −i

i −α −i

i −α
. . .

. . .
. . . −i

i −α

















.

Since qn(α) is the twice of a tridiagonal matrix, we can use Theorem 1.1 to get the
following recursive formulas:

q1(α) =
−α

2

=
α2

2
− 1

= −αqn−1(α) − qn−2(α).
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Using the transformation α = −2x, the family of the above polynomial can be
transformed to a new family {Tn(x), n ≥ 1} where,

T1(x) = x

T2(x) = 2x2 − 1

Tn(x) = 2xTn−1(x) − Tn−2(x).

Once again we observe that the family {Tn(x), n ≥ 1} is the set of Chebyshev
polynomials of first kind. It is well known that for x = cos θ the Chebyshev
polynomials of the first kind can be written as

Tn(x) = cos nθ

which when equal to zero gives,

θk =
π(2k − 1)

2n
, k = 1, 2, · · · , n.

Therefore,

xk = cos θk

= cos
π(2k − 1)

2n
, k = 1, 2, · · · , n.

Applying the transformation α = −2x, the eigenvalues of Sn − ie1e
T
2 is given by

αk = −2 cos
π(2k − 1)

2n
, k = 1, 2, · · · , n. (3.4)

Thus, from (3.1),(3.3)and (3.4), we have

Cn =
1

2
[

∏

1≤k≤n

(6 − 2 cos
(2k − 1)π

2n
)]

which is identical to the factorization(1.4).
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