

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm (3s.) **v. 30** 2 (2012): **33–38**. ISSN-00378712 in press doi:10.5269/bspm.v30i2.13760

On decompositions of \mathcal{I} -rg-continuity

M.Rajamani, V.Inthumathi and V. Chitra

ABSTRACT: We introduce the notions of \mathcal{I} -rg-open sets, \mathcal{I} - $g\alpha^{**}$ -open sets, \mathcal{I} -gpr-open sets, \mathcal{I} - C_r -sets and \mathcal{I} - C_r^* -sets to obtain the decompositions of \mathcal{I} -rg-continuity in ideal topological spaces.

Key Words: \mathcal{I} -rg-open sets, \mathcal{I} - $g\alpha^{**}$ -open sets, \mathcal{I} -gpr- open sets, \mathcal{I} - C_r -sets, \mathcal{I} - C_r^* -sets and \mathcal{I} -rg-continuity

Contents

1	Introduction and Preliminaries	33
2	\mathcal{I} -rg-open sets, \mathcal{I} -g α^{**} -open sets and \mathcal{I} -gpr-open sets	34
3	\mathcal{I} - C_r -sets and \mathcal{I} - C_r *-sets	35
4	Decompositions of \mathcal{I} -rg-continuity	37

1. Introduction and Preliminaries

Acikgoz and Yuksel [1] introduced the concept of \mathcal{I} -R-closed sets and obtained new decompositions of some weaker forms of continuity. Recently in 2010, Noiri et.al [3] introduced the notions of $g\alpha^{**}$ - \mathcal{I} -open sets, gpr- \mathcal{I} -open sets, C_r - \mathcal{I} -open sets and C_r^* - \mathcal{I} -open sets to obtain the decompositions of rg-continuity in ideal topological spaces. In this paper we introduce the notions of \mathcal{I} -regular-closed sets, \mathcal{I} - $g\alpha^{**}$ -open sets, \mathcal{I} -gpr- open sets, \mathcal{I} - C_r -sets and \mathcal{I} - C_r^{*} -sets to obtain the new decompositions of \mathcal{I} -rg-continuity in ideal topological spaces. An *ideal* \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function [6] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I}\}$ for every $U \in \tau(X)$. It is well known that $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology τ^* finer than τ [2] and $int^*(A)$ will denote the interior of A in (X, τ^*, \mathcal{I}) . When there is no chance of confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\tau, \mathcal{I})$. If \mathcal{I} is an ideal on X then (X, τ, \mathcal{I}) is called an ideal topological space or an ideal space. Throughout this paper X denotes the ideal topological space (X, τ, \mathcal{I}) . A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be an \mathcal{I} -pre-open [4](resp. \mathcal{I} - α -open [4]) if $A \subseteq int^*(cl^*(A))$ (resp. $A \subseteq int^*(cl^*(int^*(A))))$. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05

 \mathcal{I} -pre-interior (resp. \mathcal{I} - α -interior) of A, denoted by \mathcal{I} -pint(A) [4](resp. \mathcal{I} - α int(A) [4]) is defined as the union of all \mathcal{I} -pre-open (resp. \mathcal{I} - α -open) sets of (X, τ, \mathcal{I}) , contained in A. A subset A of (X, τ, \mathcal{I}) is said to be an \mathcal{I} -t-set(resp. \mathcal{I} - α^* -set) [5] if $int^*(A) = int^*(cl^*(A))$ (resp. $int^*(A) = int^*(cl^*(A))$).

Lemma 1.1 [4] For a subset A of (X, τ, \mathcal{I}) , we have

- 1. \mathcal{I} -pint(A) = A \cap int^*(cl^*(A))
- 2. \mathcal{I} - $\alpha int(A) = A \cap int^*(cl^*(int^*(A)))$

2. \mathcal{I} -rg-open sets, \mathcal{I} -g α^{**} -open sets and \mathcal{I} -gpr-open sets

Definition 2.1 A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I} -regular closed if $A = cl^*(int^*(A))$.

The complement of \mathcal{I} -regular closed set is \mathcal{I} -regular open.

Definition 2.2 A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I} -rg-open if $F \subseteq int^*(A)$ whenever $F \subseteq A$ and F is \mathcal{I} -regular closed.
- 2. \mathcal{I} - $g\alpha^{**}$ -open if $F \subseteq \mathcal{I}$ - α int(A) whenever $F \subseteq A$ and F is \mathcal{I} -regular closed.
- 3. \mathcal{I} -gpr-open if $F \subseteq \mathcal{I}$ -pint(A) whenever $F \subseteq A$ and F is \mathcal{I} -regular closed.

Proposition 2.3 For a subset of an ideal topological space (X, τ, \mathcal{I}) the following hold:

- 1. An \mathcal{I} -rg-open set is \mathcal{I} -g α^{**} -open.
- 2. An \mathcal{I} -g α^{**} -open set is \mathcal{I} -gpr-open.
- 3. An \mathcal{I} -rg-open set is \mathcal{I} -gpr-open.

Proof:

- 1. Let A be an \mathcal{I} -rg-open set. Then for any \mathcal{I} -regular closed F with $F \subseteq A$, we have $F \subseteq int^*(A) \subseteq (int^*(int^*(A))^*) \cup int^*(A) = int^*(int^*(A))^* \cup int^*(int^*(A)) \subseteq int^*((int^*(A))) = int^*(cl^*(int^*(A)))$. So, $F \subseteq A \cap int^*(cl^*(int^*(A))) = \mathcal{I} \alpha int(A)$. Hence A is $\mathcal{I} g\alpha^{**}$ -open.
- 2. Let A be an \mathcal{I} - $g\alpha^{**}$ -open set and F be any \mathcal{I} -regular closed set with $F \subseteq A$. Then we have $F \subseteq \mathcal{I}$ - $\alpha int(A) = A \cap int^*(cl^*(int^*(A))) \subseteq A \cap int^*(cl^*(A)) = \mathcal{I}$ -pint(A), which implies that A is \mathcal{I} -gpr-open.
- 3. Proof is similar to the proofs of 1 and 2.

Converses need not be true as seen from the following examples.

Example 2.4 Let $X = \{a, b, c, d, e, f\}, \tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Then the set $\{a, c, d, e, f\}$ is \mathcal{I} -g α^{**} -open but not \mathcal{I} -rg-open.

Example 2.5 Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Then the set $\{a, c, d, e\}$ is \mathcal{I} -gpr-open but neither \mathcal{I} -rg-open nor \mathcal{I} -g α^{**} -open.

3. \mathcal{I} - C_r -sets and \mathcal{I} - C_r^* -sets

Definition 3.1 A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I} - C_r -set if $A = U \cap V$ where U is \mathcal{I} -rg-open and V is an \mathcal{I} -t-set.
- 2. \mathcal{I} - C_r^* -set if $A = U \cap V$ where U is \mathcal{I} -rg-open and V is an \mathcal{I} - α^* -set.

Proposition 3.2 For a subset of an ideal topological space, the following properties hold:

- 1. An \mathcal{I} -t-set is an \mathcal{I} - α^* -set and an \mathcal{I} - C_r -set.
- 2. An \mathcal{I} - α^* -set is an \mathcal{I} - C_r^* -set.
- 3. An \mathcal{I} - C_r -set is an \mathcal{I} - C_r^* -set.
- 4. An \mathcal{I} -rg-open set is an \mathcal{I} - C_r -set and an \mathcal{I} - C_r^* -set.

Remark 3.3 From Proposition 3.2, we have the following diagram in which none of the implications is reversible.

$$\begin{array}{ccc} \mathcal{I}\text{-}rg\text{-}\mathrm{open} \to \mathcal{I}\text{-}C_r\text{-}\mathrm{set} & \leftarrow \mathcal{I}\text{-}t\text{-}\mathrm{set} \\ & \searrow & \downarrow \\ & \mathcal{I}\text{-}C_r^*\text{-}\mathrm{set} & \leftarrow \mathcal{I}\text{-}\alpha^*\text{-}\mathrm{set} \end{array}$$

Example 3.4 Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}\}$. Then the set $\{a, b\}$ is an \mathcal{I} - C_r -set and an \mathcal{I} - C_r^* -set but neither an \mathcal{I} -t-set nor an \mathcal{I} - α^* -set.

Example 3.5 Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Then the set $\{a, c, d, e\}$ is an \mathcal{I} - C_r^* -set but not an \mathcal{I} - C_r set.

Example 3.6 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}\}$. Then the set $\{a, b, c\}$ is an \mathcal{I} - C_r set and an \mathcal{I} - C_r^* set but not \mathcal{I} -rg-open.

Theorem 3.7 A subset A of (X, τ, \mathcal{I}) is \mathcal{I} -rg-open if and only if it is both \mathcal{I} -gpropen and an \mathcal{I} - C_r -set in (X, τ, \mathcal{I}) .

Proof: Necessity: Assume that A is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) . By Propositions 2.3 and 3.2, we have A is both \mathcal{I} -gpr-open and an \mathcal{I} - C_r -set in (X, τ, \mathcal{I}) . Sufficiency: Assume that A is \mathcal{I} -gpr-open and an \mathcal{I} - C_r -set in (X, τ, \mathcal{I}) . Let $F \subseteq A$

and F is \mathcal{I} -regular closed. Since A is an \mathcal{I} - C_r -set, $A = U \cap V$, where U is \mathcal{I} -rg-open

and V is an \mathcal{I} -t-set. Since A is \mathcal{I} -gpr-open implies $F \subseteq \mathcal{I}$ -pint(A)= $A \cap int^*(cl^*(A)) = (U \cap V) \cap int^*(cl^*(A)) = (U \cap V) \cap int^*(cl^*(U)) \subseteq (U \cap V) \cap int^*(cl^*(U)) \cap int^*(cl^*(V)) = (U \cap V) \cap int^*(cl^*(U)) \cap int^*(cl^*(V))$. This implies, $F \subseteq int^*(cl^*(V)) = int^*(V)$, since V is an \mathcal{I} -t-set. Since F is \mathcal{I} -regular closed, U is \mathcal{I} -rg-open and $F \subseteq U$, we have $F \subseteq int^*(U)$. Therefore $F \subseteq int^*(U) \cap int^*(V) = int^*(U \cap V) = int^*(A)$. Hence A is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) .

Corollary 3.8 A subset A of X is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) if and only if it is both \mathcal{I} -g α^{**} -open and an \mathcal{I} - C_r -set in (X, τ, \mathcal{I}) .

Proof: The proof is similar to the proof of Theorem 3.7.

Theorem 3.9 A subset A of X is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) if and only if it is both \mathcal{I} -g α^{**} -open and an \mathcal{I} - C_r^* -set in (X, τ, \mathcal{I}) .

Proof: Necessity: Assume that A is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) . Then by propositions 2.3 and 3.2, we have A is both \mathcal{I} -g α^{**} -open and an \mathcal{I} - C_r^* -set in (X, τ, \mathcal{I}) .

Sufficiency: Assume that A is \mathcal{I} - $g\alpha^{**}$ -open and an \mathcal{I} - C_r^* -set in (X, τ, \mathcal{I}) . Let $F \subseteq A$ and F is \mathcal{I} -regular closed in X. Since A is an \mathcal{I} - C_r^* -set, $A = U \cap V$, where U is \mathcal{I} -regonen and V is an \mathcal{I} - α^* -set. Now, since F is \mathcal{I} -regular closed, $F \subseteq U$ and U is \mathcal{I} -rg-open, we have $F \subseteq int^*(U)$. Since A is \mathcal{I} - $g\alpha^{**}$ -open, $F \subseteq \mathcal{I}$ - $\alpha int(A) = A \cap int^*(cl^*(int^*(A))) = (U \cap V) \cap int^*(cl^*(int^*(U \cap V))) = (U \cap V) \cap int^*(cl^*(int^*(U))) \subseteq (U \cap V) \cap int^*(cl^*(int^*(U))) \cap int^*(cl^*(int^*(V))) = (U \cap V) \cap int^*(cl^*(int^*(U))) \cap int^*(V)$, since V is an \mathcal{I} - α^* -set. This implies $F \subseteq int^*(V)$. Therefore $F \subseteq int^*(U) \cap int^*(V) = int^*(U \cap V) = int^*(A)$. Hence A is \mathcal{I} -rg-open in (X, τ, \mathcal{I}) .

- **Remark 3.10** 1. The notions of \mathcal{I} -gpr-open sets and the notions of \mathcal{I} - C_r -sets are independent.
 - 2. The notions of \mathcal{I} - $g\alpha^{**}$ -open sets and the notions of \mathcal{I} - C_r -sets are independent.
 - 3. The notions of \mathcal{I} - $g\alpha^{**}$ -open sets and the notions of \mathcal{I} - C_r^* -sets are independent.

Example 3.11 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}\}$. Then the set $\{a, b\}$ is an \mathcal{I} - C_r -set but not \mathcal{I} -gpr-open.

Example 3.12 Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Then the set $\{a, c, d, e\}$ is \mathcal{I} -gpr-open but not an \mathcal{I} - C_r -set and the set $\{a, b, e\}$ is an \mathcal{I} - C_r -set and \mathcal{I} - C_r *-set set but not \mathcal{I} -g α **-open.

Example 3.13 Let $X = \{a, b, c, d, e, f\}, \tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Then the set $\{a, c, d, e, f\}$ is \mathcal{I} -g α^{**} -open but neither an \mathcal{I} - C_r -set nor an \mathcal{I} - C_r^* -set.

4. Decompositions of \mathcal{I} -rg-continuity

Definition 4.1 A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is \mathcal{I} -rg-continuous(resp. \mathcal{I} -g α^{**} continuous and \mathcal{I} -gpr-continuous) if $f^{-1}(V)$ is \mathcal{I} -rg-open (resp. \mathcal{I} -g α^{**} -open and \mathcal{I} -gpr-open) in (X, τ, \mathcal{I}) for every open set V in (Y, σ) .

Definition 4.2 A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is \mathcal{I} - C_r -continuous(resp. \mathcal{I} - C_r^* continuous) if $f^{-1}(V)$ is an \mathcal{I} - C_r -set(resp. \mathcal{I} - C_r^* -set) in (X, τ, \mathcal{I}) for every open set V in (Y, σ) .

Proposition 4.3 For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following hold:

- 1. An \mathcal{I} -rg-continuous function is \mathcal{I} -g α^{**} -continuous.
- 2. An \mathcal{I} -g α^{**} -continuous function is \mathcal{I} -gpr-continuous.
- 3. An *I*-rg-continuous function is *I*-gpr-continuous.

However, Converses are not true as seen from the following examples.

Example 4.4 Let $X = \{a, b, c, d, e, f\}, \tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a, b, c, d\}, X\}, \mathcal{I} = \{\phi, \{d\} and \sigma = \{\phi, \{a, c, d, e, f\}, X\}.$ Then the identity function $f : (X, \tau, \mathcal{I}) \rightarrow (X, \sigma)$ is \mathcal{I} -g α^{**} -continuous but not \mathcal{I} -rg-continuous.

Example 4.5 Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}, \mathcal{I} = \{\phi, \{d\}\}$ and $\sigma = \{\phi, \{a, c, d, e\}, X\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (X, \sigma)$ is \mathcal{I} -gpr-continuous but neither \mathcal{I} -rg-continuous nor \mathcal{I} -g α^{**} -continuous.

Proposition 4.6 For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following hold:

- 1. An \mathcal{I} - C_r -continuous function is \mathcal{I} - C_r^* -continuous.
- 2. An \mathcal{I} -rg-continuous function is \mathcal{I} - C_r -continuous and \mathcal{I} - C_r^* -continuous.

However, Converses are not true as seen from the following examples.

Example 4.7 Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$, $\mathcal{I} = \{\phi, \{d\}\}$ and $\sigma = \{\phi, \{a, c, d, e\}, Y\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (X, \sigma)$ is \mathcal{I} - C_r^* -continuous but not \mathcal{I} - C_r -continuous.

Example 4.8 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}, \mathcal{I} = \{\phi, \{c\}\} and \sigma = \{\phi, \{a, b, c\}, Y\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (X, \sigma)$ is \mathcal{I} - C_r -continuous and \mathcal{I} - C_r *-continuous but not \mathcal{I} -rg-continuous.

Theorem 4.9 Let (X, τ, \mathcal{I}) be an ideal topological space. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is \mathcal{I} -rg-continuous.
- 2. f is \mathcal{I} -gpr-continuous and \mathcal{I} - C_r -continuous.
- 3. f is \mathcal{I} - $g\alpha^{**}$ -continuous and \mathcal{I} - C_r -continuous.
- 4. f is \mathcal{I} - $g\alpha^{**}$ -continuous and \mathcal{I} - C_r^* -continuous.

References

- 1. A. Acikgoz and S. Yuksel, Some new sets and decompositions of $A_{\mathcal{I}-R}$ -continuity, α - \mathcal{I} -continuity, continuity via idealization, Acta Math Hungar., 114(1-2)(2007), 79-89.
- 2. K. Kuratowski., Topology., Vol.1, Academic press(New york, 1966).
- T. Noiri, M. Rajamani and V. Inthumathi, Some decompositions of regular generalized continuity via idealization, Kochi J. Math., 5(2010), 87-95.
- 4. M. Rajamani, V. Inthumathi and V. Chitra, On \mathcal{I} - α -open sets and \mathcal{I} - α -continuous functions, AJM, (8)(2011)(to appear).
- 5. M. Rajamani, V. Inthumathi and V. Chitra, \mathcal{I} -g-continuity and its decompositions (communicated).
- 6. R. Vaidiyanathaswamy, Set Topology, Chelsea publishing company (New york, 1960).

V.Chitra Department of Mathematics N G M College Pollachi - 642 001 Tamil Nadu, India. E-mail address: chitrangmc@gmail.com