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Characterization of Spacelike Biharmonic Curves with Timelike

Binormal According to Flat Metric in Lorentzian Heisenberg Group

Heis3

Talat Körpinar and Essin Turhan

abstract: In this paper, we study spacelike biharmonic curves with timelike
binormal according to flat metric in the Lorentzian Heisenberg group Heis3. We
characterize spacelike biharmonic curves with timelike binormal in terms of their
curvature and torsion. Additionally, we determine the parametric representation
of the spacelike biharmonic curves with timelike binormal according to flat metric
from this characterization.
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1. Introduction

The theory of biharmonic maps is an old and rich subject, initially studied due
to its implications in the theory of elasticity and uid mechanics. G.B. Airy and J.C.
Maxwell were the first to study and express plane elastic problems in terms of the
biharmonic equation. Later on, the theory evolved with the study of polyharmonic
functions developed by E. Almansi, T. Levi-Civita, M. Nicolaescu.

Let f : (M, g) → (N,h) be a smooth function between two Riemannian mani-
folds. The bienergy E2(f) of f over compact domain Ω ⊂ M is defined by

E2 (f) =

∫

Ω

h (τ (f) , τ (f)) dvg, (1.1)

where τ (f) = traceg∇df is the tension field of f and dvg is the volume form of M .
Using the first variational formula one sees that f is a biharmonic function if and
only if its bitension field vanishes identically, i.e.

τ̃(f) := −△f (τ(f)) − tracegR
N (df, τ(f))df = 0, (1.2)
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where
△f = −traceg(∇

f )2 = −traceg

(
∇f∇f −∇f

∇M

)
(1.3)

is the Laplacian on sections of the pull-back bundle f−1(TN )and RN is the cur-
vature operator of (N,h) defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In this paper, we study spacelike biharmonic curves with timelike binormal
according to flat metric in the Lorentzian Heisenberg group Heis3. We characterize
spacelike biharmonic curves with timelike binormal in terms of their curvature and
torsion.

2. The Lorentzian Heisenberg Group Heis3

The Heisenberg group Heis3 is a Lie group which is diffeomorphic to R
3 and

the group operation is defined as

(x, y, z) ∗ (x, y, z) = (x + x, y + y, z + z − xy + xy).

The identity of the group is (0, 0, 0) and the inverse of (x, y, z) is given by
(−x,−y,−z). The left-invariant Lorentz metric on Heis3 is

g = dx2 + (xdy + dz)
2
− ((1 − x) dy − dz)2.

The following set of left-invariant vector fields forms an orthonormal basis for
the corresponding Lie algebra:

{
e1 =

∂

∂x
, e2 =

∂

∂y
+ (1 − x)

∂

∂z
, e3 =

∂

∂y
− x

∂

∂z

}
. (2.1)

The characterising properties of this algebra are the following commutation
relations:

[e2, e3] = 0, [e3, e1] = e2 − e3, [e2, e1] = e2 − e3,

with
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.2)

Proposition 2.1 For the covariant derivatives of the Levi-Civita connection of the

left-invariant metric g, defined above the following is true:

∇ =




0 0 0
e2 − e3 −e1 −e1

e2 − e3 −e1 −e1


 , (2.3)

where the (i, j)-element in the table above equals ∇ei
ej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.
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So we obtain that

R(e1, e3) = R(e1, e2) = R(e2, e3) = 0. (2.4)

Then, the Lorentz metric g is flat.

3. Spacelike Biharmonic Curves with Timelike Binormal According to

Flat Metric in the Lorentzian Heisenberg Group Heis3

An arbitrary curve γ : I −→ Heis3 is spacelike, timelike or null, if all of its
velocity vectors γ′(s) are, respectively, spacelike, timelike or null, for each s ∈ I ⊂
R. Let γ : I −→ Heis3 be a unit speed spacelike curve with timelike binormal and
{t,n,b} are Frenet vector fields, then Frenet formulas are as follows

∇tt = κ1n,

∇tn = −κ1t + κ2b, (3.1)

∇tb = κ2n,

where κ1, κ2 are curvature function and torsion function, respectively and

g (t, t) = 1, g (n,n) = 1, g (b,b) = −1,

g (t,n) = g (t,b) = g (n,b) = 0.

With respect to the orthonormal basis {e1, e2, e3} we can write

t = t1e1 + t2e2 + t3e3,

n = n1e1 + n2e2 + n3e3,

b = b1e1 + b2e2 + b3e3.

Theorem 3.1 If γ : I −→ Heis3is a unit speed spacelike biharmonic curve with

timelike binormal according to flat metric, then

κ1 = constant 6= 0,

κ2
1 − κ2

2 = 0, (3.2)

κ2 = constant.

Proof: Using Equation (3.1), we have

τ2(γ) = ∇3
t
t − κ1R(t,n)t

= (−3κ′
1κ1)t + (κ′′

1 − κ3
1 + κ1κ

2
2)n + (2κ2κ

′
1 + κ1κ

′
2)b − κ1R(t,n)t.

On the other hand, from Equation (2.4) we get

(−3κ′
1κ1)t + (κ′′

1 − κ3
1 + κ1κ

2
2)n + (2κ2κ

′
1 + κ1κ

′
2)b =0. (3.3)
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From (3.3), we obtain

κ1 = constant 6= 0,

κ2
1 − κ2

2 = 0, (3.4)

κ′
2 = 0.

This completes the proof. 2

Corollary 3.2 If γ : I −→ Heis3 is a unit speed spacelike biharmonic curve with

timelike binormal, then γ is a helix.

Theorem 3.3 Let γ : I −→ Heis3is a unit speed spacelike biharmonic curve with

timelike binormal according to flat metric. Then the parametric equations of γ are

x (s) = cosh ϕs + C1,

y (s) =
1

κ1
sinh2 ϕ[cosh[

κ1s

sinhϕ
+ C] + sinh[

κ1s

sinhϕ
+ C]] + C2,

z (s) = −
(−1 + C1 + coshϕs) sinh ϕ

κ1
cosh[

κ1s

sinhϕ
+ C] (3.5)

+
sinh2 ϕ cosh ϕ

κ2
1

[sinh[
κ1s

sinhϕ
+ C] + cosh[

κ1s

sinhϕ
+ C]]

−
sinhϕ (cosh ϕs + C1)

κ1
sinh[

κ1s

sinhϕ
+ C]] + C3,

where C1, C2, C3 are constants of integration.

Proof: Assume that γ is a unit speed spacelike biharmonic curve with timelike
binormal according to flat metric in the Lorentzian Heisenberg group Heis3. Since
γ is spacelike biharmonic , γ is a helix. So, without loss of generality, we take the
axis of γ is parallel to the spacelike vector e1. Then,

g (t, e1) = t1 = cosh ϕ, (3.6)

where ϕ is constant angle.
Direct computations show that

t = coshϕe1 + sinhϕ sinh℘e2 + sinhϕ cosh ℘e3. (3.7)

Using above equation and Frenet equations, we obtain

℘ =
κ1s

sinhϕ
+ C, (3.8)

where C is a constant of integration.
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From these we get the following formula

t = cosh ϕe1 + sinhϕ sinh[
κ1s

sinhϕ
+ C]e2 (3.9)

+sinhϕ cosh[
κ1s

sinhϕ
+ C]e3.

Substituting (2.1) in above equation, we get

t = (cosh ϕ, sinhϕ sinh[
κ1s

sinhϕ
+ C] + sinhϕ cosh[

κ1s

sinhϕ
+ C], (3.10)

(1 − x) sinhϕ sinh[
κ1s

sinhϕ
+ C] − x sinhϕ cosh[

κ1s

sinhϕ
+ C]).

Now using Equation (3.10) we obtain

dx

ds
= cosh ϕ,

dy

ds
= sinhϕ sinh[

κ1s

sinhϕ
+ C] + sinhϕ cosh[

κ1s

sinhϕ
+ C],

dz

ds
= (1 − (cosh ϕs + ℓ1)) sinhϕ sinh[

κ1s

sinhϕ
+ C]

− (cosh ϕs + ℓ1) sinhϕ cosh[
κ1s

sinhϕ
+ C].

If we take integrate above system we have Equation (3.5). The proof is com-
pleted. 2

Using Mathematica in above Theorem, we have following figure.
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Using second equation of system (3.2), we express the following Corollary with-
out proof:

Corollary 3.4 If γ : I −→ Heis3is a unit speed spacelike biharmonic curve with

timelike binormal according to flat metric. Then

κ1 = ∓κ2.

Theorem 3.5 Let γ : I −→ Heis3is a unit speed spacelike biharmonic curve with

timelike binormal according to flat metric. Then the parametric equations of γ in

terms of κ2 are

x (s) = coshϕs + C1,

y (s) = ∓
1

κ2
sinh2 ϕ[cosh[∓

κ2s

sinhϕ
+ C] + sinh[∓

κ2s

sinhϕ
+ C]] + C2,

z (s) = ∓
(−1 + C1 + cosh ϕs) sinhϕ

κ2
cosh[∓

κ2s

sinhϕ
+ C] (3.11)

+
sinh2 ϕ cosh ϕ

κ2
2

[sinh[∓
κ2s

sinhϕ
+ C] + cosh[∓

κ2s

sinhϕ
+ C]]

∓
sinhϕ (cosh ϕs + C1)

κ2
sinh[∓

κ2s

sinhϕ
+ C]] + C3,

where C1, C2, C3 are constants of integration.

Proof: Using Lemma 3.4 in Equation (3.5), we obtain Equation (3.11). Thus, the
proof is completed. 2
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