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An Introduction to the Generalized Fractional Integration

Kishan Sharma

abstract: The purpose of the present paper is to investigate the generalized
fractional integration of the generalized M-series.Some results derived by Saxena
and Saigo [13], Samko, Kilbas and Marichev [15] are the special cases of the main
results derived in this paper.
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1. Introduction

The Mittag-Leffler function has gained importance and popularity during the
last one decade due mainly to its applications in the solution of fractional-order
differential, integral and difference equations arising in certain problems of mathe-
matical, physical, biological and engineering sciences. This function is introduced
and studied by Mittag-Leffler [5,6] in terms of the power series

E
α
(z) =

∞
∑

r=0

zr

Γ(αr + 1)
, (α > 0, z ∈ C) (1.1)

A generalization of this series in the following form

E
α,β

(z) =

∞
∑

r=0

zr

Γ(αr + β)
, (α, β > 0, z ∈ C) (1.2)

has been studied by several authors notably by Mittag-Leffler [5,6], Wiman [3],
Agrawal [14], Humbert and Agrawal[12] and Dzrbashjan [7,8,9]. A detailed account
of the basic properties of these two functions are given in the third volume of
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Bateman manuscript project [1] and an account of their various properties can be
found in [8,14].
The Wright generalized hypergeometric function[4] is given by

Ψq(z) =p Ψq

[

(α1, A1), ..., (αp, Ap)
(β1, B1, ..., (βq, Bq))

; z

]

=

∞
∑

r=0

Πp
i=1

Γ(αi + rAi)z
r

Πq
j=1

Γ(βj + rBj)r!
(1.3)

[Ai > 0(i = 1, 2, ..., p), Bj > 0(j = 1, 2, ..., q);αiβj ∈ C; 1 +

q
∑

j=1

Bj −

p
∑

i=1

Ai ≥ 0]

It is provided that the Riemann-Liouville fractional integral and derivative of the
Wright function is also the Wright function but of greater order. Conditions for the
existence of the series (1.3) together with its presentation in terms of the Mellin-
Barnes integral and of the H-function were established in [2].
When A1 = ... = Ap = B1 = ... = Bq = 1, (1)reduces to pF

q(.)

pΨq

[

(α1, 1), ..., (αp, 1)
(β1, 1, ..., (βq, 1))

; z

]

=
Πq

j=1
Γ(βj

Πp
j=1

Γ(αj)
pFq(a1, ..., ap; b1, ..., bq; z) (1.4)

where p ≤ q, |z| <∞; p = q+1; |z| < 1; p = q+1; |z| = 1, Re(
∑q

j=1
bj −

∑p
j=1

aj) >
0.
The generalized M-Series [10] is defined as

pM
α,β
q (a1, ..., ap; b1, ..., bq;x) =p M

α,β
q (x) =

∞
∑

n=0

a1)n...(ap)n

(b1)n...(bq)n

xn

Γ(αn+ β)
(1.5)

where α, β ∈ C,R(α) > 0 and (ai)n(i = 1, 2, ...p)are the Pochhammer symbols.
further details of this series are given by [10].
Following Section 2 of the book by Samko, Kilbas and Marichev [15], the fractional
Riemann-Liouville(R-L) integral operators are given by

Iα
0+f(x) =

1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt (1.6)

Iα
−f(x) =

1

Γ(α)

∫ ∞

x

(t− x)α−1f(t)dt (1.7)

where x > 0, α ∈ C and R(α) > 0.

An interesting and useful generalization of the Riemann-Liouville and Erdlyi-
Kober fractional integral operators has been introduced by Saigo [11] in terms of
Gauss hypergeometric function as given below:

(Iα,β,γ
0+ )f(x) =

x−α−β

Γ(α)

∫ x

0

(x− t)α−1
2F1(α+ β,−γ;α; 1 −

t

x
)f(t)dt (1.8)
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(Iα,β,γ
− )f(x) =

x−α−β

Γ(α)

∫ ∞

x

(t− x)α−1tα−β
2F1(α+ β,−γ;α; 1 −

x

t
)f(t)dt (1.9)

where x ∈ R+;α, β, γ ∈ C and R(α) > 0.

2. Left-sided Generalized Fractional Integration of the Generalized

M-Series

In this section we derive the left-sided generalized fractional integration formula
of the generalized M-Series. The result is presented in the form of a theorem stated
below.

Theorem 2.1 Let α, β, γ, η ∈ C such that Re(α) > 0, Re(η+γ−β) > 0, ξ > 0 and

c ∈ R and Iα.β,γ
0+ be the left sided operator of the generalized fractional integration

then there holds the relation

(Iα,β,γ
0+ (tη−1

pM
ξ,η
q [ctξ]))(x) =

xη−β−1Γ(b1)...Γ(bq)

Γ(a1...Γ(ap)
×p+2 Ψq+2

[

(a1, 1), ..., (ap, 1), (η − β + 1, ξ), (1, 1)
(b1, 1), ..., (bq, 1)(η − β, ξ), (η + α+ 1, ξ)

; cxξ

]

(2.1)
provided each member of the equation exists.

Proof: By virtue of (1.5) and (1.8), we have

(Iα,β,γ
0+ (tη−1

pM
ξ,η
q [ctξ]))(x) =

x−α−β

Γ(α)

∫ x

0

(x− t)α−1
2F1

(

α+ β,−γ;α; 1 −
t

x

)

(tη−1
pM

ξ,η
q [ctξ])dt (2.2)

Interchanging the order of integration and summations, evaluating the inner in-
tegral with the help of Beta function and using Gauss summation theorem, it
becomes

(Iα,β,γ
0+ (tη−1

pM
ξ,η
q [ctξ]))(x) =

xη−β−1Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap)
×

∞
∑

k=0

Γ(a1 + k)...Γ(ap + k)Γ(1 + k)Γ(η + γ − β + ξk)(cxξ)k

Γ(b1 + k)...Γ(bq + k)Γ(η − β + ξk)Γ(η + α+ γ + ξk)k!

(2.3)

Or equivalently

(Iα,β,γ
0+ (tη−1

pM
ξ,η
q [ctξ]))(x) =
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xη−β−1Γ(b1)...Γ(bq)

Γ(a1...Γ(ap)
×p+2 Ψq+2

[

(a1, 1), ..., (ap, 1), (η − β + 1, ξ), (1, 1)
(b1, 1), ..., (bq, 1)(η − β, ξ), (η + α+ 1, ξ)

; cxξ

]

(2.4)
This proves theorem(2.1). 2

Remark 2.2 If we put p=q=0 and β → −α in (2.1), we arrive at the well known
result [15].

3. Right-sided Generalized Fractional Integration of the Generalized

M-Series

In this section we derive the right-sided generalized fractional integration for-
mula of the generalized M-series. The result is presented in the form of a theorem
stated below.

Theorem 3.1 Let α, β, γ, η ∈ C such that Re(α) > 0, Re(α+ η) > max{−Re(β),

− Re(γ)}, Re(β) 6= Re(γ), ξ > 0 and c ∈ R and I
α,β,γ
− be the right-sided operator

of the generalized fractional integration then there holds the relation:

(Iα,β,γ
− (tα−η

pM
ξ,η
q [ct−ξ]))(x) =

x−η−α−βΓ(b1)...Γ(bq)

Γ(a1)...Γ(ap)

×p+3 ψq+3

[

(a1, 1), ..., (ap, 1), (α+ β + η, ξ), (α+ γ + η, ξ)(1, 1)
(b1, 1), ..., (bq, 1), (η, ξ), (α+ η, ξ), (2α+ β + γ + η, ξ)

; cx−ξ

]

(3.1)

provided each member of the equation exists.

Proof: By using (1.5) and (1.9), we have

(Iα,β,γ
− (tα−η

p M ξ,η
q [ct−ξ]))(x) =

1

Γ(α)

∫ ∞

x

(t− x)α−1t−α−β
2F1(α+ β,−γ;α; 1 −

x

t
)(t−α−η

pM
ξ,η
q [ct−ξ])dt (3.2)

Interchanging the order of integration and summations, evaluating the inner inte-
gral by the use of Beta function and using Gauss summation theorem, it becomes

(Iα,β,γ
− (tα−η

pM
ξ,η
q [ct−ξ]))(x) =

x−η−α−βΓ(b1)...Γ(bq)

Γ(a1)...Γ(ap)

×

∞
∑

k=0

Γ(a1 + k)...Γ(ap + k)Γ(α+ β + η + ξk)Γ(α+ γ + η + ξk)(cx−ξ)k

Γ(b1 + k)...Γ(bq + k)Γ(η − β + ξk)Γ(η + α+ γ + ξk)k!
(3.3)

or equivalently

(Iα,β,γ
− (tα−η

pM
ξ,η
q [ct−ξ]))(x) =

x−η−α−βΓ(b1)...Γ(bq)

Γ(a1)...Γ(ap)
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×p+3 ψq+3

[

(a1, 1), ..., (ap, 1), (α+ β + η, ξ), (α+ γ + η, ξ)(1, 1)
(b1, 1), ..., (bq, 1), (η, ξ), (α+ η, ξ), (2α+ β + γ + η, ξ)

; cx−ξ

]

(3.4)

This completes the proof of the theorem(3.1). 2

Remark 3.2 If we put p=q=0 and β → −α in (3.1), we arrive at the well known
result [13].
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