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On Application of Fractional Differintegral Operator to the K4-

Function
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abstract: The object of this paper is to introduce a new function called K4-
function defined by the author in terms of some special functions, which is an
extension of the G-function defined by Lorenzo and Hartley [4] and demonstrate
how K4-function is closely related to another special functions, namely Lorenzo-
Hartleyâ’s R-function, Robotnov and Hartleyâ’s F-function, Mittag-Leffler function,
generalized Mittag-Leffler function, Exponential function. The differintegration of
that function is also investigated. As special cases most of the results obtained in
this paper are believed to be new and include some of the results given earlier by
other authors.
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1. Introduction and Definitions

Fractional Calculus is a field of applied mathematics that deals with derivatives
and integrals of arbitrary orders. During the last three decades Fractional Calculus
has been applied to almost every field of Mathematics like Special Functions etc.,
Science, Engineering and Technology. Many applications of Fractional Calculus
can be found in Turbulence and Fluid Dynamics, Stochastic Dynamical System,
Plasma Physics and Controlled Thermonuclear Fusion, Non-linear Control Theory,
Image Processing, Non-linear Biological Systems and Astrophysics.

The Mittag-Leffler function has gained importance and popularity during the
last one decade due mainly to its applications in the solution of fractional-order
differential, integral and difference equations arising in certain problems of mathe-
matical, physical, biological and engineering sciences. This function is introduced
and studied by Mittag-Leffler [7] and [8] in terms of the power series
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E
α
(x) =

∞∑

n=0

xn

Γ(αn + 1)
, (α > 0) (1.1)

A generalization of this series in the following form

E
α,β

(x) =

∞∑

n=0

xn

Γ(αn + β)
, (α, β > 0) (1.2)

has been studied by several authors notably by Mittag-Leffler [7] and [8],Wiman
[3], Agrawal [17], Humbert and Agrawal [14] and Dzrbashjan [11] [12] [13]. It is
shown in [15] that the function defined by (1.1) and (1.2) are both entire functions
of order and type A detailed account of the basic properties of these two functions
are given in the third volume of Bateman manuscript project [2] and an account
of their various properties can be found in [12] and [18].

The multiindex Mittag-Leffler function is defined by Kiryakova [20] by means
of the power series

E
( 1

ρi
),(µi)

(x) =

∞∑

n=0

ϕnxn =

∞∑

n=0

xn

m∏

j=1

Γ(µj +
n

ρj
)

(1.3)

where m > 1 is an integer, and ρj and µj are arbitrary real numbers.
The multiindex Mittag-Leffler function is an entire function and also gives its

asypototic, estimate, order and type see Kiryakova [20].
An interesting generalization of (1.2) is recently introduced by Kilbas and Saigo

[1] in terms of a special entire function of the form

E
α,m,l

(x) =

∞∑

n=0

cnxn (1.4)

where

cn =

n−1∏

i=0

Γ[α(im + l) + 1]

Γ[α(im + l + 1) + 1]
, (n = 0, 1, 2, .....).

and an empty product is to be interpreted as unity. Certain properties of this
function associated with fractional integrals and derivatives [18].

In 1993, Miller and Ross [10] introduced a function as the basis of the solution
of fractional order initial value problem. It is defined as the vth integral of the
exponential function, that is,

E
x
[v, a] =

d−v

dx−v
eax = xveaxγ∗(v, ax) =

∞∑

n=0

anxn+v

Γ( n + v + 1)
, vεC (1.5)

where γ∗(v, ax) is the incomplete gamma function [10].
The F -function of Robotnov and Hartley [19] is defined by the power series
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F
q
[a, x] =

∞∑

n=0

anx(n+1)q−1

Γ((n + 1)q)
, q > 0 (1.6)

This function effect the direct solution of the fundamental linear fractional order
differential equation.

Recently, the interest in the R- and G-functions of Lorenzo-Hartley [4] [5] and
their popularity have sharply increased in view of their important role and ap-
plications in Fractional Calculus and related integral and differential equations of
fractional order.

The R- and the G-functions(but not the Meijer’s G-function) introduced by
Lorenzo-Hartley [4] are defined by the power series

R
q,v

[a, c, x] =

∞∑

n=0

an(x − c)(n+1)q−1−v

Γ((n + 1)q − v)
(1.7)

where x> c ≥ 0, q ≥ 0, R(q − v) > 0, and

G
α,β,γ

[a, c, x] =

∞∑

n=0

(γ)nan(x − c)(n+γ)α−β−1

n!Γ((n + γ)α − β)
(1.8)

where R(αγ − β) > 0, and (γ)n is the Pochhammer symbol

(γ)n={1,n=0
γ(γ+1)....(γ+n−1),nεN.

The present paper is organized as follows; In section 2, we give the definition
of the K4 -function and demonstrate how K4-function is closely related to another
special functions, namely Lorenzo-Hartley’s function, Robotnov and Hartley’s func-
tion, Mittag-Leffler function, generalized Mittag-Leffler function, Exponential func-
tion. In section 3, we derive the relation between K4-function and the operator of
differintegral given by Oldham and Spanier and discuss the particular cases.

2. A New Special Function

The K4-function introduced by the author is defined as follows:

K
(α,β,γ),(a,c):(r;s)
4 (a1, ..., ar; b1, ...bs;x) = K

(α,β,γ),(a,c):(r;s)
4 (x) (2.1)

=
∞∑

n=0

(a1)n...(ar)n

(b1)n...(bs)n

(γ)nan(x − c)(n+γ)α−β−1

n!Γ((n + γ)α − β)

where R(αγ −β) > 0 and (ai)n(i=1,2,...,r) and (bj)n(j=1,2,...,s) are the Pochham-
mer symbols.

The series(2.1) is defined when none of the parameters bjs is a negative integer
or zero. If any numerator parameter ai is a negative integer or zero, then the series
terminates to a polynomial in x. From the ratio test it is evident that the series
is convergent for all x if r>s + 1. When r = s + 1 and | x |= 1, the series can
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converge in some cases. Let Υ =
∑r

j=1aj -
∑s

j=1bj . It can be shown that when r
= s + 1 the series is absolutely convergent for | x |= 1 if R(Υ) < 0, conditionally
convergent for x = −1 if 0 ≤ R(Υ) < 1 and divergent for | x |= 1 if 1 ≤ R(Υ).

Relations with another Special functions:

(i) When there is no upper and lower parameters, we get

K
(α,β,γ),(a,c):(0;0)
4 (−;−;x) = K

(α,β,γ),(a,c):(0;0)
4 (x) =

∞∑

n=0

(γ)nan(x − c)(n+γ)α−β−1

n!Γ((n + γ)α − β)

(2.2)
which reduces to the G-function defined by Lorenzo and Hartley [4] and denoted

by G
α,β,γ

[a, c, x].
(ii) If we put α = q, β = v, γ = 1 in (2.2), we get

K
(q,v,1),(a,c):(0;0)
4 (−;−;x) = K

(q,v,1),(a,c):(0;0)
4 (x) =

∞∑

n=0

an(x − c)(n+1)q−v−1

Γ((n + 1)q − v)
(2.3)

which reduces to the R-function defined by Lorenzo and Hartley [4] and denoted
by R

q,v
[a, c, x].

(iii) If we take c=v=0 in (2.3), we get

K
(q,0,1),(a,0):(0;0)
4 (−;−;x) = K

(q,0,1),(a,0):(0;0)
4 (x) =

∞∑

n=0

anx(n+1)q−1

Γ((n + 1)q)
(2.4)

which reduces to the F-function defined by Robotnov and Hartley [19] and
denoted by F

q
[a, x].

(iv) If we set a=q=1 in (2.4), we obtain

K
(1,0,1),(1,0):(0;0)
4 (−;−;x) = K

(1,0,1),(1,0):(0;0)
4 (x) =

∞∑

n=0

xn

Γ(n + 1)
(2.5)

which is the Mittag-Leffler function [2] E1(x) or generalized Mittag-Leffler
function [2] E1,1(x) or Exponential function [6] ex.

3. Differintegration of the K4-Function

In this section we derive the relation between K4 -function and the operator of
differintegral given by Oldham and Spanier. The relation is presented in the form
of the theorem as follows:

Theorem 3.1 Let −∞ < δ < ∞, R(αγ − β)> 0, x > c ≥ 0
and cd

δ
xbe the operator of differintegral given by Oldham and Spanier then there

holds the relation:

cd
δ
xK

(α,β,γ),(a,c):(r;s)
4 (a1, ..., ar; b1, ...bs;x) = K

(α,β+δ,γ),(a,c):(r;s)
4 (a1, ..., ar; b1, ...bs;x)

(3.1)
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Proof: The δth order(−∞ < δ < ∞), differintegral oprator defined in the chapter
4 of the book by Oldham and Spanier [9] of the function f(x) is given by

cd
δ
xf(x) =

df(x)

d(x − c)δ
(3.2)

Using (2.1) and (3.2) and interchanging the order of integration and evaluating
the inner integral, we arrive at the result

cd
δ
xK

(α,β,γ),(a,c):(r;s)
4 (a1, ..., ar; b1, ...bs;x) = K

(α,β+δ,γ),(a,c):(r;s)
4 (a1, ..., ar; b1, ...bs;x)

(3.3)
This shows that differintegral of the K4 -function is again the K4 -function with

indice β + δ.
This completes the proof of the theorem 3.1. 2

Particular cases: (i)If we take r=s=0 in (3.1) it reduces to

cd
δ
xK

(α,β,γ),(a,c):(0;0)
4 (−;−;x) = K

(α,β+δ,γ),(a,c):(0;0)
4 (−;−;x) (3.4)

Or equivalently

cd
δ
xG

α,β,γ
[a, c, x] = G

α,β+δ,γ
[a, c, x] (3.5)

which is the δ th order differintegral of the G-function defined by Lorenzo and
Hartley [4].

(ii)Setting α = q, β = v, γ = 1 in (3.5), we obtain

cd
δ
xG

q,v,1
[a, c, x] = G

q,v+δ,1
[a, c, x] (3.6)

Or equivalently

cd
δ
xR

q,v
[a, c, x] = R

q,v+δ
[a, c, x] (3.7)

which is the δ th order differintegral of the R-function defined by Lorenzo and
Hartley [4].

(iii)If we let c=v=0 in (3.7), we obtain

0d
δ
xR

q,0
[a, 0, x] = R

q,δ
[a, 0, x] (3.8)

Or equivalently

0d
δ
xF

q
[a, 0, x] = R

q,δ
[a, 0, x] (3.9)

which is the δth order differintegral of the F-function defined by Robotnov and
Hartley [19].

(iv)If we set a=q=1 in (3.9), we obtain

0d
δ
xF

1
[1, 0, x] = R

1,δ
[1, 0, x] (3.10)

which is the δthorderdifferintegraloftheMittag − Lefflerfunction [2]E
1
(x) or

generalized Mittag-Leffler function [2] E
1,1

(x) or Exponential function [6] ex .
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4. Conclusion

It is expected that some of the results derived in this survey may find applica-
tions in the solution of certain fractional order differential and integral equations
arising problems of physical sciences and engineering areas.
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